% aa.dem % AA vers. 8.2, LaTeX class for Astronomy & Astrophysics % demonstration file % (c) EDP Sciences %----------------------------------------------------------------------- % %\documentclass[referee]{aa} % for a referee version %\documentclass[onecolumn]{aa} % for a paper on 1 column %\documentclass[longauth]{aa} % for the long lists of affiliations %\documentclass[rnote]{aa} % for the research notes %\documentclass[letter]{aa} % for the letters %\documentclass[bibyear]{aa} % if the references are not structured % according to the author-year natbib style % \documentclass{aa} % \usepackage{graphicx} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% \usepackage{txfonts} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %\usepackage[options]{hyperref} % To add links in your PDF file, use the package "hyperref" % with options according to your LaTeX or PDFLaTeX drivers. % \begin{document} \title{Hydrodynamics of giant planet formation} \subtitle{I. Overviewing the $\kappa$-mechanism} \author{G. Wuchterl \inst{1} \and C. Ptolemy\inst{2}\fnmsep\thanks{Just to show the usage of the elements in the author field} } \institute{Institute for Astronomy (IfA), University of Vienna, T\"urkenschanzstrasse 17, A-1180 Vienna\\ \email{wuchterl@amok.ast.univie.ac.at} \and University of Alexandria, Department of Geography, ...\\ \email{c.ptolemy@hipparch.uheaven.space} \thanks{The university of heaven temporarily does not accept e-mails} } \date{Received September 15, 1996; accepted March 16, 1997} % \abstract{}{}{}{}{} % 5 {} token are mandatory \abstract % context heading (optional) % {} leave it empty if necessary {To investigate the physical nature of the `nuc\-leated instability' of proto giant planets, the stability of layers in static, radiative gas spheres is analysed on the basis of Baker's standard one-zone model.} % aims heading (mandatory) {It is shown that stability depends only upon the equations of state, the opacities and the local thermodynamic state in the layer. Stability and instability can therefore be expressed in the form of stability equations of state which are universal for a given composition.} % methods heading (mandatory) {The stability equations of state are calculated for solar composition and are displayed in the domain $-14 \leq \lg \rho / \mathrm{[g\, cm^{-3}]} \leq 0 $, $ 8.8 \leq \lg e / \mathrm{[erg\, g^{-1}]} \leq 17.7$. These displays may be used to determine the one-zone stability of layers in stellar or planetary structure models by directly reading off the value of the stability equations for the thermodynamic state of these layers, specified by state quantities as density $\rho$, temperature $T$ or specific internal energy $e$. Regions of instability in the $(\rho,e)$-plane are described and related to the underlying microphysical processes.} % results heading (mandatory) {Vibrational instability is found to be a common phenomenon at temperatures lower than the second He ionisation zone. The $\kappa$-mechanism is widespread under `cool' conditions.} % conclusions heading (optional), leave it empty if necessary {} \keywords{giant planet formation -- $\kappa$-mechanism -- stability of gas spheres } \maketitle % %________________________________________________________________ \section{Introduction} In the \emph{nucleated instability\/} (also called core instability) hypothesis of giant planet formation, a critical mass for static core envelope protoplanets has been found. Mizuno (\cite{mizuno}) determined the critical mass of the core to be about $12 \,M_\oplus$ ($M_\oplus=5.975 \times 10^{27}\,\mathrm{g}$ is the Earth mass), which is independent of the outer boundary conditions and therefore independent of the location in the solar nebula. This critical value for the core mass corresponds closely to the cores of today's giant planets. Although no hydrodynamical study has been available many workers conjectured that a collapse or rapid contraction will ensue after accumulating the critical mass. The main motivation for this article is to investigate the stability of the static envelope at the critical mass. With this aim the local, linear stability of static radiative gas spheres is investigated on the basis of Baker's (\cite{baker}) standard one-zone model. Phenomena similar to the ones described above for giant planet formation have been found in hydrodynamical models concerning star formation where protostellar cores explode (Tscharnuter \cite{tscharnuter}, Balluch \cite{balluch}), whereas earlier studies found quasi-steady collapse flows. The similarities in the (micro)physics, i.e., constitutive relations of protostellar cores and protogiant planets serve as a further motivation for this study. %__________________________________________________________________ \section{Baker's standard one-zone model} % Two column figure (place early!) %______________________________________________ Gamma_1 (lg rho, lg e) \begin{figure*} \centering %%%\includegraphics{empty.eps} %%%\includegraphics{empty.eps} %%%\includegraphics{empty.eps} \caption{Adiabatic exponent $\Gamma_1$. $\Gamma_1$ is plotted as a function of $\lg$ internal energy $\mathrm{[erg\,g^{-1}]}$ and $\lg$ density $\mathrm{[g\,cm^{-3}]}$.} \label{FigGam}% \end{figure*} % In this section the one-zone model of Baker (\cite{baker}), originally used to study the Cephe{\"{\i}}d pulsation mechanism, will be briefly reviewed. The resulting stability criteria will be rewritten in terms of local state variables, local timescales and constitutive relations. Baker (\cite{baker}) investigates the stability of thin layers in self-gravitating, spherical gas clouds with the following properties: \begin{itemize} \item hydrostatic equilibrium, \item thermal equilibrium, \item energy transport by grey radiation diffusion. \end{itemize} For the one-zone-model Baker obtains necessary conditions for dynamical, secular and vibrational (or pulsational) stability (Eqs.\ (34a,\,b,\,c) in Baker \cite{baker}). Using Baker's notation: \[ \begin{array}{lp{0.8\linewidth}} M_{r} & mass internal to the radius $r$ \\ m & mass of the zone \\ r_0 & unperturbed zone radius \\ \rho_0 & unperturbed density in the zone \\ T_0 & unperturbed temperature in the zone \\ L_{r0} & unperturbed luminosity \\ E_{\mathrm{th}} & thermal energy of the zone \end{array} \] \noindent and with the definitions of the \emph{local cooling time\/} (see Fig.~\ref{FigGam}) \begin{equation} \tau_{\mathrm{co}} = \frac{E_{\mathrm{th}}}{L_{r0}} \,, \end{equation} and the \emph{local free-fall time} \begin{equation} \tau_{\mathrm{ff}} = \sqrt{ \frac{3 \pi}{32 G} \frac{4\pi r_0^3}{3 M_{\mathrm{r}}} }\,, \end{equation} Baker's $K$ and $\sigma_0$ have the following form: \begin{eqnarray} \sigma_0 & = & \frac{\pi}{\sqrt{8}} \frac{1}{ \tau_{\mathrm{ff}}} \\ K & = & \frac{\sqrt{32}}{\pi} \frac{1}{\delta} \frac{ \tau_{\mathrm{ff}} } { \tau_{\mathrm{co}} }\,; \end{eqnarray} where $ E_{\mathrm{th}} \approx m (P_0/{\rho_0})$ has been used and \begin{equation} \begin{array}{l} \delta = - \left( \frac{ \partial \ln \rho }{ \partial \ln T } \right)_P \\ e=mc^2 \end{array} \end{equation} is a thermodynamical quantity which is of order $1$ and equal to $1$ for nonreacting mixtures of classical perfect gases. The physical meaning of $ \sigma_0 $ and $K$ is clearly visible in the equations above. $\sigma_0$ represents a frequency of the order one per free-fall time. $K$ is proportional to the ratio of the free-fall time and the cooling time. Substituting into Baker's criteria, using thermodynamic identities and definitions of thermodynamic quantities, \begin{displaymath} \Gamma_1 = \left( \frac{ \partial \ln P}{ \partial\ln \rho} \right)_{S} \, , \; \chi^{}_\rho = \left( \frac{ \partial \ln P}{ \partial\ln \rho} \right)_{T} \, , \; \kappa^{}_{P} = \left( \frac{ \partial \ln \kappa}{ \partial\ln P} \right)_{T} \end{displaymath} \begin{displaymath} \nabla_{\mathrm{ad}} = \left( \frac{ \partial \ln T} { \partial\ln P} \right)_{S} \, , \; \chi^{}_T = \left( \frac{ \partial \ln P} { \partial\ln T} \right)_{\rho} \, , \; \kappa^{}_{T} = \left( \frac{ \partial \ln \kappa} { \partial\ln T} \right)_{T} \end{displaymath} one obtains, after some pages of algebra, the conditions for \emph{stability\/} given below: \begin{eqnarray} \frac{\pi^2}{8} \frac{1}{\tau_{\mathrm{ff}}^2} ( 3 \Gamma_1 - 4 ) & > & 0 \label{ZSDynSta} \\ \frac{\pi^2}{\tau_{\mathrm{co}} \tau_{\mathrm{ff}}^2} \Gamma_1 \nabla_{\mathrm{ad}} \left[ \frac{ 1- 3/4 \chi^{}_\rho }{ \chi^{}_T } ( \kappa^{}_T - 4 ) + \kappa^{}_P + 1 \right] & > & 0 \label{ZSSecSta} \\ \frac{\pi^2}{4} \frac{3}{\tau_{ \mathrm{co} } \tau_{ \mathrm{ff} }^2 } \Gamma_1^2 \, \nabla_{\mathrm{ad}} \left[ 4 \nabla_{\mathrm{ad}} - ( \nabla_{\mathrm{ad}} \kappa^{}_T + \kappa^{}_P ) - \frac{4}{3 \Gamma_1} \right] & > & 0 \label{ZSVibSta} \end{eqnarray} % For a physical discussion of the stability criteria see Baker (\cite{baker}) or Cox (\cite{cox}). We observe that these criteria for dynamical, secular and vibrational stability, respectively, can be factorized into \begin{enumerate} \item a factor containing local timescales only, \item a factor containing only constitutive relations and their derivatives. \end{enumerate} The first factors, depending on only timescales, are positive by definition. The signs of the left hand sides of the inequalities~(\ref{ZSDynSta}), (\ref{ZSSecSta}) and (\ref{ZSVibSta}) therefore depend exclusively on the second factors containing the constitutive relations. Since they depend only on state variables, the stability criteria themselves are \emph{ functions of the thermodynamic state in the local zone}. The one-zone stability can therefore be determined from a simple equation of state, given for example, as a function of density and temperature. Once the microphysics, i.e.\ the thermodynamics and opacities (see Table~\ref{KapSou}), are specified (in practice by specifying a chemical composition) the one-zone stability can be inferred if the thermodynamic state is specified. The zone -- or in other words the layer -- will be stable or unstable in whatever object it is imbedded as long as it satisfies the one-zone-model assumptions. Only the specific growth rates (depending upon the time scales) will be different for layers in different objects. %__________________________________________________ One column table \begin{table} \caption[]{Opacity sources.} \label{KapSou} $$ \begin{array}{p{0.5\linewidth}l} \hline \noalign{\smallskip} Source & T / {[\mathrm{K}]} \\ \noalign{\smallskip} \hline \noalign{\smallskip} Yorke 1979, Yorke 1980a & \leq 1700^{\mathrm{a}} \\ % Yorke 1979, Yorke 1980a & \leq 1700 \\ Kr\"ugel 1971 & 1700 \leq T \leq 5000 \\ Cox \& Stewart 1969 & 5000 \leq \\ \noalign{\smallskip} \hline \end{array} $$ \end{table} % We will now write down the sign (and therefore stability) determining parts of the left-hand sides of the inequalities (\ref{ZSDynSta}), (\ref{ZSSecSta}) and (\ref{ZSVibSta}) and thereby obtain \emph{stability equations of state}. The sign determining part of inequality~(\ref{ZSDynSta}) is $3\Gamma_1 - 4$ and it reduces to the criterion for dynamical stability \begin{equation} \Gamma_1 > \frac{4}{3}\,\cdot \end{equation} Stability of the thermodynamical equilibrium demands \begin{equation} \chi^{}_\rho > 0, \;\; c_v > 0\, , \end{equation} and \begin{equation} \chi^{}_T > 0 \end{equation} holds for a wide range of physical situations. With \begin{eqnarray} \Gamma_3 - 1 = \frac{P}{\rho T} \frac{\chi^{}_T}{c_v}&>&0\\ \Gamma_1 = \chi_\rho^{} + \chi_T^{} (\Gamma_3 -1)&>&0\\ \nabla_{\mathrm{ad}} = \frac{\Gamma_3 - 1}{\Gamma_1} &>&0 \end{eqnarray} we find the sign determining terms in inequalities~(\ref{ZSSecSta}) and (\ref{ZSVibSta}) respectively and obtain the following form of the criteria for dynamical, secular and vibrational \emph{stability}, respectively: \begin{eqnarray} 3 \Gamma_1 - 4 =: S_{\mathrm{dyn}} > & 0 & \label{DynSta} \\ % \frac{ 1- 3/4 \chi^{}_\rho }{ \chi^{}_T } ( \kappa^{}_T - 4 ) + \kappa^{}_P + 1 =: S_{\mathrm{sec}} > & 0 & \label{SecSta} \\ % 4 \nabla_{\mathrm{ad}} - (\nabla_{\mathrm{ad}} \kappa^{}_T + \kappa^{}_P) - \frac{4}{3 \Gamma_1} =: S_{\mathrm{vib}} > & 0\,.& \label{VibSta} \end{eqnarray} The constitutive relations are to be evaluated for the unperturbed thermodynamic state (say $(\rho_0, T_0)$) of the zone. We see that the one-zone stability of the layer depends only on the constitutive relations $\Gamma_1$, $\nabla_{\mathrm{ad}}$, $\chi_T^{},\,\chi_\rho^{}$, $\kappa_P^{},\,\kappa_T^{}$. These depend only on the unperturbed thermodynamical state of the layer. Therefore the above relations define the one-zone-stability equations of state $S_{\mathrm{dyn}},\,S_{\mathrm{sec}}$ and $S_{\mathrm{vib}}$. See Fig.~\ref{FigVibStab} for a picture of $S_{\mathrm{vib}}$. Regions of secular instability are listed in Table~1. % % One column figure %----------------------------------------------------------- S_vib \begin{figure} \centering %%%\includegraphics[width=3cm]{empty.eps} \caption{Vibrational stability equation of state $S_{\mathrm{vib}}(\lg e, \lg \rho)$. $>0$ means vibrational stability. } \label{FigVibStab} \end{figure} % %______________________________________________________________ \section{Conclusions} \begin{enumerate} \item The conditions for the stability of static, radiative layers in gas spheres, as described by Baker's (\cite{baker}) standard one-zone model, can be expressed as stability equations of state. These stability equations of state depend only on the local thermodynamic state of the layer. \item If the constitutive relations -- equations of state and Rosseland mean opacities -- are specified, the stability equations of state can be evaluated without specifying properties of the layer. \item For solar composition gas the $\kappa$-mechanism is working in the regions of the ice and dust features in the opacities, the $\mathrm{H}_2$ dissociation and the combined H, first He ionization zone, as indicated by vibrational instability. These regions of instability are much larger in extent and degree of instability than the second He ionization zone that drives the Cephe{\"\i}d pulsations. \end{enumerate} \begin{acknowledgements} Part of this work was supported by the German \emph{Deut\-sche For\-schungs\-ge\-mein\-schaft, DFG\/} project number Ts~17/2--1. \end{acknowledgements} %------------------------------------------------------------------- \begin{thebibliography}{} \bibitem[1966]{baker} Baker, N. 1966, in Stellar Evolution, ed.\ R. F. Stein,\& A. G. W. Cameron (Plenum, New York) 333 \bibitem[1988]{balluch} Balluch, M. 1988, A\&A, 200, 58 \bibitem[1980]{cox} Cox, J. P. 1980, Theory of Stellar Pulsation (Princeton University Press, Princeton) 165 \bibitem[1969]{cox69} Cox, A. N.,\& Stewart, J. N. 1969, Academia Nauk, Scientific Information 15, 1 \bibitem[1980]{mizuno} Mizuno H. 1980, Prog. Theor. Phys., 64, 544 \bibitem[1987]{tscharnuter} Tscharnuter W. M. 1987, A\&A, 188, 55 \bibitem[1992]{terlevich} Terlevich, R. 1992, in ASP Conf. Ser. 31, Relationships between Active Galactic Nuclei and Starburst Galaxies, ed. A. V. Filippenko, 13 \bibitem[1980a]{yorke80a} Yorke, H. W. 1980a, A\&A, 86, 286 \bibitem[1997]{zheng} Zheng, W., Davidsen, A. F., Tytler, D. \& Kriss, G. A. 1997, preprint \end{thebibliography} \end{document} %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% Examples for figures using graphicx A guide "Using Imported Graphics in LaTeX2e" (Keith Reckdahl) is available on a lot of LaTeX public servers or ctan mirrors. The file is : epslatex.pdf %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% %_____________________________________________________________ % A figure as large as the width of the column %------------------------------------------------------------- \begin{figure} \centering \includegraphics[width=\hsize]{empty.eps} \caption{Vibrational stability equation of state $S_{\mathrm{vib}}(\lg e, \lg \rho)$. $>0$ means vibrational stability. } \label{FigVibStab} \end{figure} % %_____________________________________________________________ % One column rotated figure %------------------------------------------------------------- \begin{figure} \centering \includegraphics[angle=-90,width=3cm]{empty.eps} \caption{Vibrational stability equation of state $S_{\mathrm{vib}}(\lg e, \lg \rho)$. $>0$ means vibrational stability. } \label{FigVibStab} \end{figure} % %_____________________________________________________________ % Figure with caption on the right side %------------------------------------------------------------- \begin{figure} \sidecaption \includegraphics[width=3cm]{empty.eps} \caption{Vibrational stability equation of state $S_{\mathrm{vib}}(\lg e, \lg \rho)$. $>0$ means vibrational stability. } \label{FigVibStab} \end{figure} % %_____________________________________________________________ % %_____________________________________________________________ % Figure with a new BoundingBox %------------------------------------------------------------- \begin{figure} \centering \includegraphics[bb=10 20 100 300,width=3cm,clip]{empty.eps} \caption{Vibrational stability equation of state $S_{\mathrm{vib}}(\lg e, \lg \rho)$. $>0$ means vibrational stability. } \label{FigVibStab} \end{figure} % %_____________________________________________________________ % %_____________________________________________________________ % The "resizebox" command %------------------------------------------------------------- \begin{figure} \resizebox{\hsize}{!} {\includegraphics[bb=10 20 100 300,clip]{empty.eps} \caption{Vibrational stability equation of state $S_{\mathrm{vib}}(\lg e, \lg \rho)$. $>0$ means vibrational stability. } \label{FigVibStab} \end{figure} % %______________________________________________________________ % %_____________________________________________________________ % Two column Figure %------------------------------------------------------------- \begin{figure*} \resizebox{\hsize}{!} {\includegraphics[bb=10 20 100 300,clip]{empty.eps} \caption{Vibrational stability equation of state $S_{\mathrm{vib}}(\lg e, \lg \rho)$. $>0$ means vibrational stability. } \label{FigVibStab} \end{figure*} % %______________________________________________________________ % %_____________________________________________________________ % Simple A&A Table %_____________________________________________________________ % \begin{table} \caption{Nonlinear Model Results} % title of Table \label{table:1} % is used to refer this table in the text \centering % used for centering table \begin{tabular}{c c c c} % centered columns (4 columns) \hline\hline % inserts double horizontal lines HJD & $E$ & Method\#2 & Method\#3 \\ % table heading \hline % inserts single horizontal line 1 & 50 & $-837$ & 970 \\ % inserting body of the table 2 & 47 & 877 & 230 \\ 3 & 31 & 25 & 415 \\ 4 & 35 & 144 & 2356 \\ 5 & 45 & 300 & 556 \\ \hline %inserts single line \end{tabular} \end{table} % %_____________________________________________________________ % Two column Table %_____________________________________________________________ % \begin{table*} \caption{Nonlinear Model Results} \label{table:1} \centering \begin{tabular}{c c c c l l l } % 7 columns \hline\hline % To combine 4 columns into a single one HJD & $E$ & Method\#2 & \multicolumn{4}{c}{Method\#3}\\ \hline 1 & 50 & $-837$ & 970 & 65 & 67 & 78\\ 2 & 47 & 877 & 230 & 567& 55 & 78\\ 3 & 31 & 25 & 415 & 567& 55 & 78\\ 4 & 35 & 144 & 2356& 567& 55 & 78 \\ 5 & 45 & 300 & 556 & 567& 55 & 78\\ \hline \end{tabular} \end{table*} % %------------------------------------------------------------- % Table with notes %------------------------------------------------------------- % % A single note \begin{table} \caption{\label{t7}Spectral types and photometry for stars in the region.} \centering \begin{tabular}{lccc} \hline\hline Star&Spectral type&RA(J2000)&Dec(J2000)\\ \hline 69 &B1\,V &09 15 54.046 & $-$50 00 26.67\\ 49 &B0.7\,V &*09 15 54.570& $-$50 00 03.90\\ LS~1267~(86) &O8\,V &09 15 52.787&11.07\\ 24.6 &7.58 &1.37 &0.20\\ \hline LS~1262 &B0\,V &09 15 05.17&11.17\\ MO 2-119 &B0.5\,V &09 15 33.7 &11.74\\ LS~1269 &O8.5\,V &09 15 56.60&10.85\\ \hline \end{tabular} \tablefoot{The top panel shows likely members of Pismis~11. The second panel contains likely members of Alicante~5. The bottom panel displays stars outside the clusters.} \end{table} % % More notes % \begin{table} \caption{\label{t7}Spectral types and photometry for stars in the region.} \centering \begin{tabular}{lccc} \hline\hline Star&Spectral type&RA(J2000)&Dec(J2000)\\ \hline 69 &B1\,V &09 15 54.046 & $-$50 00 26.67\\ 49 &B0.7\,V &*09 15 54.570& $-$50 00 03.90\\ LS~1267~(86) &O8\,V &09 15 52.787&11.07\tablefootmark{a}\\ 24.6 &7.58\tablefootmark{1}&1.37\tablefootmark{a} &0.20\tablefootmark{a}\\ \hline LS~1262 &B0\,V &09 15 05.17&11.17\tablefootmark{b}\\ MO 2-119 &B0.5\,V &09 15 33.7 &11.74\tablefootmark{c}\\ LS~1269 &O8.5\,V &09 15 56.60&10.85\tablefootmark{d}\\ \hline \end{tabular} \tablefoot{The top panel shows likely members of Pismis~11. The second panel contains likely members of Alicante~5. The bottom panel displays stars outside the clusters.\\ \tablefoottext{a}{Photometry for MF13, LS~1267 and HD~80077 from Dupont et al.} \tablefoottext{b}{Photometry for LS~1262, LS~1269 from Durand et al.} \tablefoottext{c}{Photometry for MO2-119 from Mathieu et al.} } \end{table} % %------------------------------------------------------------- % Table with references %------------------------------------------------------------- % \begin{table*}[h] \caption[]{\label{nearbylistaa2}List of nearby SNe used in this work.} \begin{tabular}{lccc} \hline \hline SN name & Epoch & Bands & References \\ & (with respect to $B$ maximum) & & \\ \hline 1981B & 0 & {\it UBV} & 1\\ 1986G & $-$3, $-$1, 0, 1, 2 & {\it BV} & 2\\ 1989B & $-$5, $-$1, 0, 3, 5 & {\it UBVRI} & 3, 4\\ 1990N & 2, 7 & {\it UBVRI} & 5\\ 1991M & 3 & {\it VRI} & 6\\ \hline \noalign{\smallskip} \multicolumn{4}{c}{ SNe 91bg-like} \\ \noalign{\smallskip} \hline 1991bg & 1, 2 & {\it BVRI} & 7\\ 1999by & $-$5, $-$4, $-$3, 3, 4, 5 & {\it UBVRI} & 8\\ \hline \noalign{\smallskip} \multicolumn{4}{c}{ SNe 91T-like} \\ \noalign{\smallskip} \hline 1991T & $-$3, 0 & {\it UBVRI} & 9, 10\\ 2000cx & $-$3, $-$2, 0, 1, 5 & {\it UBVRI} & 11\\ % \hline \end{tabular} \tablebib{(1)~\citet{branch83}; (2) \citet{phillips87}; (3) \citet{barbon90}; (4) \citet{wells94}; (5) \citet{mazzali93}; (6) \citet{gomez98}; (7) \citet{kirshner93}; (8) \citet{patat96}; (9) \citet{salvo01}; (10) \citet{branch03}; (11) \citet{jha99}. } \end{table} %_____________________________________________________________ % A rotated Two column Table in landscape %------------------------------------------------------------- \begin{sidewaystable*} \caption{Summary for ISOCAM sources with mid-IR excess (YSO candidates).}\label{YSOtable} \centering \begin{tabular}{crrlcl} \hline\hline ISO-L1551 & $F_{6.7}$~[mJy] & $\alpha_{6.7-14.3}$ & YSO type$^{d}$ & Status & Comments\\ \hline \multicolumn{6}{c}{\it New YSO candidates}\\ % To combine 6 columns into a single one \hline 1 & 1.56 $\pm$ 0.47 & -- & Class II$^{c}$ & New & Mid\\ 2 & 0.79: & 0.97: & Class II ? & New & \\ 3 & 4.95 $\pm$ 0.68 & 3.18 & Class II / III & New & \\ 5 & 1.44 $\pm$ 0.33 & 1.88 & Class II & New & \\ \hline \multicolumn{6}{c}{\it Previously known YSOs} \\ \hline 61 & 0.89 $\pm$ 0.58 & 1.77 & Class I & \object{HH 30} & Circumstellar disk\\ 96 & 38.34 $\pm$ 0.71 & 37.5& Class II& MHO 5 & Spectral type\\ \hline \end{tabular} \end{sidewaystable*} %_____________________________________________________________ % A rotated One column Table in landscape %------------------------------------------------------------- \begin{sidewaystable} \caption{Summary for ISOCAM sources with mid-IR excess (YSO candidates).}\label{YSOtable} \centering \begin{tabular}{crrlcl} \hline\hline ISO-L1551 & $F_{6.7}$~[mJy] & $\alpha_{6.7-14.3}$ & YSO type$^{d}$ & Status & Comments\\ \hline \multicolumn{6}{c}{\it New YSO candidates}\\ % To combine 6 columns into a single one \hline 1 & 1.56 $\pm$ 0.47 & -- & Class II$^{c}$ & New & Mid\\ 2 & 0.79: & 0.97: & Class II ? & New & \\ 3 & 4.95 $\pm$ 0.68 & 3.18 & Class II / III & New & \\ 5 & 1.44 $\pm$ 0.33 & 1.88 & Class II & New & \\ \hline \multicolumn{6}{c}{\it Previously known YSOs} \\ \hline 61 & 0.89 $\pm$ 0.58 & 1.77 & Class I & \object{HH 30} & Circumstellar disk\\ 96 & 38.34 $\pm$ 0.71 & 37.5& Class II& MHO 5 & Spectral type\\ \hline \end{tabular} \end{sidewaystable} % %_____________________________________________________________ % Table longer than a single page %------------------------------------------------------------- % All long tables will be placed automatically at the end, after % \end{thebibliography} % \begin{longtab} \begin{longtable}{lllrrr} \caption{\label{kstars} Sample stars with absolute magnitude}\\ \hline\hline Catalogue& $M_{V}$ & Spectral & Distance & Mode & Count Rate \\ \hline \endfirsthead \caption{continued.}\\ \hline\hline Catalogue& $M_{V}$ & Spectral & Distance & Mode & Count Rate \\ \hline \endhead \hline \endfoot %% Gl 33 & 6.37 & K2 V & 7.46 & S & 0.043170\\ Gl 66AB & 6.26 & K2 V & 8.15 & S & 0.260478\\ Gl 68 & 5.87 & K1 V & 7.47 & P & 0.026610\\ & & & & H & 0.008686\\ Gl 86 \footnote{Source not included in the HRI catalog. See Sect.~5.4.2 for details.} & 5.92 & K0 V & 10.91& S & 0.058230\\ \end{longtable} \end{longtab} % %_____________________________________________________________ % Table longer than a single page % and in landscape % In the preamble, use: \usepackage{lscape} %------------------------------------------------------------- % All long tables will be placed automatically at the end, after % \end{thebibliography} % \begin{longtab} \begin{landscape} \begin{longtable}{lllrrr} \caption{\label{kstars} Sample stars with absolute magnitude}\\ \hline\hline Catalogue& $M_{V}$ & Spectral & Distance & Mode & Count Rate \\ \hline \endfirsthead \caption{continued.}\\ \hline\hline Catalogue& $M_{V}$ & Spectral & Distance & Mode & Count Rate \\ \hline \endhead \hline \endfoot %% Gl 33 & 6.37 & K2 V & 7.46 & S & 0.043170\\ Gl 66AB & 6.26 & K2 V & 8.15 & S & 0.260478\\ Gl 68 & 5.87 & K1 V & 7.47 & P & 0.026610\\ & & & & H & 0.008686\\ Gl 86 \footnote{Source not included in the HRI catalog. See Sect.~5.4.2 for details.} & 5.92 & K0 V & 10.91& S & 0.058230\\ \end{longtable} \end{landscape} \end{longtab} % % Online Material %_____________________________________________________________ % Online appendices have to be placed at the end, after % \end{thebibliography} %------------------------------------------------------------- \end{thebibliography} \Online \begin{appendix} %First online appendix \section{Background galaxy number counts and shear noise-levels} Because the optical images used in this analysis... \begin{figure*} \centering \includegraphics[width=16.4cm,clip]{1787f24.ps} \caption{Plotted above...} \label{appfig} \end{figure*} Because the optical images... \end{appendix} \begin{appendix} %Second online appendix These studies, however, have faced... \end{appendix} \end{document} % %_____________________________________________________________ % Some tables or figures are in the printed version and % some are only in the electronic version %------------------------------------------------------------- % % Leave all the tables or figures in the text, at their right place % and use the commands \onlfig{} and \onltab{}. These elements % will be automatically placed at the end, in the section % Online material. \documentclass{aa} ... \begin{document} text of the paper... \begin{figure*}%f1 \includegraphics[width=10.9cm]{1787f01.eps} \caption{Shown in greyscale is a...} \label{cl12301}} \end{figure*} ... from the intrinsic ellipticity distribution. % Figure 2 available electronically only \onlfig{ \begin{figure*}%f2 \includegraphics[width=11.6cm]{1787f02.eps} \caption {Shown in greyscale...} \label{cl1018} \end{figure*} } % Figure 3 available electronically only \onlfig{ \begin{figure*}%f3 \includegraphics[width=11.2cm]{1787f03.eps} \caption{Shown in panels...} \label{cl1059} \end{figure*} } \begin{figure*}%f4 \includegraphics[width=10.9cm]{1787f04.eps} \caption{Shown in greyscale is...} \label{cl1232}} \end{figure*} \begin{table}%t1 \caption{Complexes characterisation.}\label{starbursts} \centering \begin{tabular}{lccc} \hline \hline Complex & $F_{60}$ & 8.6 & No. of \\ ... \hline \end{tabular} \end{table} The second method produces... % Figure 5 available electronically only \onlfig{ \begin{figure*}%f5 \includegraphics[width=11.2cm]{1787f05.eps} \caption{Shown in panels...} \label{cl1238}} \end{figure*} } As can be seen, in general the deeper... % Table 2 available electronically only \onltab{ \begin{table*}%t2 \caption{List of the LMC stellar complexes...}\label{Properties} \centering \begin{tabular}{lccccccccc} \hline \hline Stellar & RA & Dec & ... ... \hline \end{tabular} \end{table*} } % Table 3 available electronically only \onltab{ \begin{table*}%t3 \caption{List of the derived...}\label{IrasFluxes} \centering \begin{tabular}{lcccccccccc} \hline \hline Stellar & $f12$ & $L12$ &... ... \hline \end{tabular} \end{table*} } % %------------------------------------------------------------- % For the online material, table longer than a single page % In the preamble for landscape case, use : % \usepackage{lscape} %------------------------------------------------------------- \documentclass{aa} \usepackage[varg]{txfonts} \usepackage{graphicx} \usepackage{lscape} \begin{document} text of the paper % Table will be print automatically at the end, in the section Online material. \onllongtab{ \begin{longtable}{lrcrrrrrrrrl} \caption{Line data and abundances ...}\\ \hline \hline Def & mol & Ion & $\lambda$ & $\chi$ & $\log gf$ & N & e & rad & $\delta$ & $\delta$ red & References \\ \hline \endfirsthead \caption{Continued.} \\ \hline Def & mol & Ion & $\lambda$ & $\chi$ & $\log gf$ & B & C & rad & $\delta$ & $\delta$ red & References \\ \hline \endhead \hline \endfoot \hline \endlastfoot A & CH & 1 &3638 & 0.002 & $-$2.551 & & & & $-$150 & 150 & Jorgensen et al. (1996) \\ \end{longtable} }% End onllongtab % Or for landscape, large table: \onllongtab{ \begin{landscape} \begin{longtable}{lrcrrrrrrrrl} ... \end{longtable} \end{landscape} }% End onllongtab