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Abstract

The semi-classical two-correlation function for the Hanbury Brown-Twiss
Intensity Interferometer is derived.



Chapter 1

Theory

1.1 The two-correlation function, C'

The two-correlation function for two identical particles detected within a
short time period as a function of the momentum difference of the particles,
|41 = [p1 — p2l, is:
C(’(ﬂ) _ {<np3np§>} : (1‘1>
{(n5)(np) }
where ny; is the number of particles of momentum p; observed in a single
event, the angle brackets, (---), denote an average over a number of events
and the curled brackets, {---}, denote an average over a range of centre of
mass momenta of the particle pair, P= P+ pa.

1.2 The Intensity at a Dectector

We shall consider one photon, «, emitted from each source. The photon
emitted from source a, v,, is described by:

o ik|F—1g | +ida
|7a> = ﬁe k| |+ida (1.2)
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Similarly, the photon emitted from source b, v,, is described by:
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where ¢, are random phases.
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Figure 1.1: Schematic diagram of the Hanbury Brown-Twiss Intensity Inter-
ferometer. The arrival times of two identical particles are observed at two
detectors, after being emitted at seperate points of a source located at a dis-
tance, L. The emission points, a and b, are seperated by a distance, R. The
detectors, D, and D,, are seperated by a distance, d.
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Figure 1.2: The two indistinguishable paths the particles may take.

The total amplitude at detector Dy, A; is given by:

1
A==
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where r1, denotes the distance from source a to detector D;, and so on. To
calculate the intensity at a detector, we calculate the square of the absolute



value of the amplitude. For example, at detector D;:
I, = AlA
1 > . . . . .
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(1.5)

Averaging over the random phases, denoted by terms in angled brackets
like so: (---)4,, we can see that the exponential terms average to zero and
equation 1.5 simplifies to:

(B)o, = 75 (laf* + 1% . (1.6

1.3 The Simultaneous Intensity at Both De-
tectors

To calculate the product of the intensities, first we define:

Pva = Ob— Pa; (1.7)

Rlba = T1p — Tia- 18

Using this notation the intensity is now given by:

1 . . . .
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We may now expand I;15 in this, more compact, form:
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expanding and collecting terms we arrive at:
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We can further simplify the expression:
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Again, if we average over the random phases, we see that all exponential
terms containing the phases ¢; average to zero and we are left with:

1
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The last term in Eq. 1.13 can be re-written as a cosine:
1 4 4
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or, in the original notation:
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We note that the first three terms are exactly equal to the product of the
random phase-averaged intensities:

(L1Is)g, = %(Uﬁm(bm
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The two-particle correlation function for one pair of plane waves is then:
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The expression (11, — ri, — rap — T24) represents the difference in phase
difference between the two paths in figure 1.2. If the detectors are well-
seperated from the sources, L > R, then:

k(rip—7m1a — 7oy +72) — k(rpy—7a) - (r2 —12) (1.16)
- R (/52 . k}) (1.17)

Possibly more intuitively, we can calculate the difference in phase dif-
ference using the diagram presented in figure 1.3. The difference in phase
difference, k (dy — d;), can be expressed as:

k(dy — dy) = Q%dsin ). (1.18)

Using the small angle approximation, sin (§) — 6 and § — R/L, and remem-
bering that the wavevector, k, is equal to 27/, this gives:

2
dy — dy = Tﬁd-e (1.19)



Figure 1.3: The difference in phase difference shown diagrammatically. Using
the small angle approximation, we can see that dy — d; is given by d6f.

Inserting 1.19 into 1.15 we can see that the two-correlation function varies
as a function of both the separation of the detectors but also of the angular
diameter of the source:

C (‘JD =1+ (‘026’201 :2:2)2 cos (QW)\dG) (1.20)

Of course, this is not a full treatment of the phenomena and we have made
a number of simplifications in this semi-classical treatment. Namely: the
polisarisation of the photons was completely neglected, the radiating atoms
never decay, the possibility of different arrival times was not considered, ...

1.4 Caveat

A full derivation can found in [1]. The final two-correlation, given by sum-
ming over all possible pairs of atoms, polarisations, etc. is of the form:

Z Pia (t) = /t dt, /t dtap (£, 1) (1.21)

where, tq,t9, are the times at which photoionisation occurs in an atom in
detector 1 and 2 respectively, and p (¢, t5) is a doubly-differential probability

6



Pt ,d)

Figure 1.4: The basic shape of the doubly-differential probability distribution

as a function of the emission time difference, dt15, and detector separation,
d.

distribution described to lowest non-vanising order by:

p(ti,t2) o e~ 2ab(ti+t2—2R) o
{Acosh [ATy (£, — t2)] + Bcos [k (ria — 11y — T2a + 7o) — AB (1 — £2)]} %
St (t1) St (t2) , n

where I', ;, are the decay constants, E,, are are excitation energies of the ex-
cited stated of the radiating atoms, ¢,; again represent the phase constants,
and St (z) is a step function representing the extent of the emitted wave.
The basic shape of the probability function is shown in figure 1.4.
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