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Abstract

The semi-classical two-correlation function for the Hanbury Brown-Twiss
Intensity Interferometer is derived.



Chapter 1

Theory

1.1 The two-correlation function, C

The two-correlation function for two identical particles detected within a
short time period as a function of the momentum difference of the particles,
|~q| = |~p1 − ~p2|, is:

C (|~q|) =
{〈n ~p1n ~p2〉}
{〈n ~p1〉〈n ~p2〉}

, (1.1)

where n~pi
is the number of particles of momentum ~pi observed in a single

event, the angle brackets, 〈· · · 〉, denote an average over a number of events
and the curled brackets, {· · · }, denote an average over a range of centre of

mass momenta of the particle pair, ~P = ~p1 + ~p2.

1.2 The Intensity at a Dectector

We shall consider one photon, γ, emitted from each source. The photon
emitted from source a, γa, is described by:

|γa〉 =
α

|~r − ~ra|
eik|~r− ~ra|+iφa . (1.2)

Similarly, the photon emitted from source b, γb, is described by:

|γb〉 =
β

|~r − ~rb|
eik|~r−~rb|+iφb , (1.3)

where φa,b are random phases.
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Figure 1.1: Schematic diagram of the Hanbury Brown-Twiss Intensity Inter-
ferometer. The arrival times of two identical particles are observed at two
detectors, after being emitted at seperate points of a source located at a dis-
tance, L. The emission points, a and b, are seperated by a distance, R. The
detectors, D1 and D2, are seperated by a distance, d.
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(b) Figure b

Figure 1.2: The two indistinguishable paths the particles may take.

The total amplitude at detector D1, A1 is given by:

A1 =
1

L

(
αeikr1a+iφa + βeikr1b+iφb

)
, (1.4)

where r1a denotes the distance from source a to detector D1, and so on. To
calculate the intensity at a detector, we calculate the square of the absolute
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value of the amplitude. For example, at detector D1:

I1 = A∗
1A1

=
1

L2

(
|α|2 + |β|2 + α∗βeik(r1b−r1a)+iφb−iφa + αβ∗e−ik(r1b−r1a)−iφb+iφa

)
.

(1.5)

Averaging over the random phases, denoted by terms in angled brackets
like so: 〈· · · 〉φi

, we can see that the exponential terms average to zero and
equation 1.5 simplifies to:

〈I1〉φi
=

1

L2

(
|α|2 + |β|2

)
. (1.6)

1.3 The Simultaneous Intensity at Both De-

tectors

To calculate the product of the intensities, first we define:

φba = φb − φa, (1.7)

R1ba = r1b − r1a. (1.8)

Using this notation the intensity is now given by:

I1 =
1

L2

(
|α|2 + |β|2 + α∗βeikR1ba+iφba + αβ∗e−ikR1ba−iφba

)
(1.9)

We may now expand I1I2 in this, more compact, form:

I1I2 =
1

L2

(
|α|2 + |β|2 + α∗βeikR1ba+iφba + αβ∗e−ikR1ba−iφba

)
× 1

L2

(
|α|2 + |β|2 + α∗βeikR2ba+iφba + αβ∗e−ikR2ba−iφba

)
(1.10)
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expanding and collecting terms we arrive at:

I1I2 =
1

L4

(
|α|4 + |β|4 + 2 |α|2 |β|2

+2eikR2ba+iφba
[
|α|2 α∗β + |β|2 αβ∗]

+2e−ikR2ba−iφba
[
|α|2 αβ∗ + |β|2 α∗β

]
+eikR1ba+iφba+ikR2ba+iφba [α∗βα∗β]

+eikR1ba+iφba−ikR2ba−iφba
[
|α|2 |β|2

]
+e−ikR1ba−iφba+ikR2ba+iφba

[
|α|2 |β|2

]
+e−ikR1ba−iφba−ikR2ba−iφba

[
(αβ∗)2] )

. (1.11)

We can further simplify the expression:

I1I2 =
1

L4

(
|α|4 + |β|4 + 2 |α|2 |β|2

+2eikR2ba+iφba
[
|α|2 α∗β + |β|2 αβ∗]

+2e−ikR2ba−iφba
[
|α|2 αβ∗ + |β|2 α∗β

]
+eikR1ba+ikR2ba+2iφba [α∗βα∗β]

+eikR1ba−ikR2ba
[
|α|2 |β|2

]
+e−ikR1ba+ikR2ba

[
|α|2 |β|2

]
+e−ikR1ba−ikR2ba−2iφba

[
(αβ∗)2] )

. (1.12)

Again, if we average over the random phases, we see that all exponential
terms containing the phases φi average to zero and we are left with:

〈I1I2〉φi
=

1

L4

(
|α|4 + |β|4 + 2 |α|2 |β|2

+ |α|2 |β|2
[
eikR1ba−ikR2ba + e−ikR1ba+ikR2ba

] )
.

The last term in Eq. 1.13 can be re-written as a cosine:

〈I1I2〉φi
=

1

L4

(
|α|4 + |β|4 + 2 |α|2 |β|2

+2 |α|2 |β|2 cos (ikR1ba − ikR2ba)
)
,

or, in the original notation:

〈I1I2〉φi
=

1

L4

(
|α|4 + |β|4 + 2 |α|2 |β|2

+2 |α|2 |β|2 cos (ik (r1b − r1a − r2b + r2a))
)
. (1.13)
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We note that the first three terms are exactly equal to the product of the
random phase-averaged intensities:

〈I1I2〉φi
=

1

L4

(
〈I1〉φi

〈I2〉φi

+2 |α|2 |β|2 cos (ik (r1b − r1a − r2b + r2a))
)
. (1.14)

The two-particle correlation function for one pair of plane waves is then:

Cφi

(
~d
)

=
〈I1I2〉φi

〈I1〉φi
〈I2〉φi

=
〈I1〉φi

〈I2〉φi

〈I1〉φi
〈I2〉φi

+
2 |α|2 |β|2 cos (ik (r1b − r1a − r2b + r2a))

〈I1〉φi
〈I2〉φi

= 1 +
2 |α|2 |β|2 cos (ik (r1b − r1a − r2b + r2a))

〈I1〉φi
〈I2〉φi

= 1 +
2 |α|2 |β|2(
|α|2 + |β|2

)2 cos (ik (r1b − r1a − r2b + r2a))

(1.15)

The expression (r1b − r1a − r2b − r2a) represents the difference in phase
difference between the two paths in figure 1.2. If the detectors are well-
seperated from the sources, L � R, then:

k (r1b − r1a − r2b + r2a) → k (rb − ra) · (r2 − r2) (1.16)

= ~R ·
(

~k2 − ~k1

)
(1.17)

Possibly more intuitively, we can calculate the difference in phase dif-
ference using the diagram presented in figure 1.3. The difference in phase
difference, k (d2 − d1), can be expressed as:

k (d2 − d1) =
2π

λ
d sin (θ). (1.18)

Using the small angle approximation, sin (θ) → θ and θ → R/L, and remem-
bering that the wavevector, k, is equal to 2π/λ, this gives:

d2 − d1 =
2π

λ
d · θ (1.19)
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Figure 1.3: The difference in phase difference shown diagrammatically. Using
the small angle approximation, we can see that d2 − d1 is given by dθ.

Inserting 1.19 into 1.15 we can see that the two-correlation function varies
as a function of both the separation of the detectors but also of the angular
diameter of the source:

C
(∣∣∣~d∣∣∣) = 1 +

2 |α|2 |β|2(
|α|2 + |β|2

)2 cos

(
2πdθ

λ

)
(1.20)

Of course, this is not a full treatment of the phenomena and we have made
a number of simplifications in this semi-classical treatment. Namely: the
polisarisation of the photons was completely neglected, the radiating atoms
never decay, the possibility of different arrival times was not considered, . . .

1.4 Caveat

A full derivation can found in [1]. The final two-correlation, given by sum-
ming over all possible pairs of atoms, polarisations, etc. is of the form:∑

12

P12 (t) =

∫ t

0

dt1

∫ t

0

dt2p (t1, t2) , (1.21)

where, t1, t2, are the times at which photoionisation occurs in an atom in
detector 1 and 2 respectively, and p (t1, t2) is a doubly-differential probability
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Figure 1.4: The basic shape of the doubly-differential probability distribution
as a function of the emission time difference, δt12, and detector separation,
d.

distribution described to lowest non-vanising order by:

p (t1, t2) ∝ e−2Γab(t1+t2−2R) ×
{A cosh [∆Γab (t1 − t2)] + B cos [k (r1a − r1b − r2a + r2b)−∆Eab (t1 − t2)]} ×
St (t1) St (t2) , (1.22)

where Γa,b are the decay constants, Ea,b are are excitation energies of the ex-
cited stated of the radiating atoms, φa,b again represent the phase constants,
and St (x) is a step function representing the extent of the emitted wave.
The basic shape of the probability function is shown in figure 1.4.
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