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1 Definitions

This is an attempt to get the various physical quantities sorted out for SNR considerations for
HBT interferometry. Here is what I understand:

Symbol units Description

A m2

(length2)
area of collection telescope

η - quantum efficiency of photodetector
λ m

(length)
optical wavelength

ν Hz
(1/time)

frequency of a photon

R - reflectivity of telescope mirror. This is used to cover var-
ious telescope losses.

T s (time) total integration time of a measurement
τt s (time) detector and electronic time resolution, or inverse electri-

cal bandwidth in original HBT measurements
τc s (time) coherence time of light (before or after filtering, or gen-

eral)
V - Visibility of the first order correlation. For an ideal ther-

mal light source, V = 1. For non-ideal cases, one should
see g(2)(τ = 0) = 1+V 2 (this is the Glauber 1963 result?).

There are definitions / physical quantities where I believe we have uncertainties:

Symbol units Description

n - (photons/time
/frequency)

spectral density for incoming light, expressed in
the number of photons per observation time per
filter bandwidth. This quantity makes sense for
a continuous spectrum. In some places, it ap-
pears as if this is referred to the source area of
the receiver, specifically in the standard SNR
expression.

I W−1m−2 Intensity, received power per area
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2 Collateral relations

2.1 Blackbody radiation

The spectral radiance of an ideal blackbody is given by Planck’s law:

Bν(ν) =
2hν3

c2
· 1

ehν/kT − 1
(1)

with a unit of W−1sr−1m−2Hz−1. The area refers to thesource area, and the solid angle to the
emission direction. For a thermal light source at distance d with source area AS , we collect
into a telescope with an area A optical power with the following spectral intensity (assuming
isotropic emission, unit emittivity, i.e. ideal blackbody)

Iν(ν) = Bν(ν)AS · A
d2

(2)

The unit of this quantity is W−1m−2Hz−1. We probably want to express this not in terms of
Watts, but photons per second since we count photons. This leads to the spectral density of a
star (in an ideal scenario) of

nν(ν) = Iν(ν)/(hν) = (3)

= Bν(ν)AS · A
d2

· 1

hν
= (4)

=
2ν2

c2
· 1

ehν/kT − 1
· AS

d2
·A (5)

This quantity describes the number of photons per second and frequency and is therefore dimen-
sionless. It appears that in some of the expressions the area A is taken out of this expression,
leading to a relation between n and nν :

n = nν/A (6)

=
2

λ2
· 1

ehν/kT − 1
· AS

d2
(7)

3 Referee argument

One starts with a spectral density I0 of light (Does this correspond to our n?). Then behind a
filter that enforces a coherence time τc of the light, one ends up with a photon rate

I = I0/τc , (8)

which has a unit (1/time). This makes sense, since a large coherence time corresponds to a
small bandwidth, and for a continuous spectrum, the rate should be proportional to the filter
bandwidth.
If we were to deal with uncorrelated light or coherent states, the probability of finding a second
photon in a time interval of width τc is given by I ·τc. The total number of photons contributing
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to the bunching signal is just given by the single photon rate, times the probability to find a
second one in a coherence time window of width τc. Thus, the rate of pair events contributing
to the signal would be

rs = I ∗ I ∗ τc (9)

To determine the noise on such a measurement, one needs to observe the number of background
pair events for a given coincidence time window (or detection resolution window) of τt. This
pair rate is given by

rb = I ∗ (I ∗ τt) . (10)

With this, the signal and background is given by the rates, multiplied by the integration time
T . For τc ≪ τt, the background is much larger than the signal, and the noise is determined by
the background completely. With a signal S = rsT and background B = rbT , and assuming
Poissonian noise on the background, one gets

SNR =
S√
B

=
√
T · I τc√

τt
(11)

= I0
√
T

1√
τt

, (12)

which is independent of the filtering bandwidth τc, and only depends on the detection time
resolution τt.

4 Standard SNR expression

The “standard” expression for the signal to noise ratio is

SNR = AnηRV 2

√

T

2τt
(13)

This is compatible with the referee’s argument about the SNR, since it has the same dependency
on T and τt. Also, the fraction of photons that contributes to a signal in a non-ideal case (i.e.,
limited visibility) scales correctly with V 2. The I0 in the above argument would also be given by
I0 = AnηR, so expression (13) is consistent with the referee’s argument. I am missing the 2 in
the square root, probably this comes from the splitting in the BS – but this is a minor problem.

5 Our argument

Since our detector resolution τt is much smaller than the coherence time τc, we first need to
come up with a reasonable definition of what we mean when we talk about signal. I assume
that in the argument brought forward, one only looks at the pairs in the single time bin of the
histogram where g(2)(τ) is maximal, i.e., near τ = 0. This is conservative, because we also have
information from the areas where g(2)(τ) still exceeds 1. In a fair argument, we would need to
include all this information.
In this window, the bunching signal pair rate following a similar argument than above would
use a modified probability to find a second photon, that is given by the uncorrelated probability
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p = I ∗ τt of finding a second photon in the time window τt and an average of the Lorentzian
shape near the center; let’s refer to it as some sort of visibility V ′ that you calculated to be
around 0.85 for our situation. This leads to a modified signal rate (i.e., useful pair events) of

rs = I ∗ I ∗ τt ∗ V ′ , (14)

whereas the noise rate is in the same way determined by the background rate in (10). Thus, the
resulting signal-to-noise rate should be

SNRf =
rsT√
rbT

=
I2τtV

′T√
I2τtT

(15)

= I
√
T
√
τtV

′ (16)

= I0
√
T

√

τt
τ2c

V ′ (17)

We can re-express this SNR in (12), and find

SNRf = SNR · V ′
τt
τc

, (18)

which is smaller than the original SNR by the ratio of the time ratios.... somehow this is not
yet surprising, because we take a much smaller time window for pair detections, and the signal
is proportional to that window, while the noise only grows with the square root. So we have to
look how we can improve the SNR by combining all time windows which contain information.

6 Advanced SNR expression

SNR = V 2 τc
2

√

N1N2

√

T

2τt
(19)

Therein, N1,2 describe the total number of photons detected by each detectors.

7 What is V2?

For spatial intensity interferometry in astronomy, the Van Cittert-Zernicke theorem is invoked,
which states that for an incoherent, quasi-monochromatic source of radiation, the equal-time

degree of coherence is proportional to the complex amplitude. (any textbook on stellar HBT
interferometry discuss this)

In other words, by the nature of the derivation for spatial g(2)(b), the condition is assumed and
enforced in theory that: (where b = baseline = spatial separation between detectors)

τ = 0 (20)

This simplifies g(2)(b, τ) to a purely spatial g(2)(b) consideration.
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Let us examine the standard accepted SNR expression in literature:

SNRHBT = AηRI0

√

T

τt
· V 2(b, τ = 0) (21)

Assuming an ideal interferometer such that the Van Cittert-Zernicke condition τ = 0 can be
measured, then it is clear that the visibility term V 2 is purely spatial, scales to 1 for b = 0.
However, assuming a real interferometer such that the closest to τ = 0 is an averaged measure-
ment between τ = 0 to τ = τt, then the measured visibility should be the following:

V 2(τ ≈ 0, τt, τc) =
1

τt

∫ τ=τt

τ=0
e−2τ/τcdτ (22)

SNRours = AηI0

√

T

τt
· τc
2τt

(

1− e−2τt/τc
)

(23)
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Figure 1: Actual measurable maximal visibility V2 averaged out over the time bin τt that spans
τ = 0 to τ = τt, keeping in mind that τt is the detector resolution. Note: this measurable
visibility is a function of coherence time τc, and in fact we observe this effect in measuring the
g(2) of the mercury lamp, as to why the peak is 1.8 and not 2, precisely because it is averaged
out over the time bin closest to τ = 0.

In the regime of coherence time τc << detector resolution τt, SNRours = SNRHBT

In the regime of coherence time τc ≥ detector resolution τt, SNRours ≥ SNRHBT
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8 Generalised SNR

Let us consider the SNR for a single time bin, of width τt, and recalling that I = I0/τc, such
that the expression for the noise contribution is always

Noise =
√
B = I

√

τtT =
I0
τc

√

τtT (24)

Let us now consider the signal contribution to be the excess of photon coincidences above the
random coincidences, i.e. the area under the visibility curve. Therefore it is perhaps useful to
consider an effective visibility V

′

that is the average of the visibility squared curve from τ = 0
to τt, i.e. averaged out within a single time bin and thus the measurable maximal visibility.

V
′

=
1

τt

∫ τ=τt

τ=0
e−2τ/τcdτ =

(−τc
2τt

e−2τ/τc

)

|τ=τt
τ=0 (25)

V
′

=
−τc
2τt

e−2τt/τc +
τc
2τt

(26)

such that the signal contribution is modified (but valid regardless of filtered or not) to:

S = I2 ∗ τt ∗ V
′ ∗ T (27)

For coherence time τc much smaller than detector resolution τt:

V
′ ≈ τc

2τt
<< 1 (28)

simply because the exponential term decays much faster and thus orders of magnitude smaller,
leading to

S = I2 ∗ τc
2
∗ T = I20 ∗ T

2τc
(29)

and thus

SNR =
I2 τc2 T

I
√
τtT

=
τc
2
I

√

T

τt
=

I0
2

√

T

τt
(30)

which is independent of spectral filtering as is expected and agrees with referee and conventional
wisdom.

Now let us consider the case for coherence time τc longer than the detector resolution τt such
that the in the V

′

term, the coefficients become larger than 1, and the exponent is smaller than
1:

V
′

=
τc
2τt

(

1− e−2τt/τc
)

(31)

such that
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Sf = I2 ∗ τt ∗ T ∗ V ′

= I2 ∗ τc
2
∗ T ∗

(

1− e−2τt/τc
)

(32)

and

SNRf = I0
√
T

√

τt
τ2Tc

∗ V ′

(33)

SNRf =
I0
2

√

T

τt
∗
(

1− e−2τt/τc
)

= SNR ∗
(

1− e−2τt/τc
)

(34)

9 SNR from the experimental results

SNRf = SNR ∗
(

1− e−2τt/τc
)

(35)

For τt = 40 ps and τc = 0.3 ns for the noon solar g(2) measurement:

SNRf = SNR ∗ 0.23 (36)

This suggests that the SNR of a single time bin in our measurement, that contains the peak
g(2), is 23% that of the SNR of a single time bin that contains all photon bunching signal but
without spectral filtering, and holding all other parameters constant.

What is the SNRf of our single peak time bin then?

Let us look at the noon measurement of the Solar g(2)(τ = 0). The time bin with the peak
value, has 900 coincidence events. The associated visibility or V 2 is 0.37. Thus the number of
photon bunching or signal events in this single time bin is 0.37 ∗ 900 = 330 signal events. The
Noise of this bin is

√
900 = 30. Thus giving a SNR = 330/30 = 11. Does this imply that the

uncertainty (or noise) of this time bin is 1/11 or 9% ? i.e. Number of photon coincidences in
this bin = 330± 30 ? If this is valid, does it imply V 2 = 0.37 ± 9% or 0.37 ± 0.03?

However, if we make use of the information of the other time bins as well, and curve fit in
gnuplot, we actually obtained V 2 = 0.37± 0.01. The action of fitting thus tripled our statistical
confidence in the value of g(2)(τ = 0) as opposed to just considering a single time bin. Does this
imply the effective SNR tripled as well?

10 SNR from papers

Our SNR expression seems reasonable when compared with the referee’s, but feels slightly out
of place when viewed on its own; specifically, its dependency on the coherence time τc is present
(strongly so) and a ’wrong’ or reversed dependency on the detector resolution τt:

SNRours = (I0)

(

√

T

τt
· V ′

)

(

τt
τc

)

(37)
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SNRHBT = (AηR I0)

(

V 2

√

T

2τt

)

(38)

SNRiqueye =

(

√

N1N2
τc
2

)

(

V 2

√

T

2τt

)

(39)
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Adapted from Rou, Nunez, Foellmi, Malvimat who all in turn cited HBT74:

Signal (photons2 s−2) = number of coincidences per unit time bin per unit integration time?

Spectral density I0 is in units of number of photons, per second of integration, per hertz of
optical bandwidth, per metres2 of aperture area

|γ(b, τ)|2 = V (b, τ)2 =
< δi1 · δi2 >

< i1 >< i2 >
(40)

b is the spatial baseline separation between the detectors, τ is the timing separation. In our
case, b = 0 due to the photons being projected into TEM00. Obviously the visibility, and so the
signal, and thus the SNR are dependent on the timing separation τ , and is maximal at τ = 0
where V = 1.

g(2)(b, τ) = 1 + |γ(b, τ)|2 (41)

=
P12

P1 · P2
(42)

=
I12T

I1T · I2T
, I1 + I2 = I = I0/τc (43)

But the reality is that τ = 0 cannot be reached, and the closest one can approach is a single
time bin that spans τ = 0 to τ = τt, where τt is the detector resolution. As such, the maximal
visibility, signal and thus SNR are actually averaged out across this time bin with width τt.

Signal = < δi1 · δi2 > (44)

= < i1 >< i2 > V (τ)2 (45)

where δi1,2 are the fluctuations in the photodetector currents, and < δi1 · δi2 > is the time-
averaged of the product and thus the photon bunching signal. < i1,2 > is the time-averaged of
the intensities collected by each detector, and thus their uncorrelated product gives the random
photon coincidences. The ratio of these two products gives the V 2 or the excess g(2) − 1.

To relate from ideal V 2(τ) to measured V ′(τ ± τt/2):

V 2 =
τc
τt
V ′ (46)

V 2 is an ’instantaneous’ value, and is thus true at all points in time during the measurement
duration T. However, V ′ is a finite measurement that takes τt to perform. Therefore it is not
a true measure of how ’common’ the coincidence events take up the measurement duration T.
The scaling term τc/τt is thus introduced to represent better how ’often’ the coincidence events
are during the measurement. Is it fair to say detector resolution τt constraints the sampling rate
of the true coincidences?
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So here we show the actual expression for the measured V ′, which is the true visibility integrated
over and then averaged out by the time bin τt:

V
′

=
1

τt

∫ τ=τt

τ=0
e−2τ/τcdτ (47)

=

(−τc
2τt

e−2τ/τc

)

|τ=τt
τ=0 (48)

=
τc
2τt

(

1− e−2τt/τc
)

(49)

Signal =

(

AηI0
τc

)

1
·
(

AηI0
τc

)

2
·
(

τc
τt
V ′

)

(50)

=
(AηI0)

2

τcτt
V ′ (51)

This Signal final expression is as given by Rou and Nunez citing HBT 74.

Also, keep in mind that the signal here is number of photon coincidences per second of measure-
ment duration per second of time bin; therefore it is not surprising to see that it is independent
of measurement duration T, and that the detector resolution τt is present only to ’renormalise’
the time τt taken to measure V ′.

random events = Noise2 per second timebin per second duration (52)

= < i1 >< i2 > (53)

=

(

AηI0
τc

)2 1

τtT
(54)

Assuming Poissonian noise such that noise is the square-root of the random coincidences rate.

Noise =
AηI0
τc

√

1

τtT
(55)

Taking the ratio of these two terms, we arrive at the SNR:

SNRours = AηI0

√

T

τt
· V ′ (56)

Assuming an ideal interferometer such that τ = 0 can be measured, then V ′ = V 2 = 1 and we
arrive at the SNRHBT in literature which is independent of spectral filtering:

SNRHBT = AηI0

√

T

τt
· V 2 (57)
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Assuming a real interferometer such that the closest to τ = 0 is an averaged measurement
between τ = 0 to τ = τt, then SNR is weakly (effectively not) dependent on spectral filtering as
V ′ is flat, until the coherence time τc approaches the detector resolution τt:

SNRours = AηI0

√

T

τt
· τc
2τt

(

1− e−2τt/τc
)

(58)

In the regime of τc < τt, SNRours = SNRHBT .
In the regime of τc ≥ τt, SNRours ≥ SNRHBT
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