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In this paper are reviewed various designs of advanced, multi-aperture optical systems 

dedicated to high angular resolution imaging or to the detection of exo-planets by 

nulling interferometry. A simple Fourier optics formalism applicable to both imaging 

arrays and nulling interferometers is presented, allowing to derive their basic theoretical 

relationships as convolution or cross correlation products suitable for fast and accurate 

computation. Several unusual designs, such as a “super-resolving telescope” utilizing a 

mosaïcking observation procedure or a free-flying, axially recombined interferometer 

are examined, and their performance in terms of imaging and nulling capacity are 

assessed. In all considered cases, it is found that the limiting parameter is the diameter 

of the individual telescopes. The entire study is only valid in the frame of first-order 

geometrical optics and scalar diffraction theory. Furthermore, it is assumed that all 

entrance sub-apertures are optically conjugated with their associated exit pupils, a 

particularity inducing an instrumental behavior comparable with those of diffraction 

gratings.  
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1 Introduction 

High angular resolution optical systems have been developed for more than one century, 

spanning from historical Michelson’s interferometer [1] to the first fringes formed between 

two separated telescopes by Labeyrie [2]. Techniques of long baseline stellar interferometry 

are now widely accepted and understood [3], giving birth to modern observing facilities such 

as Keck interferometer, VLTI, or CHARA that are now intensively used to produce flows of 

high-quality scientific results, mainly in the field of stellar physics. In spite of this success 

some new ideas on ground or spaceborne multi-aperture observatories emerged in the two last 

decades, among which are infrared nulling interferometers dedicated to the search of extra-

solar planets [4-6], and visible hypertelescopes having unsurpassed imaging capacities [7]. 

Much has already been written about the mathematical descriptions of these two different 

types of instruments (see for example refs. [8-10] and [11] respectively): it appears however 

that they can be regrouped together under a common and simple analytical formalism based 

on Fourier optics theory, also applicable to long baseline interferometry or to the tentative 

design of an hypothetical “super-resolving telescope”. This formalism is briefly exposed in 

section 2 and a comprehensive roadmap to the various presented analytical relationships and 

numerical simulations is provided in section 3. The general properties of imaging arrays are 

discussed in section 4, as well as three examples of high angular resolution instruments. Some 

other important consequences applicable to nulling interferometry are derived in section 5. 

Planned future works and conclusions are finally presented in sections 6 and 7. 

2 Formalism 

In this section are described the main optical and geometrical characteristics of the considered 

multi-aperture, high angular resolution systems, and the analytical formalism relevant to their 

capacities for imaging and coupling into Single-Mode Waveguides (SMW). 



2.1 Coordinates systems and scientific notations 

The main reference frames employed on-sky, on the entrance and exit pupils, and in the image 

plane are represented in Figure 1 and Figure 2 and are defined as follows: 

- The observed sky objects are located at infinite distance and are determined by a unitary 

vector sO pointed along their direction. The cosine directors of sO are approximately equal to 

(1,u,v), where u and v are the angular coordinates of the celestial target. 

- The entrance pupil plane XPYP is perpendicular to the main optical axis Z. It is assumed that 

all the sub-aperture lay in that plane, whose reference point is noted OP. 

- Similarly, all the output sub-pupils are arranged in a common exit pupil plane X’PY’P 

referenced to point O’P. 

- The image plane X’Y’ is attached to the focal point O’ of the multi-aperture optical system. 

A unitary image vector s is associated to any point M’ in the focal plane via the relation: s  =  

O’PM’ / |O’PM’|. 

It has to be underlined that all vectors appear in bold characters. However, in order to simplify 

certain analytical relationships presented in the remainder of the text, a condensed notation in 

bold italic characters has been adopted for vectors being perpendicular to the Z-axis, that will 

only be identified by their tip point (the origin point being either OP, O’P or O’). For instance 

Pn, P’n and M’ respectively stand for OPPn, O’PP’n and O’M’  in the whole paper. 

2.2 General description of the optical system 

Let us consider a multiple aperture, high angular resolution system such as depicted in Figure 

3. It is basically composed of N individual collecting telescopes (noted L1_n on the Figure 

with index n related to the considered telescope, and 1 ≤ n ≤ N), each having identical 

diameters D and focal lengths F. Between each telescope and the exit combiner L’ are 

positioned identical optical trains (from lens L2_n to mirror M2_n. Note that all components 



represented by thin lenses could actually be reflective optics) in charge of collimating, 

compressing and conveying the optical beams. One basic assumption of this study is that each 

output sub-pupil is optically conjugated with its corresponding input sub-pupil: this implies 

that there must exist some divergent optics L2_n imaging each telescope entrance aperture 

(centred on point Pn in plane XPYP, see Figure 1 and Figure 3) on a corresponding area in the 

exit pupil plane (of fixed diameter D’ and centred on point P’n in plane X’PY’P). In practice 

the latter optical elements are commonly found in most multi-apertures interferometric 

facilities. Let finally FC be the focal length of the collimating lens L3_n, and assume that the 

interference fringes are formed and observed at the focal plane of a multi-axial beam 

combiner L’, whose focal length is noted F’. The existing optical conjugations between the 

sky object and the image plane, on the one hand, and input and output pupils, on the other 

hand, imply that the pupil magnification ratio m is equal to the ratio of the focal lengths of 

both collimating lens L3_n and entrance telescope L1_n: 

 m   =   D’/D   =   FC/F, (1) 

while the magnification mC of the combining optics writes: 

 mC   =   F’/FC. (2) 

For a given celestial object of angular coordinates (u,v) pointed out by vector sO and 

any point M’ of coordinates (x’,y’) in the final image plane X’Y’, the total Optical Path 

Difference (OPD) is equal to (see Figure 3):  

 [ ] [ ]nnnnn HPH'P'ζ += , (3) 

for the n
th

 interferometer arm, since the optical paths between points Pn and P’n are constant 

throughout the whole Field of View (FoV) as a consequence of pupil conjugations. Using the 



condensed scientific notation described in section 2.1, Eq. (3) can be rewritten as a sum of 

scalar products very similar to the well-known diffraction gratings formula: 

 ζn   =   O’PP’n  s’   +   OPPn  sO   =   P’n  s’   +   Pn  sO. (4) 

In the frame of the first-order optics approximation in which this study will be entirely 

restricted, s’ is approximated by: 

 s’   =   O’PM’ / | O’PM’ |   ≈   (O’PO’ + O’M’) / F’   ≈   (O’PO’ + M’) / F’. (5) 

It is furthermore convenient to transpose the sky vector sO into the X’Y’ image plane 

where it corresponds to the vector s’O and paraxial image M’O of Cartesian coordinates (x’O, 

y’O):  

 O’PM’O   =   O’PO’ + O’M’O   =   – mC  F  sO   =   – F’  sO / m (6a) 

and inversely: sO   =   – m  (O’PO’ + O’M’O) / F’   =   – m  (O’PO’ + M’O) / F’. (6b) 

Combining relationships (1), (2), (4), (5) and (6b) and noting that the scalar products 

P’n O’PO’ and Pn O’PO’ are equal to zero finally leads to a condensed expression of the OPD 

ζn that is: 

 ζn   =   P’n M’ / F’   –  m Pn M’O / F’. (7) 

2.3 Complex amplitude in image plane 

The total distribution of complex amplitude AT(M’, M’O) created in the image plane by the 

multi aperture optical system can now be expressed as the sum of N amplitudes diffracted by 

the individual sub-pupils, centred on the paraxial image M’O and carrying phase terms φn 

proportional to the OPD defined in Eq. (4), i.e. φn  =  k ζn where k  =  2π/λ and λ is the 



wavelength of the electric field assumed to be monochromatic. Since all output pupils have 

the same diameter D’, a general expression for AT(M’, M’O) is derived: 

 )M',M'A()M'-M'(B̂)M',M'(A OOD'OT = , (8) 

where )M'(B̂D'  stands for the amplitude diffracted by a single sub-pupil, and A(M’, M’O) is a 

combination of complex amplitudes associated to the geometrical arrangement of the sub-

pupils (each of them being reduced to a pinhole), that may be seen as a fictitious bi-

dimensional diffraction grating: 
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Here an and ϕn respectively are the amplitude transmission factors and phase differences 

introduced along the n
th

 arm of the interferometer. The phase terms ϕn are suitable for 

introducing different optical delays on each individual arm, which is one of the basic 

principles of nulling interferometry, and the amplitudes an are normalized such that 

1a
N
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2.4 Object-Image relationship 

Let us now consider a spatially extended sky object whose brightness distribution is described 

on-sky by the bi-dimensional distribution O(sO) that is rescaled into O(M’O) in the image 

plane. In the most general case, the multi-aperture system forms in the X’Y’ plane an image 

I(M’) composed of elementary intensity contributions |AT(M’,M’O)|
2
, weighted by function 

O(M’O):  
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At first glance, the previous expression looks somewhat different from the convolution 

relationship classically established between an object and its image formed by an optical 

system: that point will be further addressed in section 4.1. 

2.5 Coupling into Single-Mode Waveguides 

Since the success of the FLUOR instrument [12] equipped with Single-Mode Fibers (SMF), 

the employment of SMWs in stellar interferometry has been growing extensively and is now 

being considered for future applications such as high-angular resolution imaging [13] or 

nulling interferometry [14]. SMW show the unique property of filtering the Wave-front Errors 

(WFE) introduced by the collecting optics (or the atmosphere for ground instrumentation) on 

larger spectral bands than simple pinholes do [15-16]. In addition they preserve the complex 

amplitude AO(M’O) of the considered object. The relation between AO(M’O) and the object 

irradiance distribution O(M’O) considered in the previous section is such that: 

 |AO(M’O)|
2
   =   O(M’O). (11) 

Hence the complex amplitude in the image field writes in the most general case: 

 O
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O

∫∫= , (12) 



and the optical power coupled into a waveguide centered on point M’G in the X’Y’ plane and 

whose modal function is noted G(M’), is equal to the square modulus of the so-called overlap 

integral [17]: 
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*
 denotes the complex conjugate. This study is limited to 

the case when the SMW is located on-axis (O’M’G  =  0) and the sky object is an off-axis 

extra-solar planet centred on point M’P and described by the Dirac distribution δ(M’-M’P). 

Then, combining Eqs. (12), (13) and (8) leads to: 
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Further developments of the here above analytical formula are provided in section 5. 

3 Roadmap to theory and numerical simulations 

This brief section intended to help the reader is providing a short overview of the theory and 

numerical simulations that are presented afterwards. Two major, different cases will be 

considered successively: 

- The Object-Image relationships applicable to various types of multi-aperture, high angular 

resolution imaging systems are first introduced and discussed in section 4. Different 



geometrical configurations of the entrance and exit sub-pupils characterized by their vectors 

Pn and P’n have been studied. In particular, it is shown that for two typical sub-cases, namely 

the Super-Resolving Telescope (SRT) and the Axially Combined Interferometer (ACI), a 

third function F(M’) appears in the classical Object-Image relationship, hereafter called the 

“far-field fringe function”. For those two systems, the role of this function seems to be at least 

as important as the usual notions of Point Spread Function (PSF) and Optical Transfer 

Function (OTF). The imaging capacities of the SRT and ACI are further explored and 

illustrated by a set of numerical simulations. 

- The same approach is also applied to nulling interferometers in section 5, where it serves for 

evaluating the throughput maps of the optical power emitted by an extra-solar planet, and 

coupled into a SMW. Here again, new simple analytical relationships (this time involving a 

far-field amplitude function and cross-correlation products) are derived. Numerical 

simulations allow to select the best combining scheme (axial or multi-axial), a major trade-off 

that is still open in the field of nulling interferometry. 

Table 1 presents a synthetic view of the major studied cases. Most of them are further 

illustrated with the help of numerical simulations, whose main parameters such as 

input/output pupils geometry and optical characteristics are given in Table 2. All 

computations are carried out at a wavelength λ = 10 µm. We consider “generic” collecting 

telescopes of 5-m diameter open at F/10. For all imaging configurations the focal lengths FC 

of the collimating optics were adjusted according to relation (1) in order to achieve a maximal 

densification in the exit pupil plane with a fast aperture number equal to 1. It must be noted 

that we imposed the same entrance baseline values B = 20 m for all Fizeau-like and axially 

combined nulling interferometric configurations. All those figures have not been optimized in 

depth, although they already provide good preliminary ideas of what real opto-mechanical 

implementations would be.  



 

Table 1: Overall view of the considered optical configurations. 

Case Number of 

telescopes 

Sub-pupils 

configurations 

Object-Image 

relationship 

Section 

 

Imaging configurations 

 

  

 

Fizeau-like 

interferometer 

  

P’n = m Pn 

(golden rule m’ = m, 

no densification) 

 

Convolution 

 

§ 4.1 

 

Hypertelescope 

 

8 

 

P’n = m’ Pn 

(high densification, 

m/m’ >> 1) 

 

No simplified 

expression 

 

§ 4.2 

 

Super-

resolving 

telescope 

 

1 

 

Pn = 0 

 

Convolution followed 

by multiplication with 

far-field fringe function 

 

§ 4.3 

 

Axially 

combined 

interferometer 

 

8 

 

P’n = 0 

 

Multiplication with far-

field fringe function 

followed by convolution 

 

§ 4.4 

 

Nulling configurations 

 

  

 

Nulling 

Fizeau-like 

interferometer 

 

2 

(Bracewell) 

 

P’n = m Pn 

 

 

Not applicable 

 

§ 5.1 

 

Nulling super-

resolving 

telescope 

  

Pn = 0 

 

Not applicable 

 

§ 5.2 

 

Nulling axially 

combined 

interferometer 

 

 

2, 4 (Angel 

cross) and 8 

 

P’n = 0 

 

Not applicable 

 

§ 5.3 

 

 

Table 2: Numerical values of main physical parameters for various simulation cases. 

Case Number 

of 

entrance 

pupils 

Number 

of exit 

pupils 

B (m) D 

(m) 

F 

(m) 

FC 

(mm) 

B’ 

(mm) 

D’ 

(mm) 

F’ 

(mm) 

Section 



 

Imaging configurations 

 

 

Hypertelescope 

 

8 

 

8 

 

variable 

 

5 

 

50 

 

300 

 

60 

 

30 

 

100 

 

§ 4.2 

 

Super-resolving 

telescope 

 

1 

 

8 

 

0 

 

5 

 

50 

 

300 

 

60 

 

30 

 

100 

 

§ 4.3 

 

Axially 

combined 

interferometer 

 

8 

 

1 

 

variable 

 

5 

 

50 

 

1000 

 

0 

 

100 

 

100 

 

§ 4.4 

 

Nulling configurations 

 

 

Nulling Fizeau-

like 

interferometer 

 

2 

 

2 

 

20 

 

5 

 

50 

 

100 

 

50 

 

10 

 

100 

 

§ 5.1 

 

Nulling super-

resolving 

telescope 

 

1 

 

2 

 

0 

 

5 

 

50 

 

500 

 

50 

 

50 

 

100 

 

§ 5.2 

 

Nulling axially 

combined 

interferometer 

 

 

2, 4 and 

8 

 

1 

 

20 

 

5 

 

50 

 

100 

 

0 

 

10 

 

100 

 

§ 5.3 

 

 

4 General imaging properties 

In this section is demonstrated the basic property of multi-aperture imaging systems obeying 

to the golden rule (§ 4.1), followed by different theoretical expressions and numerical 

simulations undertaken for the cases of hypertelescopes (§ 4.2), super-resolving telescopes (§ 

4.3) and axially combined, sparse apertures interferometer (§ 4.4).  

4.1 Golden rule for Fizeau-like interferometers 

The famous “Pupil in = Pupil out” condition was initially introduced by Beckers et al [18-19], 

who were seeking to achieve an extended operational FoV on the Multiple Mirror Telescope 

(MMT) facility [20]. For that purpose they established that the “internal” and “external” 



OPDs – herein the first and second terms of Eq. (7) – should cancel each other on the whole 

FoV, a condition that can only be realized if the exit pupil is homothetic to the entrance pupil. 

Alternative demonstrations of this statement, sometimes called “golden rule of stellar 

interferometry”, can also be found in other papers [21-25]. Hereafter we will designate an 

interferometric array satisfying this golden rule as “Fizeau-like interferometer” (and not 

“Fizeau interferometer” since the latter appellation is sometimes understood as a monolithic 

telescope equipped with a multiple apertures screen). 

The previous golden rule can be retrieved in a straightforward manner from the 

formalism used in Eq. (10). The condition for the input and output pupils to be homothetic 

just writes: 

 
nn

PP' 'm=  (15) 

for all individual sub-apertures (1 ≤ n ≤ N), m’ being the geometrical magnification factor of 

the entire multi-apertures array, from the input to the output pupil planes (m’ is also equal to 

B’/B, using the baseline parameters defined in Figure 2 and Figure 3). It is assumed in the 

whole study that m’ is a free parameter (not necessarily being equal to the optical 

magnification ratio m), which allows to study the cases of spaceborne, free-flying 

interferometers or hypertelescopes. Then the OPD ζn expressed in Eq. (7) becomes: 

 'F/)'(ζn nO
PM'M' mm −= , (16) 

and the “Pupil in = Pupil out” condition takes the simple form: 

 mm =' , (17) 

allowing the intensity distribution I(M’) to become a convolution product between the object 

O(M’) and the Point Spread Function of the multi-aperture optical system, itself being equal 



to the PSF of one individual sub-aperture multiplied by the far-field fringe function generated 

by the geometrical arrangement of the sub-pupils. Hence the Object-Image relationship of the 

Fizeau interferometer is finally applicable: 
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which is in agreement with Harvey et al [26]. Our current knowledge of Fizeau-like 

interferometers is today well established: their essential property (dictated by the golden rule) 

is that their full output pupil (in plane X’PY’P) must be a reduced replica of their entrance 

pupil (in plane XPYP) as shown in Figure 4. Harvey et al [27-28] demonstrated that in that 

case the best images are obtained when the “dilution factor” is maximized, i.e. when two or 

more input/output sub-pupils are placed edge to edge, providing a better OTF plane coverage. 

Until now, most of the multi-apertures imaging systems that have been constructed are 

Fizeau-like interferometers (e.g. the Multiple Mirror Telescope [20], the Large Binocular 

Telescope [29] or the Multiple Instrument Distributed Aperture Sensor [30]). 

We shall now focus our attention on three attractive cases where the golden rule is not 

respected – as in the original Michelson apparatus. The studied geometrical configurations for 

the entrance and exit apertures are depicted in Figure 2, while the values of the major 

parameters used for the numerical simulations are those provided in Table 2. 

4.2 Hypertelescopes 

The major difference between the previous Fizeau-like interferometer and the hypertelescope 

concept originally proposed by Labeyrie in ref. [7] is that the golden rule is no longer 



respected. Hence the convolution relation (18) is not applicable and the classical notions of 

PSF and OTF acquire a different signification. It has been shown, however, that a 

hypertelescope is still able to provide direct, highly spatially resolved images of extra-solar 

planets in a narrow FoV when kilometric baselines B are imposed [7]. The conceptual optical 

layout of the system is summarized on the Figure 5 that shows, when compared with the basic 

design of Figure 3, an additional group of lens (or mirrors) incorporated along each separated 

arm. That group is named “beam densifier” and is composed of three optical components 

L4_n, L5_n and L6_n. The couple (L4_n; L6_n) has the principal function of enlarging the 

diameter D’ of the N output pupils, in such a way that they are re-arranged side by side (or as 

close as possible) in the plane of the recombining optics (see the Figure 4): it has been 

demonstrated that such “pupil densification” allows to minimize the core of the PSFs with 

respect to the classical Fizeau configuration, and therefore to improve the spatial resolution of 

the images [11]. Optional diverging optics L5_n can serve to relay the pupil images 

downstream. It can be assumed without loss of generality that the input and output focal 

lengths FR of the whole relay optics (from L3_n to L4_n) are identical, and thus their 

magnification is taken equal to 1. 

From a theoretical point of view, the hypertelescope is often characterized by its 

“densification factor” d (obviously linked to Harvey’s dilution factor evoked the previous 

section), here equal to m / m’ according to the employed notations. The OPD ζn can thus be 

rewritten as: 

 'F/)('ζn nO
PM'M' dm −=  (19) 

and it can be expected that for very long baselines (e.g. B > 1 km), d becomes significantly 

higher than unity, therefore the vector M’ can be neglected in Eq. (19). Hence the 

hypertelescope would tend to behave like the axially combined interferometer described in 



section 4.4. That point, however, has not been confirmed by the results of the numerical 

simulations presented here, for which is considered a free-flying array composed of eight 

telescopes with varying baseline B, and whose apertures are disposed along a square contour 

as shown on the left top panel of Figure 2. Owing to the values adopted here for F and FC (see 

Table 2), the golden rule is respected when m  =  m’  =  B’ / B  =  FC / F  =  3 / 500. This 

condition leads to an entrance baseline B equal to 10 m when the baseline of the exit pupils B’ 

is set equal to 60 mm in order to achieved a maximal densification (see Table 2). The point is 

illustrated by Figure 6, showing different simulated images of a given object (here a picture of 

Saturn, not to scale) formed by a hypertelescope for various values of B. It is observed that 

the best image resolution is clearly achieved when the golden rule is fulfilled (i.e. B = 10 m 

implying that the eight entrance pupils are connected), while for longer baselines the images 

get perturbed by destructive interference patterns without showing appreciable resolution 

enhancement. Mathematically, this is most probably due to the fact that the high densification 

factors associated with very long baselines B are actually used to probe small angular size 

objects: hence both vectors M’ and d M’O remain of the same magnitude order and none them 

can be neglected, preventing Eq.(10) from being reducible to a convolution product. It can be 

concluded that the classical golden rule remains fully applicable to hypertelescopes, which 

should noticeably restrict their scientific domain of application: in fact, a hypertelescope 

governed by the golden rule is nothing else than a Fizeau-like interferometer such as 

described in the previous section, and will suffer from the same limitations for highly diluted 

arrays (e.g. spurious parasitic images superimposed to the observed sky-object [11] [28]).  

It has also to be highlighted that the here above numerical computations were long and 

cumbersome (15 hours of computing time required for a 149 × 149 image sampling), since the 

integral in Eq. (10) was evaluated iteratively for each grid sample. This drawback disappears 

when Eq. (10) can be reduced to a convolution product, which happens for two particular 



cases (in addition to the Fizeau-like interferometer) that are examined in the following 

sections: the super-resolving telescope (§ 4.3) and the axially recombined interferometer (§ 

4.4). 

4.3 Super-Resolving Telescope (SRT) 

The term super-resolving telescope is inspired from Toraldo di Francia [31], who showed that 

single pupil optical systems may attain sub-diffraction resolution when their surface is 

constituted of alternating concentric rings of variable thickness and phase differences. The 

principle has been demonstrated experimentally in the microwave band [32], initiating 

discussions to assert if the Rayleigh limit was overcome – indeed it was not, since in that case 

most of the optical power is radiated outside of the first lobe of the Airy spot. More recently, 

Greenaway and Spaan evoked the “pupil replication” technique [33-34], which is not very far 

from the principle presented here below. Nevertheless, their formalism was limited to the one-

dimensional case, which probably prevented them from deriving the general Object-Image 

relationship (20a) applicable to the SRT. 

Mathematically speaking, a super-resolving telescope is obtained when all the 

individual entrance sub-apertures of a hypertelescope are merged into the single pupil of one 

monolithic telescope (i.e.  Pn  =  0  whatever is n). Practically, this can be realized by the 

schematic optical layout presented in Figure 7: one single collecting afocal telescope optically 

feeds a number N of off-axis, parallel exit arms that are multi-axially recombined downstream 

by the fast aperture lens or mirror L’. The beams are separated by means of a set of cascaded 

beamsplitters noted BS1 and BS2_n placed at the output port of the afocal telescope. The 

whole optics arrangement is such that each beam experiences the same number of reflections 

and transmissions on the beamsplitters and folding mirrors M1_n (this requirement may not 

be necessary for direct imaging, but will become crucial in the perspective of a nulling SRT 

such as proposed in § 5.2). The unused reflected or transmitted beams are directed towards 



metrology sensors that can be used for example to monitor the telescope pointing 

misalignments or wave-front errors. The beams densifiers and combining optics are similar to 

those already described in the previous section, and the pupil conjugations are ensured by 

either L2 or L5_n diverging elements, or both. It must be emphasized that all the optical 

components comprised between BS1 and the exit recombiner may be of rather modest size 

and assembled into a common structure, thus relaxing considerably the mechanical and 

thermal stability requirements applicable to the free-flying hypertelescope. 

Setting  Pn  =  0  in Eq. (10) readily conducts to a simplified expression of the image 

distribution I(M’) in the X’Y’ plane, being equal to the convolution product between the 

object and the PSF of a sub-pupil, multiplied by a masking function F(M’) – herein called far-

field fringe function – resulting from constructive and destructive interferences generated by 

the geometrical disposition of the exit sub-apertures:  
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The previous relationships evidence the important role of the far-field fringe function. Figure 

8 displays a grey-scale transmission map and a horizontal slice of F(M’), which can be 

considered as an occulting screen pierced by a square grid of transparent holes and masking 

the observed object. The mask is indeed the Fourier transform of the sum of eight individual 

Dirac distributions whose locations correspond to the centres of each output sub-pupil (see 



Figure 2), and appears as a series of thin transmission peaks arranged on a regular square grid. 

Examining the slice of F(M’) at the bottom of Figure 8, we find that the peak width is 

significantly narrower than the width of the PSF of an equivalent 5-m telescope for the 

considered wavelength (the two functions are respectively represented by thick and thin lines 

at the bottom of Figure 8). One can then imagine to introduce small misalignments of the 

telescope optical axis with respect to the sky object, allowing to scan it spatially as if it was 

observed through a moving mask. The accumulated images could then be recombined via a 

shift-and-add mosaïcking procedure whose principle is described in Figure 9: starting from an 

arbitrary transmission peak, the square angular area separating it from its closest neighbors 

(140 milli-arcsecs wide, as indicated by dotted lines in Figure 9) is explored along the U and 

V axes by steps of 30 milli-arcsecs, which is roughly equal to the full width at half maximum 

of the individual transmission peak. All the acquired images are then stored, recentred and 

added incoherently, yielding an apparently super-resolved image where the information 

present in the differently masked objects was simply combined. However, and regardless of 

the much longer required telescope observation time, the method suffers from two 

fundamental limitations: 

1) The essential limitation is indeed a natural consequence of basic relation (20a), where 

the convolution product between the object O(M’) and the PSF of the telescope 

| )M'(B̂D' |
2
 takes place before the super-resolving process is started: it may thus be 

expected that a large amount of the spatial information regarding the sky-object has 

already disappeared, and will not be retrieved by means of the sole far-field fringe 

function F(M’) and its associated mosaïcking procedure. 

2) Moreover, for this particular, eight sub-apertures configuration, the function F(M’) 

exhibits regular parasitic peaks of 25 % transmission (clearly visible in Figure 8), 

thereby introducing spatial crosstalk between the successive elementary acquisitions 



and a scrambling of the final, reconstructed image. However this drawback seems to 

be less critical than the previous one, since Fourier optics theorems tell us that 

incorporating more output sub-pupils to the SRT should minimize and even eliminate 

the parasitic peaks. 

From a purely computational point of view, the convolution product in Eq. (20a) can be 

quickly and efficiently calculated by means of conventional, fast double Fourier transform 

algorithms. In Figure 10 are presented a series of numerical simulations illustrating the whole 

measurement process: top row shows the same sky object as in Figure 6 and its image 

observed through a 5-m telescope at the wavelength λ = 10 µm. The bottom left panel 

exhibits a raw image produced by a SRT of same diameter having eight exit sub-apertures and 

whose geometrical characteristics are provided in Table 2: it appears as a series of thin dots 

disposed on a regular grid pattern, whose intensities are proportional to the brightness of the 

extended celestial object (note the presence of the faint parasitic transmission peaks 

mentioned here above). The bottom right panel of Figure 10 depicts the result of a crude 4 × 4 

mosaïcking algorithm, showing no real significant improvement in angular resolution of the 

observed object with respect to the image formed by the traditional monolithic telescope, 

although the general appearance of the image has been significantly altered. Hence it can be 

concluded that, even if it obeys to an unconventional Object-Image relationship, the here 

above presented system does not show plain super-resolution capacities. Its major advantage, 

however, is to concentrate the luminous energy emitted from celestial objects onto very small 

sensing areas of the detection plane, corresponding the peaks of the far-field fringe function. 

This basic property will serve as the starting point for the concept of nulling super-resolving 

telescope presented in section 5.2.  



4.4 Axially Combined Interferometer (ACI) 

The technique of axial (or coaxial) recombination for stellar interferometry has been known 

for a long time, even if a majority of existing facilities or instruments rather uses multi-axial 

combining. Nowadays axial recombination is considered as a major scheme for nulling 

interferometry, in the frame of which important efforts are being undertaken to design very 

symmetrical optical layouts [35-36]. An example of such an arrangement is shown in Figure 

11: as in the case of the SRT, it involves an equal number of reflective and transmissive 

interfaces on the beamsplitters and fold mirrors along each interferometer arm, and allows the 

implementation of metrological sensors for OPD and tip-tilt measurements. The collecting 

optics are not shown in Figure 11, since they are strictly identical to those of the 

hypertelescope (section 4.2, Figure 5). 

The mathematical expression of an image I(M’) created at the focal plane of an axially 

combined interferometer is derived from Eq. (10), assuming that all output apertures are 

superimposed, i.e.  P’n  =  0  whatever is n. Here again I(M’) reduces to a convolution product 

that can be computed accurately and rapidly: 
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We find that I(M’) is now equal to a convolution product involving the PSF of the sub-

pupil, on the one hand, and the multiplication product of the object with the far-field fringe 



pattern F(M’) generated by the entrance pupils arrangement, on the other hand. It is quite 

remarkable that, for the main cases considered in section 4, namely the Fizeau-like 

interferometer, SRT and ACI, the resulting image distribution involves the same three bi-

dimensional functions (the object, the PSF of an individual sub-pupil and the far field fringe 

function), linked together by multiplication and convolution operators in subtle different 

order. The ACI imaging capacities are illustrated in Figure 12, showing another example of 

sky-object (left top panel), its image when observed through a single telescope (right top 

panel), and the way it would be revealed at the image plane of an ACI composed of eight 

collecting telescopes, for increasing values of the entrance baseline B. For the shortest 

baseline B = 10 m (left bottom panel) the image is scrambled by the function F(M’), but this 

effect gradually vanishes when the baseline is enlarged (right bottom panel). Moreover, it has 

been noticed that the general image aspect does not improve significantly beyond B = 20 m. 

When considering the here above Object-Image relationship (21a) applicable to the ACI 

concept, the previous results may be explained as follows: 

• For short baselines B, the angular separation between two neighboring transmission 

peaks of the far-field fringe function (as displayed in Figure 8) is relatively large. 

F(M’) acts as a mask sampling the observed sky object with a degraded angular 

resolution. 

• For longer baselines the resolution becomes limited by the PSF of an individual sub-

pupil projected on-sky – the function | )(B̂D' M' |
2
. No further improvement occurs 

when the angular separation of the transmission peaks in F(M’) is smaller than the 

PSF width.  

It finally turns out that for very long baselines, the imaging properties of the ACI are 

similar to those provided by a single individual telescope: in other words, the global resolving 



power is ultimately limited by the diffraction lobe of the individual sub-apertures, and only a 

gain in radiometric performance may be expected from the ACI concept. 

To conclude this already long section, it is recalled that the Fourier optics formalism 

presented herein makes it possible to express the image distributions formed by some typical 

high angular resolution systems under a simple form involving convolution products. Three 

important cases have been distinguished: the well known Fizeau-like interferometer, a 

candidate super-resolving telescope, and an axially combined interferometer inspired from the 

hypertelescope concept. It was demonstrated that the two last types of systems are not 

governed by the classical Object-Image relationship, but that they nevertheless do not seem to 

present extreme resolving capacities. The three major concepts will now be re-examined in 

the following section that deals with their application in the framework of nulling 

interferometry, making use of a very similar formalism.  

5 Application to nulling interferometry 

Nulling interferometry [4-6] is nowadays a widely known and studied technique: it aims at 

discovering Earth-like planets orbiting around nearby stars and characterizing their 

atmospheres in hope of recognizing signs of life. Because the searched planets are very close 

and much fainter than their parent star, the technical requirements are far more difficult to 

meet than in direct imagery – say, by two or three orders of magnitude. During the last 

decade, the European Space Agency (ESA) and National Aeronautics and Space 

Administration (NASA) extensively developed two major projects of nulling interferometers, 

respectively named Darwin [37] and TPF-I (Terrestrial Planet Finder Interferometer [38]). 

Hence the quest for extra-solar planet could finally become the major astronomical challenge 

of the 21st century. 

Practically, any of the high angular resolution systems described in section 4 could be 

transformed into a nulling instrument, provided that one or several Achromatic Phase Shifter 



(APS) devices producing a  π phase shift between a couple of optical trains are added within 

the optical layout. The recent manufacturing and tests of high-performance infrared APS have 

recently been reported [39]. Nulling interferometry could also benefit from current progress 

on single-mode waveguides technology [14]: one very popular interferometer design, named 

“fibered nuller”, consists indeed in illuminating the core of a single-mode fiber with two or 

more off-axis beams being in phase opposition – i.e. ϕn =  0 or π in Eq. (14). It must be 

emphasized that two of the deepest nulling ratios ever obtained in the optical laboratory just 

exploited that technique [40-41]. An example of interferometer configuration incorporating a 

nulling periscope APS and a SMF centred on the origin O’ of the X’Y’ plane is therefore 

depicted in Figure 13 (collecting and densifying optics are not shown). The main scope of the 

following paragraphs is to derive simplified expressions of the so-called extinction or nulling 

maps of the interferometer characterizing the whole destructive and constructive fringe 

pattern projected on-sky [9-10]. Those maps are normalized such that their numerical values 

are directly equal to the actual instrument throughput as a function of the angular position of 

the planet: obviously the nulling map must always be equal to zero on-axis, since this is the 

theoretical direction of the parent star. The numerical results are then analyzed and compared 

together in order to define the most efficient recombination scheme (Fizeau-like, multi-axial 

or axial), a major trade-off that is still open in the framework of the Darwin and TPF-I 

projects. 

5.1 Nulling Fizeau-like interferometer 

Let us first consider an eight apertures stellar interferometer satisfying the golden rule of 

stellar interferometry, and transform it into a nulling interferometer. This is realized by means 

of a series of achromatic, π phase-shifters arranged on the exit pupils as shown on the left 

bottom panel of Figure 2 (since only the case of the Bracewell-like configuration is 

considered there, see below). Inserting relations (15-17) into Eq. (14) and assuming that both 



functions G(M’) and )M'(B̂D'  are real and centro-symmetric, which is true as long as no 

optical aberrations or manufacturing errors are introduced within the system, then enables to 

express the overlap integral ρ(M’) as the cross correlation product of Eq. (22): here the far-

field fringe function defined in section 4 has been replaced by its equivalent in the SMW 

formalism, namely the “far-field amplitude function” that is the linear combination of the 

complex amplitudes generated by the sub-apertures arrangement: 
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where symbol ⊗ denotes the cross correlation product. By convention, the global throughput 

of the instrument T(M’) including the coupling efficiency into the single-mode fiber is finally 

estimated as: 

 T(M’)   =   |ρ(M’)|
2
 × P / P0, (23) 

P being the total power coupled into the SMF, and P0 the total energy radiated from the planet 

and collected by the whole entrance pupil of the interferometer. Gray-scale representations of 

the obtained distribution T(M’) are depicted in the top row of Figure 14, and the main 

achieved performance in terms of planet throughput and Inner Working Angle (IWA) is 

summarized in the Table 3: as used for coronagraphs, the IWA is defined as the minimal 

angular distance from the star at which the planet throughput exceeds 50 % of its maximal 

value in the whole FoV. 

 

Table 3: Summary of nulling interferometers parameters and achievable performance (see 

also Table 2). 

Case N Planet throughput Inner Working Angle 

(IWA) 

SMF core 

radius 

     



Nulling Fizeau-

like 

interferometer 

2 0.5 % 83 milli-arcseconds 10.4 µm 

 

Nulling SRT  

 

2 

 

4.8 % 

 

154 milli-arcseconds 

 

8.4 µm 

 

Nulling ACI 

(Bracewell) 

 

2 

 

77.9 % 

 

26 milli-arcseconds 

 

84.1 µm 

 

Nulling ACI 

(Angel cross) 

 

4 

 

75.0 % 

 

36 milli-arcseconds 

 

84.1 µm 

 

Nulling ACI (8 

telescopes) 

 

 

8 

 

64.7 % 

 

63 milli-arcseconds 

 

84.1 µm 

 

The numerical computation shows that the maximal achieved throughput for the planet 

is only 0.5 %, which seems very low and could in practice only be counterbalanced by 

prohibitive observation times. Moreover, the results achieved for the four-telescopes (Angel 

cross) and eight telescopes configurations defined in Figure 5 are so dramatically worse (i.e. 

significantly inferior to 0.1 %) that they are even not given in the Table. The point may be 

interpreted as follows: since the golden rule is respected, it ensures a certain uniformity of the 

OPD ζn within the entire Field of View. Here however, the phase shifts ϕn have been adjusted 

so that a nulled, destructive fringe is created at the FoV centre. One could therefore argue that 

the destructive interference spreads through the whole FoV with the unwanted consequence of 

minimizing the planet throughput everywhere. Hence the golden rule for stellar interferometry 

would indeed be detrimental to nulling interferometers. Nevertheless, a rigorous 

demonstration of the latter statement is not straightforward: we may therefore consider it as a 

rule of thumb deserving future studies and explanations. 

5.2 Nulling super-resolving telescope 

The principle of the nulling SRT has been proposed in a recent communication [42]: it is 

indeed a super-resolving telescope similar to those discussed in section 4.3, where a number 

of APS are added into each optical arm before the exit recombining optics (Figure 7). The 



mathematical expression of the overlap integral ρ(M’) is derived from Eq. (14) assuming that 

Pn  =  0 whatever is n, corresponding to the case when all entrance apertures are merged. 

Then the expression of ρ(M’) becomes: 
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which is very similar to relation (22), the functions G(M’) and )M'(B̂D'  having just been 

swapped. An example of throughput map T(M’) is displayed on the second row of Figure 14. 

Here the maximal throughput of the planet for the basic configuration including two exit 

symmetric arms is found equal to 4.8 %, which is 10 times higher than for the nulling Fizeau-

like interferometer, but still remains insufficient (it has been checked here also that the throughput 

is not acceptable for configurations involving a higher number of optical arms). Here the point 

seems to be related to the maximal size of the fiber core (that has to be lower than 8.4 µm in 

order to transmit the sole fundamental mode at 10 µm), on the one hand, and to the angular 

area of the central null increasing as extra exit arms are added, on the other hand: hence a 

centred, on-axis SMF will collect less and less photons as the nulling area is extended. One 

solution to improve the throughput could be to decenter the SMF, or eventually to implement 

a SMW array if that technology becomes available. 

5.3 Nulling axially combined interferometer 

We finally examine the case of a nulling, axially combined interferometer that can simply 

been extrapolated from the ACI design described in section 4.4 with the addition of N APS 

along all the interferometer arms of Figure 11. When constituted of only two collecting 

telescopes, this nulling ACI is nothing else than the Bracewell’s original design [4]. Imposing 

that  P’n  =  0 whatever is n readily leads to the following expression of ρ(M’): 
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With respect to Eq. (24), )M'(B̂D'  has been permuted with the far-field amplitude 

function (here it must be noticed that the previous relationship is in accordance with those 

already published in Refs. [9-10] that were precisely limited to the case of axial 

recombination). Numerical simulations based on Eq. (25) were then carried out for different 

interferometric arrays, respectively based on two, four and eight telescopes (see Figure 2), and 

led to the very satisfactory results reported in Table 3, showing that the estimated throughput 

always exceeds 60 %, even for the eight telescopes configuration having the most extended 

nulling area (see Figure 14). Hence the present section devoted to fibered nulling 

interferometers finally evidences a marked superiority of the axial combining scheme with 

respect to other designs (i.e. nulling Fizeau interferometer or SRT). Therefore it seems that 

the question of axial or multi-axial recombining optics, which remains one of the major open 

tradeoffs in nulling interferometry, may be given here an element of answer. 

6 Future work 

The perspective of detecting terrestrial extra-solar planets by means of a nulling fibered ACI 

deserves additional discussions and future work devoted to some specific issues that are 

briefly summarized below. Other studies may also be undertaken in order to better assess the 

imaging capacities of the SRT and the ACI.  

1) Chromatic dispersion 

Whether intended for nulling or imaging purposes, one common feature to interferometric 

arrays is their strong dependence on chromatic dispersion, since the angular scale of both 

functions | )(B̂D' M' |
2
 and F(M’) defined in section 4 is directly proportional to the wavelength 

λ. This difficulty might be overcome by inserting Wynne compensators into the combining 



optics [43]: this type of system is especially designed to present a lateral chromatism that is 

inversely proportional to λ, hence the final diffraction pattern in the image plane should be 

free of chromatism. However this solution requires to integrate dioptric components within 

the optical layout, which may induce severe practical constraints in the thermal infrared 

spectral band selected for the space missions Darwin and TPF-I. An alternative scheme 

inspired from modern integral field spectroscopy may consist in a reflective image 

transformer [44] placed downstream a diffraction grating, further rescaling the individual 

spectral images and superimposing them in the final focal plane. It must be highlighted that 

the practical realization of such “inverted image slicers” only requires mature technologies, as 

confirmed by recent publications [45-46].  

2) Radiometric performance 

Some preliminary estimations of the radiometric efficiency of the three presented nulling 

interferometers have already been provided in section 5 (see Table 3). This work would 

naturally need to be completed for the other mentioned systems (i.e. imaging hypertelescope, 

SRT and ACI). More generally, a complete Signal-to-Noise Ratio (SNR) budget should be 

established for each considered case. Those SNR budgets should take into account various 

parameters such as the magnitude of the observed celestial object, total light collecting area, 

integration time (that mat attain several days for space instruments) and different types of 

noise characterizing modern detector systems (e.g. photon noise, read-out noise and dark 

current). 

3) Pupil imaging requirements 

It has been highlighted in section 2.2 that the assumption of entrance sub-pupils being re-

imaged on their associated exit sub-pupil is fundamental, since it allows to derive the 

relationship (7) on which the remainder of the theory is based. In practice this condition 

dictates the implementation of pupil relaying optics and possibly of delay lines in order to 



equalize the OPDs in all different sub-apertures. Here the quality of the pupil imaging and the 

pistons, shear and defocus errors leading to imperfect sub-pupils matching should be of prime 

importance for the quality of the achieved nulling or imaging performance. Therefore a huge 

effort in optical design and tolerancing analysis in view of defining quantitative requirements 

remains to be carried out. Here it must be noticed that the condensed form of Eq.(7) makes it 

suitable for introducing some of the mentioned defects. 

4) Entrance and exit pupil configurations 

In the whole paper were only considered square, redundant input and output optical arrays 

that were found satisfactory for most nulling or imaging cases. It is well-known however that 

such configurations are not optimal for the Fizeau-like interferometers, and that some other 

ones (e.g. Golay or circular, non-redundant arrays) provide better coverage of the OTF plane 

and a consequent image enhancement. It would be of prime interest to verify if this 

conclusion remains valid for the herein presented SRT and ACI obeying to different Object-

Image relationships. 

5) Optical system modeling 

The frame of this study was from the beginning restricted to first-order optics and scalar 

diffraction theory, which seem reasonable hypotheses when dealing with low angular aperture 

optical systems. But it must be noticed that most of the herein presented systems (i.e. 

hypertelescope and nulling or imaging SRT) make use of fast aperture recombining optics, 

thus at least in their cases a vectorial diffraction analysis seems mandatory. 

7 Summary 

In this paper were reviewed some general properties of various advanced, multi-aperture 

optical systems dedicated to direct, high angular resolution imaging or to the detection and 

characterization of extra-solar planets with the help of nulling interferometry technique. The 

use of a rather simple Fourier optics formalism applicable to both imaging arrays and nulling 



interferometers enabled to express those imaging and nulling capacities as convolution or 

cross correlation products suitable for fast and accurate numerical computing. A variety of 

high angular resolution systems were considered, and in my view the preliminary conclusions 

of this theoretical study are twofold: 

• The axial combination scheme seems to be the most recommendable for a multi-

aperture, fibered nulling interferomer, at least from the point of view of radiometric 

efficiency. This conclusion may have some important consequence on the architecture 

and design of the whole free-flying telescope array. 

• Two of the presented optical systems, namely the imaging super-resolving telescope 

and axial combining interferometer, are governed by non classical Object-Image 

relationships that may be appended to Fourier optics theory. However their angular 

resolution seems to be ultimately limited by the diffraction lobes of an individual 

collecting telescope. 

To conclude, it is recalled that the entire study presented in this paper is only valid in the 

frame of first-order geometrical optics and scalar diffraction theory, applied to 

monochromatic light waves. Furthermore, it is assumed that all entrance sub-apertures are 

optically conjugated with their associated exit pupils, and that no pupil aberrations exist 

(although piston and pupil decentring errors could be easily introduced in the present 

formalism). Also, no “real world” constraints such as manufacturing, aligning and testing 

feasibility, instrumental biases, detector noises or atmospheric seeing were covered in this 

purely theoretical work. It is likely, however, that the herein described high angular resolution 

systems should preferably be envisaged for space applications. 

The author would like to thank his colleagues D. Mourard and Y. Rabbia for inspiring 

discussions about the golden rule, hypertelescopes and nulling interferometry.  
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FIGURES CAPTIONS 

1. Figure 1: Used reference frames on-sky, on the entrance and exit pupils, and in image 

plane. 

2. Figure 2: Geometrical configurations of entrance and exit pupils. 

3. Figure 3: Input and output optical layout of a generic multi-aperture, high angular 

resolution system. 

4. Figure 4: Input and output sub-pupils configurations for the Fizeau-like interferometer 

(top) and hypertelescope (bottom). 

5. Figure 5: Schematic layout of a hypertelescope. 



6. Figure 6: Images formed by a hypertelescope for various baseline values B at λ = 10 µm 

(original object shown on top left panel). 

7. Figure 7: Conceptual optical layout of a super-resolving telescope. 

8. Figure 8: Gray-scale map and slices along the U-V axes of the far-field fringe function 

F(M’) projected on-sky by the SRT. 

9. Figure 9: Illustration of the 4 x 4 mosaïcing procedure. The optical axis of the telescope is 

tilted by steps of 30 mas, scanning a 140 x 140 mas square angular area. 

10. Figure 10: Numerical simulation of images formed by a super-resolving telescope. Top 

left, original object; top right, image at λ = 10 µm formed by a 5-m telescope; bottom left, 

elementary image acquired by a 5-m SRT; bottom right, reconstructed image after a 4 × 4 

mosaïcing and reconstruction process. Images sampling is 149 × 149. 

11. Figure 11: Symmetric optical layout for co-axial recombination. 

12. Figure 12: Images formed by an axial combining interferometer for various baseline 

values B at λ = 10 µm (original object shown on top left panel. Images sampling is 439 × 

439). 

13. Figure 13: Interferometer equipped with nulling periscopes and a single-mode fiber 

centred on the optical axis (collecting and densifying optics are not shown). 

14. Figure 14: Computed nulling maps for some typical cases. Top row: nulling Fizeau-like 

interferometer with two collecting telescopes. Second row: nulling SRT constituted of two 

exit recombining arms. Lower rows: axially combined interferometer with two, four and 

eight collecting telescopes (left: linear gray-scale; right: logarithmic gray-scale). 

15.  
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Figure 1: Used reference frames on-sky, on the entrance and exit pupils, and in image plane. 
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Figure 2: Geometrical configurations of entrance and exit pupils. 
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Figure 3: Input and output optical layout of a generic multi-aperture, high angular resolution 
system. 
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Figure 4: Input and output sub-pupils configurations for the Fizeau-like interferometer (top) 
and hypertelescope (bottom). 
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Figure 5: Schematic layout of a hypertelescope. 
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Figure 6: Images formed by a hypertelescope for various baseline values B at λλλλ = 10 µµµµm (original 
object shown on top left panel). 
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Figure 7: Conceptual optical layout of a super-resolving telescope. 
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Figure 8: Gray-scale map and slices along the U-V axes of the far-field fringe function F(M’) 
projected on-sky by the SRT. 
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Figure 9: Illustration of the 4 x 4 mosaïcking procedure. The optical axis of the telescope is tilted 
by steps of 30 mas, scanning a 140 x 140 mas square angular area. 
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Figure 10: Numerical simulation of images formed by a super-resolving telescope. Top left, 

original object; top right, image at λλλλ = 10 µµµµm formed by a 5-m telescope; bottom left, elementary 

image acquired by a 5-m SRT; bottom right, reconstructed image after a 4 ×××× 4 mosaïcking and 

reconstruction process. Images sampling is 149 ×××× 149. 
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Figure 11: Symmetric optical layout for co-axial recombination. 
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Figure 12: Images formed by an axial combining interferometer for various baseline values B at 

λλλλ = 10 µµµµm (original object shown on top left panel. Images sampling is 439 ×××× 439). 
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Figure 13: Interferometer equipped with nulling periscopes and a single-mode fiber centred on 
the optical axis (collecting and densifying optics are not shown). 
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Figure 14: Computed nulling maps for some typical cases. Top row: nulling Fizeau-like 
interferometer with two collecting telescopes. Second row: nulling SRT constituted of two exit 

recombining arms. Lower rows: axially combined interferometer with two, four and eight 
collecting telescopes (left: linear gray-scale; right: logarithmic gray-scale). 

 


