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Photonic quantum sensing techniques [1, 2], such as ghost imaging and quantum illumination,
aim to improve physical measurements against their classical counterparts by exploiting quantum
phenomena like entanglement [3–5]. Many of these sensing schemes are based in correlated photon
pairs generated by spontaneous parametric down conversion (SPDC)[6]. Although the output pho-
ton pairs may be entangled, it is often only the photon timing correlations that are implemented
for actual measurements [7]. Popular schemes include range finding [8, 9] and clock synchronization
[10, 11] configurations that exploit the stationary behaviour of SPDC light sources to extract timing
correlation information without distinct temporal structures that can be subjected to vulnerabilities
through optical crosstalk or third-party manipulation. However, the output brightness of SPDC-
based photon bunching sources are limited to the single-photon regime , i.e. hundreds of picowatts,
which significantly constraints its viability for practical sensing applications in real-world use cases
and non-cooperative targets with high return losses and signal attenuation. In this work, we pro-
pose the use of thermal photon bunching as an alternative quantum resource of stationary timing
correlated photons. We successfully demonstrate a novel scheme to generate an ultrabright source
of thermal photon bunching at 1mW output within a very narrow spectral passband of 10 fm, which
is about 14 orders of magnitude brighter in spectral density than many SPDC light sources.

I. PHOTONIC SENSING SOURCE

Conventional photonic sensing techniques implement
modulated light sources to produce timing correlations
between a signal probe with the modulation pattern.
The corresponding quantum sensing schemes extract the
intrinsic timing correlations in the stationary photon
pairs generated by spontaneous parametric down con-
version (SPDC) processes. These timing correlated pho-
tons manifest in second-order timing correlation func-
tions g(2)(τ) with singly peaked temporal structures such
that g(2)(τ < τc) > 1 of coherence timescale τc, whereby
τ describes the timing separation between two photode-
tection events.

External sources of intensity modulation to light
sources for producing timing correlations, e.g. laser puls-
ing, may allow for optical crosstalk by third-party light
sources with similar modulation patterns, and thus intro-
duce unwanted accessibility to the sensing information.
This results in potential security vulnerabilities.

II. STATIONARY CORRELATED LIGHT

Quantum light sources such as SPDC sources circum-
vent this vulnerability by being stationary, i.e. not mod-
ulated. Stationary light sources are not cross-correlated,
even if they are of similar physical design and construct,
therefore allowing for some degree of anti-spoofing prop-
erty. However, quantum light sources can be complex and
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FIG. 1. Spectral densities of stationary light sources with
thermal and SPDC correlations: Subthreshold [12] – sub-
threshold laser diode, Microspheres [13] – suspension of mi-
crospheres, Sunlight [14] – filtered Sunlight, Hg [15] – Mercury
discharge lamp, RGG [16] – rotating ground glass, EDFA [17]
– Erbium-doped fiber amplifier, SLD [18] – superluminescent
diode, Cavity [19] – cavity enhanced via microring resonator,
FWM [20] – four-wave mixing, PPLN [21] – periodically poled
Lithium Niobate, BBO [22] – Beta-Barium Borate, PPKTP
[23] – periodically poled Potassium Titanyl Phosphate.

fragile to build and operate, with relatively faint outputs.

A practical consideration for photonic sensing appli-
cations is the output luminosity of the correlated light
source. The comparison in Fig. 1 shows that SPDC light
sources generate power outputs below a nanowatt, or in
the range of 104 to 109 photoevents per second. This
restricts the use of SPDC light-based sensing in environ-
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FIG. 2. Setup for an ultrabright thermal light source. BS:
Beamsplitter, VA: variable attenuator, λ/2: half-wave plate,
λ/4: quarter-wave plate.

ments with high return loss or realistic signal attenuation.

In order to detect the timing correlations to use in sens-
ing implementations, the size or the coherence timescale
of the photon bunching first must be resolvable by the
photodetectors. Readily available detectors such as pas-
sively quenched Silicon single-photon avalanche detectors
have timing uncertainties around a nanosecond, while
research-grade superconducting nanowire detectors may
reach tens of picoseconds in precision. The detector tim-
ing resolution thus requires the spectral bandwidth of the
thermal light source to be less than 1GHz, and so elim-
inates superluminscent diodes, erbium-doped fiber am-
plifiers, and Sunlight as functional sources of stationary
timing correlations despite high brightness outputs in the
milliwatts, as their photon bunching signatures are 4 to
5 orders too short to be timing resolved.

There are a few ways to generate thermal light with
sufficiently long coherence timescale for their photon
bunching signals to be detected and resolved. Popular
techniques make use of coherent laser light being trans-
mitted through random phase dispersion media such as
a rotating ground glass, or a liquid suspension of micro-
spheres. However, the scattering process introduces spa-
tial incoherence which reduces the coupled single-mode
light that is usable for sensing applications, by around 10
orders of magnitude.

We propose thermal light as a simpler source of station-
ary correlated photons. Bright, narrowband, and single-
mode thermal light has been generated in our previous
works, by operating a laser diode below threshold [24],
and implemented in a time-of-flight measurement [12].

III. ULTRABRIGHT SOURCE GENERATION

We develop an experimental setup to produce a micro-
ensemble of 2 phase-independent light emitters to gen-
erate a temporal photon bunching source that is ul-
trabright, spectrally narrowband, and spatially single-
mode. A distributed feedback laser is used to out-
put 30mW of linearly polarised coherent laser light at
780 nm. This light is then coupled in spatial single-mode
through a fiber beamsplitter into two beams. One of the
beams is then transmitted through a delay optical fiber
longer than the coherence length of the laser at around
40m. This is so that the two splitted beams are phase-
independent when they mode-overlap and recombine and
a second fiber beamsplitter. As such, the two beams are
effectively a micro-ensemble of 2 emitters, and exhibit
temporal photon bunching behaviour like a thermal light
source. A pair of half-wave plate and quarter-wave plate
are placed into both beam paths prior to recombination,
to match their polarisation modes. The variable atten-
uator in the undelayed beam path is to compensate for
attenuation losses in the delay optical fiber and rebalance
both beams before recombining.

IV. THERMAL PHOTON BUNCHING

Thermal light, such as spontaneous emission and
blackbody radiation, exhibits a characteristic temporal
photon bunching behavior [25, 26], also known as the
Hanbury-Brown–Twiss effect [27]. This can be described
by the second-order timing correlation function,

g(2)(τ) = 1 + e−2|τ |/τc , (1)

whereby the thermal photons have a tendency to prop-
agate closer together, hence photon bunching, than de-
scribed by random Poissonian timing statistics.
The coherence timescale τc of the thermal photon

bunching effect is inversely proportional to the spec-
tral width ∆λ of the thermal light source, such that
τc = 1/∆λ for single-line Gaussian spectrum, which can
be generalised to the Fourier transform of the source
power spectrum [28] for other spectral distributions.
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FIG. 3. Second-order photon correlations for different number
of loops. For 0-loop (black), g(2)(τ) = 1. For 1-loop (blue),

g(2)(τ = 0) = 1.471 ± 0.003, coherence timescale of τc =

135.6 ± 0.3 ns. For 2-loops (orange), g(2)(τ = 0) = 1.665 ±
0.003 and τc = 134.8 ± 0.2 ns. For 3-loops (pink), g(2)(τ =
0) = 1.805 ± 0.004 and τc = 135.2 ± 0.2 ns. The black solid
curve shows the fitted curves to Eqn. 1.
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FIG. 4. Second-order photon correlations for parallel polar-
isation (pink) and orthogonal polarisation (orange) between
the two modes.
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