Lecture at Hacking at Random, August 14, 2009

How we eavesdropped 100% of a quantum cryptographic key

Vadim Makarov, Qin Liu,

Ilja Gerhardt, Antía Lamas-Linares, Christian Kurtsiefer

Norwegian University of Science and Technology

Centre for Quantum Technologies, Singapore

Outline

- Introduction to quantum cryptography
- The quantum cryptosystem at CQT
- Problems with photon detectors
- Attack on the real system
- What was a photon? Perspectives

Quantum cryptography timeline

- First key distribution protocol (BB84)
- Proof-of-the-principle experiment
- Key transmission over fiber optic link

- First commercial offers (20~50 km fiber links)
- 2007 200 km in fiber, 144 km free-space demonstrated
- A quantum cryptosystem fully hacked :)

Key distribution

Secure channel

- Secret key cryptography requires secure channel for key distribution
- Quantum cryptography distributes the key by transmitting quantum states in an *Open channel*

Quantum key distribution

Commercial offers (as of August 2009)

SmartQuantum

(France)

VPN & quantum key generator

Motivation for attack

• How secure is quantum key distribution (QKD) practically?

To build the first complete working eavesdropping experiment in the world!

Eve lost the battle against security proofs

<u>but</u>

she can exploit component imperfections

(e.g., saturation and blinding behavior of passively-quenched APDs)

The system under attack

• QKD system from CQT in Singapore

- Basically all systems vulnerable
- Entanglement based QKD
 - What is entanglement?
 - How can it be used for QKD?
 - What is Bell's inequality...?

Entanglement

$$|\Psi\rangle^{-} = \frac{1}{\sqrt{2}}(|\uparrow_{1}, \rightarrow_{2}\rangle - |\rightarrow_{1}, \uparrow_{2}\rangle)$$
$$= \frac{1}{\sqrt{2}}(|\nearrow_{1}, \nwarrow_{2}\rangle - |\nwarrow_{1}, \nearrow_{2}\rangle)$$

Entanglement

• "Spooky action at a distance"

Einstein, Podolsky and Rosen, 1935

John Bell, 1964: How to measure what's going on

Bell state measurement

No need for random numbers

- Different photons, different colors?
 - Dimensionality of Hilbert space needs to be known for security, measuring Bell's inequality

Entanglement-based QKD

Entanglement-based QKD

• Pair source:

- Blue photon in, two red photons out
- ♦ Strong temporally correlated ☺
- ♦ Spectrally broader than dimmed lasers ⊗

25 cm

Detection of photons

• Detection: Polarization analyzer

J.G. Rarity et al., J. Mod. Opt. 41, 2345 (1994)

Detector kept below breakdown voltage, now works in classical mode!

 \rightarrow Detector is blind ("0") to single photons

 \rightarrow Detector will click ("1") if classical pulse above comparator threshold

Control intensity diagrams

Intercept-resend (faked-state) attack

Eve forces her detection result onto Bob by sending

- Background light to keep all detectors blinded (circular polarization)
- Faked-state above intensity threshold to make target detector click (linear polarization)

In conjugate basis, faked-state is split in half, below threshold (no click)

arXiv:0809.3408

QKD under attack

Eavesdropping on installed QKD line on campus of the National University of Singapore

Eve, installed and running

 recording all classical communication Alice–Bob (Wireshark)

©2009 Vadim Makarov www.vad1.cor

Does Eve really have 100% key information?

Clicks in **Eve** and **Bob**:

More clicks in Eve doesn't matter

- Eve forcing a click in Bob: ≈97% probability
 - Eve has 100% information of the wiretapped line, because Bob has to reveal which clicks were received

What about a 'workaround'?

Sure... there will be a workaround

• BUT:

No universal security measure, like a 'quantum state'!

Generating arbitrary quantum states

Eve is able to fake an EPR source

Also interesting for other experiments

- The laws of physics:
 - Quantum correlations:
 - No eavesdropper??

Applicable to schemes which expect single photons

Questions and perspectives:

• What is a photon?

A photon is a single click on a detector... (Anton Zeilinger)

well....

• You cannot delegate security!

 Don't trust 'security' in a black box, even if it's expensive or called 'quantum'

Our attack

- First experimental implementation
- Eve has 100% key information
- Demonstrated eavesdropping under realistic conditions (290 m fiber run via 4 buildings)

Thank you.

www.iet.ntnu.no/groups/optics/qcr www.quantumlah.org More technical details about the attack that we didn't have time to show in the talk Eve can exploit blinding of APD under bright illumination... and make a single photon detector work as a classical detector!

Bob control efficiency

Improved control intensity diagram

Final Eve's scheme

Timing performance

Compare the average FWHM of 16 combinations: \rightarrow After Eve inserted, the FWHMs is practically unchanged

Attack also works via free-space link

Eve's faked state generator

Instruments assessing performance of the attack