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Abstract

One of the most surprising consequences of quantum mechanics is the nonlocal correlation
of a multi-particle system observable in joint-detection of distant particle-detectors. Ghost
imaging is one of such phenomena. Taking a photograph of an object, traditionally, we need
to face a camera to the object. But with ghost imaging, we can image the object by pointing
a CCD camera towards the light source, rather than towards the object. Ghost imaging is
reproduced at quantum level by a non-factorizable point-to-point image-forming correlation
between two photons. Two types of ghost imaging have been experimentally demonstrated
since 1995. Type-one ghost imaging uses entangled photon pairs as the light source. The non-
factorizable image-forming correlation is the result of a nonlocal constructive-destructive inter-
ference among a large number of biphoton amplitudes, a nonclassical entity corresponding to
different yet indistinguishable alternative ways for the photon pair to produce a joint-detction
event between distant photodetectors. Type-two ghost imaging uses chaotic light. The type-
two non-factorizable image-forming correlation is caused by the superposition between paired
two-photon amplitudes, or the symmetrized effective two-photon wavefunction, corresponding
to two different yet indistinguishable alternative ways of triggering a join-detection event by
two independent photons. The multi-photon interference nature of ghost imaging determines
its peculiar features: (1) it is nonlocal; (2) its imaging resolution differs from that of classical;
and (3) the type-two ghost image is turbulence-free.1 Ghost imaging has attracted a great deal
of attention, perhaps due to these features for certain applications. Achieving these features,
the realization of nonlocal multi-photon interference is a necessary condition. Classical sim-
ulations, such as the man-made factorizable speckle-speckle correlation, can never have such
features.

1 Introduction

Assuming an object that is either self-luminous or externally illuminated, imagining each point
on the object surface as a point radiation sub-source, each point sub-source will emit spherical waves
to all possible directions. How much chance do we expect to have a spherical wave collapsing into
a point or a “speckle” by free propagation? Obviously, the chance is zero unless an imaging system
is applied. The concept of optical imaging was well developed in classical optics for this purpose.
Figure 1 schematically illustrates a standard imaging setup. In this setup an object is illuminated
by a radiation source, an imaging lens is used to focus the scattered and reflected light from the
object onto an image plane which is defined by the “Gaussian thin lens equation”

1
si

+
1
so

=
1
f
, (1)

where so is the distance between the object and the imaging lens, si the distance between the
imaging lens and the image plane, and f the focal length of the imaging lens. Basically this
equation defines a point-to-point relationship between the object plane and the image plane: any
radiation starting from a point on the object plane will “collapse” to a unique point on the image
plane. It is not difficult to see from Fig. 1 that the point-to-point relationship is the result of
constructive-destructive interference. The radiation fields coming from a point on the object plane
will experience equal distance propagation to superpose constructively at one unique point on
the image plane, and experience unequal distance propagations to superpose destructively at all

1 For instance, any fluctuation of the refraction index or phase disturbance in the optical path has no influence
to the type-two ghost image.
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Figure 1: Optical imaging: a lens produces an image of an object in the plane defined by the
Gaussian thin-lens equation 1/si + 1/so = 1/f . Image formation is based on a point-to-point
relationship between the object plane and the image plane. All radiations emitted from a
point on the object plane will “collapse” to a unique point on the image plane.

other points on the image plane. The use of the imaging lens makes this constructive-destructive
interference possible.

A perfect point-to-point image-forming relationship between the object and image planes pro-
duces a perfect image. The observed image is a reproduction, either magnified or demagnified,
of the illuminated object, mathematically corresponding to a convolution between the object dis-
tribution function |A(~ρo)|2 (aperture function) and a δ-function which characterizes the perfect
point-to-point relationship between the object and image planes:

I(~ρi) =
∫
obj

d~ρo
∣∣A(~ρo)

∣∣2 δ(~ρo +
~ρi
m

) (2)

where I(~ρi) is the intensity in the image plane, ~ρo and ~ρi are 2-D vectors of the transverse coor-
dinates in the object and image planes, respectively, and m = si/so is the image magnification
factor.

In reality, limited by the finite size of the imaging system, we may never obtain a perfect point-
to-point correspondence. The incomplete constructive-destructive interference turns the point-to-
point correspondence into a point-to-“spot” relationship. The δ-function in the convolution of
Eq. (2) will be replaced by a point-spread function:

I(~ρi) =
∫
obj

d~ρo
∣∣A(~ρo)

∣∣2 somb2[R
so

ω

c

∣∣~ρo +
~ρi
m

∣∣], (3)

where the sombrero-like function, or the Airy disk, is defined as

somb(x) =
2J1(x)
x

,

and J1(x) is the first-order Bessel function, and R the radius of the imaging lens, and R/so is
known as the numerical aperture of the imaging system. The sombrero-like point-spread function,
or the Airy disk, defines the spot size on the image plane that is produced by the radiation coming
from point ~ρo. It is clear from Eq. (3) that a larger imaging lens and shorter wavelength will result
in a narrower point-spread function, and thus a higher spatial resolution of the image. The finite
size of the spot determines the spatial resolution of the imaging system.

Type-one and type-two ghost imaging, in certain aspects, exhibit a similar point-to-point
imaging-forming function as that of classical except the ghost image is reproducible only in the
joint-detection between two independent photodetectors, and the point-to-point imaging-forming
function is in the form of second-order correlation,

R12(~ρi) =
∫
obj

d~ρo
∣∣A(~ρo)

∣∣2G(2)(~ρo, ~ρi), (4)
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where R12(~ρi) is the joint-detection counting rate between photodetectors D1 and D2. Mathe-
matically, the convolution is taken between the aperture function of the object

∣∣A(~ρo)
∣∣2 and a

nontrivial poin-to-point second-order correlation function G(2)(~ρo, ~ρi), corresponding to the prob-
ability of observing a joint photo-detection event at coordinates ~ρo and ~ρi. It is the special physics
behind G(2)(~ρo, ~ρi) made ghost imaging so special.
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Figure 2: Schematic set-up of the first “ghost” image experiment. The experimental demon-
strations of ghost imaging and ghost interference [4] in 1995 together stimulated the foundation
of quantum imaging in terms of geometrical and physical optics.

The first type-one ghost imaging experiment was demonstrated by Pittman et al. in 1995
[1] enlightened by the theoretical work of Klyshko [2]. The schematic setup of the experiment is
shown in Fig. 2. A continuous wave (CW) laser is used to pump a nonlinear crystal to produce an
entangled pair of orthogonally polarized signal (e-ray of the crystal) and idler (o-ray of the crystal)
photons in the nonlinear optical process of spontaneous parametric down-conversion (SPDC). The
pair emerges from the crystal collinearly with ωs ∼= ωi ∼= ωp/2 (degenerate SPDC). The pump is
then separated from the signal-idler pair by a dispersion prism, and the signal and idler are sent
in different directions by a polarization beam splitting Thompson prism. The signal photon passes
through a convex lens of 400mm focal length and illuminates a chosen aperture (mask). As an
example, one of the demonstrations used the letters “UMBC” for the object mask. Behind the
aperture is the “bucket” detector package D1, which is made by an avalanche photodiode placed
at the focus of a short focal length collection lens. During the experiment D1 is kept in a fixed
position. The idler photon is captured by detector package D2, which consists of an optical fiber
coupled to another avalanche photodiode. The input tip of the fiber is scannable in the transverse
plane by two step motors (along orthogonal directions). The output pulses of D1 and D2, both
operate in the photon counting mode, are independently counted as the counting rate of D1 and
D2, respectively, and simultaneously, sent to a coincidence circuit for counting the joint-detection
events of the pair. The single detector counting rates of D1 and D2 are both monitored to be
constants during the measurement. Surprisingly, a ghost image of the chosen aperture is observed
in coincidences during the scanning of the fiber tip, when the following two experimental conditions
are satisfactory: (1) D1 and D2 always measure a pair; (2) the distances so, which is the optical
distance between the aperture to the lens, si, which is the optical distance from the imaging lens
going backward along the signal photon path to the two-photon source of SPDC then going forward
along the idler photon path to the fiber tip, and the focal length of the imaging lens f satisfy the
Gaussian thin lens equation of Eq. (1).

Figure 3 shows a typical measured ghost image. It is interesting to note that while the size
of the “UMBC” aperture inserted in the signal path is only about 3.5mm×7mm, the observed
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Figure 3: Upper: A reproduction of the actual aperture “UMBC” placed in the signal beam.
Lower: The image of “UMBC”: coincidence counts as a function of the fiber tip’s transverse
coordinates in the image plane. The step size is 0.25mm. The image shown is a “slice” at the
half maximum value.

image measures 7mm×14mm. The image is therefore magnified by a factor of 2 which equals the
expected magnification m = si/so. In this measurement so = 600mm and si = 1200mm. When
D2 was scanned on transverse planes other than the ghost image plane the images blurred out.

The experiment was immediately given the name “ghost imaging” by the physics community
due to its nonlocal feature. In the language of Einstein-Podolsky-Rosen (EPR) [3], the non-
factorizable2 point-to-point image-forming correlation

G(2)(~ρo, ~ρi) ∼ δ(~ρo + ~ρi/m) (5)

observed in this experiment represents a nonlocal behavior of a measured pair of photons: neither
the signal photon nor idler photon “knows” precisely where to go when the pair is created at
the source. However, if one of them is observed at a point on the object plane, the other one
must arrive at a unique corresponding point on the image plane.3 Although questions regarding
fundamental issues of quantum theory still exist, the experimental demonstration of ghost imaging
[1] and ghost interference [4] in 1995 together stimulated the foundation of quantum imaging in
terms of geometrical and physical optics.

Type-two ghost imaging uses chaotic radiation sources. Different from type-one, the non-
factorizable point-to-point image-forming correlation between the object and image planes is only
partial with at least 50% constant background,

G(2)(~ρo, ~ρi) ∼ 1 + δ(~ρo − ~ρi). (6)

The first near-field lensless ghost imaging experiment was demonstrated by Scarcelli et al in 2005
and 2006 [5][6] after their experimental demonstration of two-photon interference of chaotic light
in 2004 [7]. Figure 4 illustrates an improved setup of the type-two ghost imaging experiment by
Meyers et al. [8]. The thermal radiation of a chaotic source, which has a fairly large size in the
transverse dimension, is split into two by a 50%−50% beamsplitter. One of the beams illuminates

2 Statistically, a factorizable correlation function G(2)(r1, t1; r2, t2) = G(1)(r1, t1) G(1)(r2, t2) characters inde-
pendent radiations at space-time (r1, t1) and (r2, t2). In ghost imaging, the light on the object plane and the light
at the CCD array is described by a non-factorizeable point-to-point image-forming function, indicating nontrivial
statistical correlation between the two measured intensities.

3The ghost imaging experiment is thus considered a demonstration of the historical Einstein-Podolsky-Rosen
(EPR) experiment.
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Figure 4: Near-field lensless ghost imaging of chaotic light demonstrated by Meyers et al.. D2

is a “bucket” photon counting detector that is used to collect and count all random scattered
and reflected photons from the object. The joint-detection between D2 and the CCD array
is realized by a photon-counting-coincidence circuit. D2 is fixed in space. The counting rate
of D2 and the un-gated output of the CCD are both monitored to be constants during the
measurement. Surprisingly, a 1:1 ghost image of the object is captured in joint-detection
between D2 and the CCD, when taking z1 = z2. The images “blurred out” when the CCD is
moved away from z1 = z2, either in the direction of z1 > z2 or z1 < z2.

Figure 5: Ghost image of a toy soldier model.

a toy soldier as shown in Fig. 4. The scattered and reflected photons from the solider (object) are
collected and counted by a “bucket” detector D2. In the other beam a high resolution CCD array,
operating at the photon counting regime, is placed toward the radiation source for joint-detection
with the “bucket” detector D2. The counting rate of D2 and the un-gated output of the CCD are
both monitored to be constants during the measurement. Surprisingly, a 1:1 ghost image of the
toy soldier is captured in the joint-detection between D2 and the CCD, when taking z1 = z2. The
1:1 ghost image of the toy soldier is shown in Fig. 5. The images “blurred out” when the CCD is
moved away from z1 = z2, either to the side of z1 > z2 or z1 < z2.

There is no doubt that chaotic radiations propagate to any transverse plane in a random
and chaotic manner. A brief discussion for Fresnel free-propagation is given in the appendix. In
the lensless ghost imaging experiment, a large transverse sized chaotic light source, as shown in
Fig. 4, is usually used for achieving better spatial resolution. The source consists a large number
of independent point sub-sources randomly distributed on the source plane. Each point sub-source
may randomly radiate independent spherical waves to the object and image planes. Due to the
chaotic nature of the source there is no interference between these sub-fields. These independent

5



sub-intensities simply add together, yielding a constant total intensity in space and in time on
any transverse plane. In the lensless ghost imaging setup, there is no lens applied to force these
spherical waves collapsing to a point or a “speckle”, and there is no chance to have two identical
copies of any “speckle” of the source onto the object and image planes. What is the physical
cause of the point-to-point image-forming correlation? Although the non-factorizable point-to-
point correlation between the object and image planes is only partial, the type-two ghost imaging
looks more surprising than type-one because of the nature of the light source. Unlike the signal-
idler photon pair, the jointly measured photons in type-two ghost imaging are just two independent
photons that fall into the coincidence time window by chance only. Nevertheless, analogous to EPR,
the non-factorizable partial point-to-point correlation represents a nonlocal behavior of a measured
pair of independent photons: neither photon-one nor photon-two “knows” precisely where to go
when they are created at each independent sub-sources; however, if one of them is observed at
a point on the object plane, the other one has twice greater probability of arriving at a unique
corresponding point on the image plane.4

We have concluded and will show that the partial point-to-point correlation between the object
and image planes in type-two ghost imaging is the result of two-photon interference. Similar to that
of type-one, it involves the nonlocal superposition of two-photon amplitudes, a nonclassical entity
corresponding to different yet indistinguishable alternative ways of triggering a joint-detection event
[9]. Different from that of type-one, the joint-detection events observed in type-two ghost imaging
are triggered by two randomly distributed independent photons. It is interesting to see that the
quantum mechanical concept of two-photon interference is applicable to “classical” thermal light.5

In fact, this is not the first time in the history of physics we apply quantum mechanical concepts
to thermal light. We should not forget Planck’s theory of blackbody radiation originated the
quantum physics. The radiation Planck dealt with was thermal radiation. Although the concept
of “two-photon interference” comes from the study of entangled biphoton states [9], the concept
should not be restricted to entangled systems. The concept is generally true and applicable to any
radiation, including “classical” thermal light. The partial point-to-point correlation of thermal
radiation is not a new discovery either. The first set of temporal and spatial far-field intensity-
intensity correlations of thermal light was demonstrated by Hanbury Brown and Twiss (HBT)
in 1956 [10][11]. The HBT experiment created quite a surprise in the physics community and
lead to a debate about the classical or quantum nature of the phenomenon [11][12]. Although
the discovery of HBT initiated a number of key concepts of modern quantum optics, the HBT
phenomenon itself was finally interpreted as statistical correlation of intensity fluctuations and
considered as a classical effect. It is then reasonable to ask: Is the near-field type-two ghost
imaging with thermal light a simple classical effect similar to that of HBT? Is it possible that
the ghost imaging phenomenon itself, including the type-one ghost imaging of 1995, is merely a
simple classical effect of intensity fluctuation correlation?[13][14][15][16] This article will address
these important questions and explore the multi-photon interference nature of ghost imaging.

To explore the two-photon interference nature, we will analyze the physics of type-one and
type-two ghost imaging in five steps. (1) Review the physics of coherent and incoherent light prop-
agation; (2) Review classical imaging as the result of constructive-destructive interference among
electromagnetic waves; (3) analyze type-one ghost imaging in terms of constructive-destructive
interference between the biphoton amplitudes of an entangled photon-pair; (4) analyze type-two
ghost imaging in terms of two-photon interference between chaotic sub-fields; and (5) discuss the
physics of the phenomenon: whether it is a quantum interference or a classical intensity fluctuation
correlation.

4Similar to the HBT correlation, the contrast of the near-field partial point-to-point image-forming function is
50%, i.e., two to one ratio between the maximum value and the constant background, see Eq. (33).

5There exist a number of definitions for classical light and for quantum light. One of the commonly accepted
definitions considers thermal light classical because its positive P -function.
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2 Classical Imaging

To understand the multi-photon interference nature of ghost imaging, it might be helpful to
see the constructive-destructive interference nature of classical imaging first. We start from a
typical classical imaging setup of Fig. 6 and ask a simple question: how does the radiation field
propagate from the object plane to the image plane? In classical optics such propagation is usually
described by an optical transfer function h(r− r0, t− t0). We prefer to work with the single-mode
propagator, namely the Green’s function, g(k, r− r0, t− t0) [17][18], which propagates each mode
of the radiation from space-time point (r0, t0) to space-time point (r, t). We treat the field E(r, t)
as a superposition of these modes. A detailed discussion about g(k, r − r0, t − t0) is given in the
Appendix. It is convenient to write the field E(r, t) as a superposition of its longitudinal and
transverse modes under the Fresnel paraxial approximation,

E(~ρ, z, t) =
∫
d~κ dω Ẽ(~κ, ω) g(~κ, ω; ~ρ, z) e−iωt, (7)

where Ẽ(~κ, ω) is the complex amplitude for the mode of frequency ω and transverse wave-vector ~κ.
In Eq. (7) we have taken z0 = 0 and t0 = 0 at the object plane as usual. To simplify the notation,
we have assumed one polarization.

iD

ρ iρo

so

  Light
 Source

si

ρl

Figure 6: Typical imaging setup. A lens of finite size is used to produce a magnified or
demagnified image of an object with limited spatial resolution.

Based on the experimental setup of Fig. 6 and following the Appendix, g(~κ, ω; ~ρ, z) is found to
be

g(~κ, ω; ~ρi, so + si)

=
∫
obj

d~ρo

∫
lens

d~ρl

{
A(~ρo) ei~κ·~ρo

}{−iω
2πc

ei
ω
c so

so
ei

ω
2cso
|~ρl−~ρo|2

} {
e−i

ω
2cf |~ρl|

2
}

×
{−iω

2πc
ei
ω
c si

si
e
i ω
2csi
|~ρi−~ρl|2

}
, (8)

where ~ρo, ~ρl, and ~ρi are two-dimensional vectors defined, respectively, on the object, lens, and
image planes. The first curly bracket includes the aperture function A(~ρo) of the object and
the phase factor ei~κ·~ρo contributed at the object plane by each transverse mode ~κ. The terms
in the second and fourth curly brackets describe free-space Fresnel propagation-diffraction from
the source/object plane to the imaging lens, and from the imaging lens to the detection plane,
respectively. The Fresnel propagator includes a spherical wave function ei

ω
c (zj−zk)/(zj − zk) and a

Fresnel phase factor eiω|~ρj−~ρk|
2/2c(zj−zk). The third curly bracket adds the phase factor introduced

by the imaging lens.
We now rewrite Eq. (8) into the following form

g(~κ, ω; ~ρi, z = so + si) =
−ω2

(2πc)2sosi
ei
ω
c (so+si) e

i ω
2csi
|~ρi|2

∫
obj

d~ρoA(~ρo) ei
ω

2cso
|~ρo|2 ei~κ·~ρo

×
∫
lens

d~ρl e
i ω2c [

1
so

+ 1
si
− 1
f ]|~ρl|2 e

−iωc ( ~ρoso +
~ρi
si

)·~ρl . (9)
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The image plane is defined by the Gaussian thin-lens equation of Eq. (1). Hence, the second integral
in Eq. (9) reduces to, for a finite sized lens of radius R, the so-called point-spread function, or the
Airy disk, of the imaging system:∫

lens

d~ρl e
−iωc ( ~ρoso +

~ρi
si

)·~ρl =
2J1(x)
x

= somb(x), (10)

where the sombrero-like function somb(x) = 2J1(x)/x with argument x = [ Rso
ω
c |~ρo + ρi/m|] has

been defined in Eq. (3). Eq. (10) indicates a constructive interference.
Substituting Eqs. (9) and (10) into Eq. (7) enables one to obtain the classical self-correlation

function of the field, or, equivalently, the intensity on the image plane

I(~ρi, zi, ti) = 〈E∗(~ρi, zi, ti)E(~ρi, zi, ti) 〉, (11)

where 〈...〉 denotes an ensemble average. To simplify the mathematics, monochromatic light is
assumed as usual.

Case (I): Incoherent imaging. The ensemble average yields zeros except when ~κ = ~κ′. The
image is thus

I(~ρi) ∝
∫
d~ρo

∣∣A(~ρo)
∣∣2 somb2[

R

so

ω

c
|~ρo +

~ρi
m
|]. (12)

An incoherent image, magnified by a factor of m, is thus given by the convolution between the mod-
ulus square of the object aperture function and the point-spread function. The spatial resolution
of the image is determined by the finite width of the |somb|2-function.

Case (II): Coherent imaging. The coherent superposition of the ~κ modes in both E∗(~ρi, τ) and
E(~ρi, τ) results in a wavepacket. The image, or the intensity distribution on the image plane, is

I(~ρi) ∝
∣∣∣ ∫
obj

d~ρoA(~ρo) ei
ω

2cso
|~ρo|2somb[

R

so

ω

c
|~ρo +

~ρi
m
|]
∣∣∣2. (13)

A coherent image, magnified by a factor ofm, is thus given by the modulus square of the convolution
between the object aperture function (multiplied by a Fresnel phase factor) and the point-spread
function.

For si < so and so > f , both Eqs. (12) and (13) describe a real demagnified inverted image.
In both cases, a narrower somb-function yields a higher spatial resolution. Therefore the use of
a larger imaging lens and shorter wavelengths will improve the spatial resolution of an imaging
system.

3 Biphoton and type-one ghost imaging

In this section we analyze type-one ghost imaging. Type-one ghost imaging uses entangled
photon pairs such as the signal-idler biphoton pairs of SPDC [19][9]. The nearly collinear signal-
idler system generated by SPDC can be described, in the ideal case, by the following entangled
biphoton state [9]:

|Ψ 〉 = Ψ0

∫
d~κs d~κi δ(~κs + ~κi)

∫
dωs dωi δ(ωs + ωi − ωp) a†(~κs, ωs) a†(~κi, ωi) | 0 〉, (14)

where ωj , ~κj (j = s, i, p), are the frequency and transverse wavevector of the signal, idler, and
pump, respectively. For simplicity a CW single mode pump with ~κp = 0 is assumed. Eq. (14)
indicates that the biphoton state of the signal-idler pair is an entangled state. The single-photon
state of the signal and the idler can be evaluated by taking a partial trace of its twin,

ρ̂s = tri |Ψ 〉〈Ψ | =
∫
d~κs dωs a

†(~κs, ωs)| 0 〉〈 0 |a(~κs, ωs),

ρ̂i = trs |Ψ 〉〈Ψ | =
∫
d~κi dωi a

†(~κi, ωi)| 0 〉〈 0 |a(~κi, ωi). (15)
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Although the signal-idler system is in a pure state, the state of the signal photon and the idler
photon, respectively, are both mixed states.

Let us imagine a measurement in which two point-like photon counting detectors (D1 and D2)
are placed at the output plane of an SPDC source for the detection of the signal photon and the
idler photon, respectively, and for the joint-detection of the signal-idler pair. The probability of
observing a photo-detection event in the SPDC output plane ~ρj at time tj , j = s, i, is calculated
from the first-order photo-detection theory of Glauber [20]

G(1)(~ρj , tj) = tr ρ̂ E(−)(~ρj , tj)E(+)(~ρj , tj), (16)

where we have chosen zj = 0 for the SPDC output plane as usual. It is easy to find that

G(1)(~ρs, ts) = constant, G(1)(~ρi, ti) = constant, (17)

which means that the signal photon and the idler photon both have equal probability to be observed
at any position in the output plane of the SPDC at any time. The probability of observing a joint-
detection event between D1 and D2 located at ~ρs and ~ρi in the SPDC output plane of zs = zi = 0
is calculated from the second-order photo-detection theory of Glauber [20]:

G(2)(~ρs, ts; ~ρi, ti)

= 〈Ψ |E(−)
s (~ρs, ts)E

(−)
i (~ρi, ti)E

(+)
i (~ρi, ti)E(+)

s (~ρs, ts) |Ψ 〉

= |〈 0 |E(+)
i (~ρi, ti)E(+)

s (~ρs, ts) |Ψ 〉|2

≡ |Ψ(~ρs, ts; ~ρi, ti) |2, (18)

where Ψ(~ρs, ts; ~ρi, ti) is defined as the effective biphoton wavefunction. The transverse spatial part
of the effective biphoton wavefunction is easily calculated to be:

Ψ(~ρs, ~ρi) ' δ(~ρs − ~ρi), (19)

under the condition ts ' ti. Equations (14), (17), and (19) suggest that the entangled signal-idler
photon pair is characterized by the EPR correlation [3] in transverse momentum and transverse
position; hence, similar to the original EPR state, we have [21]:

∆(~κs + ~κi) = 0 & ∆(~ρs − ~ρi) = 0 (20)
with ∆~κs ∼ ∞, ∆~κi ∼ ∞, ∆~ρs ∼ ∞, ∆~ρi ∼ ∞.

In EPR’s language, the signal photon and the idler photon may come from any point in the output
plane of the SPDC. However, if the signal (idler) is found in a certain position, the idler (signal)
must be observed in the same position, with certainty (100%). Simultaneously, the signal photon
and the idler photon may have any transverse momentum. However, if a certain value and direction
of the transverse momentum of the signal (idler) is observed, the transverse momentum of the idler
(signal) will be uniquely determined with equal value and opposite direction.

The EPR δ-functions, δ(~ρs− ~ρi) and δ(~κs +~κi) in transverse position and momentum, are the
key to understanding the ghost imaging experiment of Pittman et al. of 1995. δ(~ρs− ~ρi) indicates
that the signal-idler pair is always emitted from the same point on the output plane of the biphoton
source. Simultaneously, δ(~κs + ~κi) defines the angular correlation of the pair: the signal-idler pair
always exists at roughly equal but opposite angles relative to the pump for degenerate SPDC.
This then allows for a simple explanation of the experiment in terms of “usual” geometrical optics
in the following manner: we envision the nonlinear crystal as a “hinge point” and “unfold” the
schematic of Fig. 2 into the Klyshko picture [2] of Fig. 7. The signal-idler biphoton amplitudes
can then be represented by straight lines (but keep in mind the different propagation directions)
and therefore the image is reproduced in coincidences when the aperture, lens, and fiber tip are
located according to the Gaussian thin lens equation of Eq. (1). The image is exactly the same
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Figure 7: An unfolded schematic of the 1995 ghost imaging experiment, which is helpful for
understanding the physics. Since the biphoton “light” propagates along “straight lines”, it is
obvious that any point on the object plane corresponds to a unique point on the image plane.
Although the placement of the lens, the object, and detector D2 obeys the Gaussian thin lens
equation, it is important to notice that the geometric rays in the figure actually represent the
biphoton amplitudes of an entangled photon pair. The point-to-point correspondence is the
result of a constructive-destructive interference of these biphoton amplitudes.

as that one would observe on a screen placed at the fiber tip if detector D1 were replaced by a
point-like light source and the nonlinear crystal by a reflecting mirror.

Comparing the “unfolded” schematic of the ghost imaging experiment with that of the classical
imaging setup of Fig. 1, it is not difficult to find that any “light point” on the object plane has
a unique corresponding “light point” on the image plane. This point-to-point correspondence is
the result of the constructive-destructive interference among these biphoton amplitudes that are
illustrated as the geometrical rays in Fig. 7. Similar to the situation in classical imaging, these
biphoton amplitudes which experience equal optical path propagation will superpose constructively
at each pair of one-to-one points of the object plane and the image plane for a joint-detection event,
while these that experience unequal distance propagation will superpose destructively at all other
points on the object and image planes. The use of the imaging lens makes this constructive-
destructive interference possible. It is this unique point-to-point EPR correlation that makes the
“ghost” image of the object-aperture function possible. Despite the completely different physics
from classical optics, the remarkable feature is that the relationship between the focal length
f of the lens, the aperture’s optical distance so, and the image’s optical distance si, satisfies
the Gaussian thin lens equation of Eq. (1). It is worth emphasizing again that the geometric
rays in Fig. 7 represent the biphoton amplitudes of a signal-idler photon pair, and the point-to-
point correspondence is the result of the constructive-destructive interference of these biphoton
amplitudes.

We now calculate G(2)(~ρ1, ~ρ2) for the “ghost” imaging experiment in detail, where ~ρ1 and ~ρ2

are the transverse coordinates of the point-like photodetector D1 and D2, on the object and image
planes, respectively. We will show that there exists a δ-function-like point-to-point correlation
between the object and image planes, δ(~ρ1 − ~ρ2/m). We will then show how the object function
of A(~ρo) is transferred to the image plane as a magnified image A(~ρ2/m).

We first calculate the effective biphoton wavefunction Ψ(~ρ1, z1, t1; ~ρ2, z2, t2), as defined in
Eq. (18). By inserting the field operators into Ψ(~ρ1, z1, t1; ~ρ2, z2, t2), and considering the com-
mutation relations of the field operators, the effective biphoton wavefunction is calculated to be

Ψ(~ρ1, z1, t1; ~ρ2, z2, t2) = Ψ0

∫
d~κs d~κi δ(~κs + ~κi)

∫
dωs dωi δ(ωs + ωi − ωp) (21)

× g(~κs, ωs; ~ρ1, z1) e−iωst1 g(~κi, ωi; ~ρ2, z2) e−iωit2 .

Equation (21) indicates a coherent superposition of all the biphoton amplitudes shown in Fig. 7.
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Next, we follow the unfolded experimental setup of Fig. 8 to establish the Green’s functions
g(~κs, ωs, ~ρ1, z1) and g(~κi, ωi, ~ρ2, z2). In arm-1 the signal propagates freely over a distance d1

from the output plane of the source to the imaging lens, passes an object aperture at distance
so, and then is focused onto photon-counting detector D1 by a collection lens. We will evaluate
g(~κs, ωs, ~ρ1, z1) by propagating the field from the output plane of the biphoton source to the object
plane. In arm-2 the idler propagates freely over a distance d2 from the output plane of the biphoton
source to a point-like detector D2. g(~κi, ωi, ~ρ2, z2) is thus a free propagator.

 EPR
Source

f

Imaging lens

lens
Collection

d2d 1

so

D1

is

fcoll

Figure 8: In arm-1 the signal propagates freely over a distance d1 from the output plane of the
source to the imaging lens, passes an object aperture at distance so, and then is focused onto
photon-counting detector D1 by a collection lens. In arm-2 the idler propagates freely over a
distance d2 from the output plane of the source to a point-like photon counting detector D2.

(I) Arm-1 (source to object):
The optical transfer function or Green’s function in arm-1, which propagates the field from

the source plane to the object plane, is given by:

g(~κs, ωs; ~ρ1, z1 = d1 + so) = ei
ωs
c z1

∫
lens

d~ρl

∫
source

d~ρs

{ −iωs
2πcd1

ei ~κs·~ρs ei
ωs

2cd1
| ~ρs−~ρl |2

}
× e−i

ω
2cf |~ρl|

2
{ −iωs

2πcso
ei

ωs
2cso
| ~ρl−~ρ1 |2

}
, (22)

where ~ρs and ~ρl are the transverse vectors defined, respectively, on the output plane of the source
and on the plane of the imaging lens. The terms in the first and second curly brackets in Eq. (22)
describe free space propagation from the output plane of the source to the imaging lens and from
the imaging lens to the object plane, respectively. Again, ei

ωs
2cd1
| ~ρs−~ρl |2 and ei

ωs
2cso
| ~ρl−~ρ1 |2 are the

Fresnel phases as defined in the Appendix. Here the imaging lens is treated as a thin-lens, and the
transformation function of the imaging lens is approximated as a Gaussian, l(|~ρl|, f) ∼= e−i

ω
2cf |~ρl|

2
.

(II) Arm-2 (from source to image):

In arm-2, the idler propagates freely from the source to the plane of D2, which is also the plane
of the image. The Green’s function is

g(~κi, ωi; ~ρ2, z2 = d2) =
−iωi
2πcd2

ei
ωi
c d2

∫
source

d~ρ′s e
i
ωi

2cd2
| ~ρ′
s−~ρ2 |

2

ei~κi·
~ρ′
s (23)

where ~ρ′s and ~ρ2 are the transverse vectors defined, respectively, on the output plane of the source
and the plane of photodetector D2.
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(III) Ψ(~ρ1, ~ρ2) and G(2)(~ρ1, ~ρ2) (object plane - image plane):

For simplicity, in the following calculation we consider degenerate (ωs = ωi = ω) and collinear
SPDC. The effective transverse biphoton wavefunction Ψ(~ρ1, ~ρ2) is then evaluated by substituting
the Green’s functions g(~κs, ω; ~ρ1, z1) and g(~κi, ω; ~ρ2, z2) into Eq. (21),

Ψ(~ρ1, ~ρ2) ∝
∫
d~κs d~κi δ(~κs + ~κi) g(~κs, ω; ~ρ1, z1) g(~κi, ω; ~ρ2, z2)

∝ eiωc (so+si)

∫
d~κs d~κi δ(~κs + ~κi)

∫
lens

d~ρl

∫
source

d~ρs e
i ~κs·~ρsei

ω
2cd1
| ~ρs−~ρl |2

× e−i
ω

2cf |~ρl|
2
ei

ωs
2cso
| ~ρl−~ρ1 |2

∫
source

d~ρ′s e
i~κi· ~ρ′

s ei
ωi

2cd2
| ~ρ′
s−~ρ2 |

2

(24)

where all the proportionality constants have been ignored. After completing the double integral of
d~κs and d~κi ∫

d~κs d~κi δ(~κs + ~κi) ei ~κs·~ρs ei~κi·
~ρ′
s ∼ δ(~ρs − ~ρ′s),

Eq. (24) becomes

Ψ(~ρ1, ~ρ2) ∝ eiωc (s0+si)

∫
lens

d~ρl

∫
source

d~ρs e
i ω
2cd2
| ~ρ2−~ρs |2 ei

ω
2cd1
| ~ρs−~ρl |2 e−i

ω
2cf |~ρl|

2
ei

ω
2cso
| ~ρl−~ρo |2 .

Next, we complete the integral for d~ρs,

Ψ(~ρ1, ~ρ2) ∝ eiωc (s0+si)

∫
lens

d~ρl e
i ω
2csi
| ~ρ2−~ρl |2 e−i

ω
2cf |~ρl|

2
ei

ω
2cso
| ~ρl−~ρ1 |2 , (25)

where we have replaced d1 +d2 with si (as depicted in Fig. 8). Although the signal and idler prop-
agate in different directions along two optical arms, interestingly, the Green function in Eq. (25)
is equivalent to that of a classical imaging setup, as if the field is originated from a point ~ρ1 on
the object plane and propagated the lens and then arrived at point ~ρ2 on the imaging plane. The
mathematics is consistent with our previous qualitative analysis of the experiment.

The finite integral on d~ρl yields a point-to-“spot” relationship between the object plane and
the image plane that is defined by the Gaussian thin-lens equation

Ψ(~ρ1, ~ρ2) ∝
∫
lens

d~ρl e
i ω2c [

1
so

+ 1
si
− 1
f ]| ~ρl|2 e

−iωc (
~ρ1
so

+
~ρ2
si

)·~ρl = somb
(R
so

ω

c
|~ρ1 +

~ρ2

m
|
)
. (26)

If the integral is taken to infinity, by imposing the condition of the Gaussian thin-lens equation
the effective transverse biphoton wavefunction can be approximated as a δ function

Ψ(~ρ1, ~ρ2) ∼ δ(~ρ1 + ~ρ2/m) ∼ δ(~ρo + ~ρI/m), (27)

where we have replaced ~ρ1 and ~ρ2 with ~ρo and ~ρI , respectively, to emphasize the point-to-point
EPR correlation between the object and image planes. To avoid confusion with the “idler” we
have used ~ρI to label the image plane.

We now include an object-aperture function, a collection lens and a photon counting detector
D1 into the optical transfer function of arm-1 as shown in Fig. 2. The collection-lens−D1 package
can be simply treated as a “bucket” detector. The “bucket” detector integrates the biphoton
amplitudes Ψ(~ρo, ~ρ2), which are modulated by the object aperture function A(~ρo) into a joint
photodetection event. This process is equivalent to the following convolution

R1,2 ∝
∫
object

d~ρo
∣∣A(~ρo)

∣∣2 ∣∣Ψ(~ρo, ~ρ2)
∣∣2 ' ∣∣A(~ρ2/m)

∣∣2 =
∣∣A(~ρI/m)

∣∣2. (28)
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Again, D2 is scanned in the image plane (~ρ2 = ~ρI). A ghost image of the object is thus reproduced
on the image plane by means of the joint-detection between the point-like-detector D2 and the
bucket detector D1.

The physical process corresponding to the above convolution is rather simple. Suppose the
point detector D2 is triggered by an idler photon at a transverse position of ~ρI in a joint-detection
event with the bucket detector D1 which is triggered by the signal twin that is either transmitted
or reflected from a unique point ~ρo on the object plane. This unique point-to-point determination
comes from the non-factorizable correlation function δ(~ρo + ~ρI/m). Now, we move D2 to another
transverse position ~ρ′I and register a joint-detection event. The signal photon that triggers D1

must be either transmitted or reflected from another unique point ~ρ′o on the object plane which
is determined by δ(~ρ′o + ~ρ′I/m). The chances of receiving a joint detection event at ~ρI and at
~ρ′I would be modulated by the values of the aperture function A(~ρo) and A(~ρ′o), respectively.
Accumulating a large number of joint-detection events at each transverse coordinates on the image
plane, the aperture function A(~ρo) is thus reproduced in the joint-detection as a function of ~ρI.

The observation of type-one ghost imaging has demonstrated a non-factorizable point-to-point
EPR correlation between the object and image planes. This point-to-point correlation is the result
of a constructive-destructive interference between biphoton amplitudes,

G(2)(~ρo, ~ρI) =
∣∣∣ ∫ d~κs d~κi δ(~κs + ~κi) g(~κs, ~ρo) g(~κi, ~ρI)

∣∣∣2 = somb2
(R
so

ω

c
|~ρO +

~ρI
m
|
)
. (29)

In this view we consider the ghost imaging experiment of Pittman et al. a realization of the 1935
EPR gedankenexperiment [21] [22].

Classical theory has difficulties when facing type-one ghost imaging phenomenon. In the
classical theory of light, a joint measurement between two photodetectors D1 and D2 measures the
statistical correlation of intensity fluctuations,

G(2)(~ρ1, ~ρ2) = 〈 I(~ρ1) I(~ρ2) 〉 = Ī(~ρ1)Ī(~ρ2) + 〈∆I(~ρ1)∆I(~ρ2)〉. (30)

Therefore, the point-to-point image-forming correlation is considered as a result of the statistical
correlation of intensity fluctuations between the object and the image planes. Comparing Eq. (30),
which has a constant background Ī(~ρ1)Ī(~ρ2), with Eq. (29), which has a zero background, the
mean intensities Ī(~ρ1) and Ī(~ρ2) must be zero, otherwise the result would lead to non-physical
conclusions. The measurements, however, never yield zero mean values of Ī(~ρ1) and Ī(~ρ2) under
any circumstances. In fact, the individual-detector counting rates of D1 and D2 were monitored
in the experiment of Pittman et al. with much greater value than that of the coincidences. It is
clear that the classical theory of statistical correlation of intensity fluctuations does not reflect the
correct physics behind type-one ghost imaging.

4 Type-two ghost imaging with chaotic radiation

In this section we discuss the physics of type-two ghost imaging. The near-field lensless ghost
imaging with chaotic radiation was first demonstrated by Scarcelli et al. in the years from 2005 to
2006 [5][6] following their experimental demonstration of two-photon interference of chaotic light
[7]. The schematic experimental setup of their 2006 demonstration is shown in Fig. 9. Radiation
with a narrow spectral bandwidth ∆ω of a few millimeters diameter from a chaotic pseudothermal
source [23] was equally divided into two by a 50% − 50% non-polarizing beam-splitter. In the
reflected arm, a double-slit with slit separation b = 1.5 mm and slit width a = 0.2 mm, was
placed at a distance z2 = 139 mm from the source and a bucket detector D2 was placed just
behind the object. In the transmitted arm a point detector D1 was scanned in the transverse
plane of z1 = z2. Scarcelli et al tested two different joint detection schemes, namely the photon
counting coincidence circuit and the standard HBT correlator. In the photon counting regime two
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Figure 9: Near-field lensless ghost imaging with chaotic light demonstrated in 2006 by Scarcelli
et al. D1 is a point-like photodetector that is scannable along the x1-axis. The joint-detection
between D1 and the bucket detector D2 is realized either by a photon-counting coincidence
counter or by a standard HBT linear multiplier (RF mixer). In this measurement D2 is fixed
in the focal point of a convex lens, playing the role of a bucket detector. The counting rate or
the photocurrent of D1 and D2, respectively, are measured to be constants. Surprisingly, an
image of the 1-D object is observed in the joint-detection between D1 and D2 by scanning D1

in the plane of z1 = z2 along the x1-axis. The image, is blurred out when z1 6= z2. There is
no doubt that thermal radiations propagate to any transverse plane in a random and chaotic
manner. There is no lens applied to force the thermal radiation “collapsing” to a point or
speckle either. What is the physical cause of the point-to-point image-forming correlation in
coincidences?

Geiger mode avalanche photodiodes were employed for single-photon detection. In the bright light
condition, two silicon PIN diodes were used with a standard analog HBT linear multiplier. The
bucket detector D2 was simulated by using a short focal length lens (f = 25mm) to focus the
light coming from the object onto the active area of the detector while the point detector D2 was
simulated by a pinhole like aperture. After a large number of reaped measurements for different
experimental schemes and conditions, Scarcelli et al reported the following observations.

Observation (1): A typical measured ghost image of the double-slit is shown in Fig. 10. The
measured curve reports the joint-detection counting rate between D1 and D2, or the output current
of a HBT linear multiplier, as a function of the transverse position of the point detector D1 along
x1 axis. Notice, in Fig. 10 the constant background has been removed from the correlation.

Observation (2): The measured contrasts vary significantly under different experimental schemes
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Figure 10: The double-slit and its ghost image. Notice, the constant background has been
removed from the correlation.
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and conditions. It was found that the image contrast can achieve ∼ 50% in photon counting
measurement if no more than one joint-detection event occurring within the time window of the
coincidence circuit. 50% is the maximum image contrast we expect for thermal light ghost imaging.

Observation (3): To achieve less than one joint-detection event per coincidence time window,
weak light source is not a necessary condition. It can be easily achieved under bright light condition
by using adjustable ND-filters with D1 and D2.
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Figure 11: Unfolded schematic experimental setup of a secondary image measurement of the
ghost image and the measured secondary images. By using a convex lens of focal length f ,
the ghost image is imaged onto a secondary image plane, which is defined by the Gaussian
thin-lens equation, 1/so + 1/si = 1/f , with magnification m = −si/so. This setup is useful
for distant large scale ghost imaging applications.

To confirm the observations are imaged images, and not “projection shadows”, Scarcelli et al.
made two additional measurements. In the first measurement, photodetector D1 was moved away
from the ghost image plane of z1 = z2. Whether moved in the direction of z1 > z2 or z1 < z2, the
ghost image became “blurred”. The measurement also showed that the depth of the image is a
function of the angular size of the thermal source: a larger angular sized source (opening angle ∆θ
relative to the photodetectors) produces sharper image with shorter image depth. In the second
measurement, Scarcelli et al. constructed a secondary imaging system, illustrated schematically in
Fig. 11. By using a convex lens of focus length f the ghost image is imaged onto a secondary image
plane, which is defined by the Gaussian thin-lens equation, 1/so + 1/si = 1/f , with magnification
m = −si/so. In this measurement the scanning photodetector D1 is placed on the secondary
imaging plane. The secondary image of the ghost image is observed in the joint-detection between
D1 and D2 by means of either a photon-counting coincidence counter or a HBT linear multiplier.

4.1 What is the physical cause of chaotic light ghost imaging?

It is the partial point-to-point correlation between the object plane and the image plane that
makes ghost imaging with thermal light possible. Similar but different from classical imaging and
type-one ghost imaging, mathematically, type-two ghost imaging is the result of a convolution
between the aperture function |A(~ρ2)|2 and a δ-function like partial point-to-“spot” correlation
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function

R12 ∝
∫
object

d~ρ2

∣∣A(~ρ2)
∣∣2 [1 + somb2

( π∆θ |~ρ1 − ~ρ2|
λ

)]
(31)

in 2-D, where ∆θ is the angular diameter of the radiation source viewed from the photodetector,
~ρ1 and ~ρ2 are the transverse coordinates on the object plane and the image plane, respectively, or

R12 ∝
∫
object

dx2

∣∣A(x2)
∣∣2 [1 + sinc2

( π∆θ (x1 − x2)
λ

)]
. (32)

in 1-D. For a chosen wavelength, the spatial resolution of the ghost image is determined by the
angular diameter of the light source: the larger the size of the source in transverse dimensions,
the higher the spatial resolution of the lensless ghost image. The point-to-“spot” image-forming
functions in Eqs. (31) and (32) have been verified experimentally by Scarcelli et al.

The physical process corresponding to the convolution of Eq. (31) and (32) is similar to that
of the type-one ghost imaging. Suppose the point detector D1 or a CCD element is triggered by a
photon at a transverse position of ~ρ1 in a joint-detection event with the bucket detector D2 which
is triggered by another photon that is either transmitted or reflected from the object. According
to Eq. (31) and (32), under condition of z1 = z2, the photon from the object would have twice
greater chance to be found at ~ρobj = ~ρ1. Now, we move D1 to another transverse position ~ρ′1, or
locate another CCD element at ~ρ′1 for joint-detection. The photon that triggers D2 would have
twice greater chance of been located at ~ρ′obj = ~ρ′1. The probabilities of receiving a joint detection
event at ~ρ1 = ~ρobj and at ~ρ′1 = ~ρ′obj would be modulated by the values of the aperture function
A(~ρobj) and A(~ρ′obj), respectively. Accumulating a large number of joint-detection events for each
transverse coordinates ~ρ1, or for each CCD element in the image plane, a 50% contrast aperture
function A(~ρ1) = A(~ρobj) is thus reproduced in the joint-detection as a function of ~ρ1.6

To achieve thermal light ghost image with 50% contrast, we need (1) randomly distributed
radiations on the object plane and on the image plane, respectively; and (2) for any photoelectron
event at ~ρ1 there exists a unique corresponding point ~ρobj = ~ρ1 on the object plane which has twice
chance of observing another photoelectron event jointly and simultaneously. There is no doubt that
random and chaotic radiation would propagate to any transverse plane in a random and chaotic
manner. Therefore, condition (1) is satisfied automatically for chaotic thermal radiation. However,
it is not easy to understand condition (2). We have been asking ourself a question since the first
observation of lensless thermal light ghost image: what is the physical cause of the non-factorizable
partial point-to-point image-forming function of 1 + δ

(
~ρ1 − ~ρobj

)
? There seems no reason to have

such a statistical correlation for thermal light. Figure 12 schematically illustrates this situation.
To simplify the picture we assume the source in 1-D with a large number of independent point
sub-sources randomly distributed from −b/2 to b/2. Each point sub-source, such as the jth and the
kth sub-source, randomly radiates independent spherical waves to the object and image planes,
respectively. Due to the chaotic nature of the source, these independent and incoherent sub-
intensities simply add together yielding a constant total intensity spatially and temporally on any
transverse plane. The more chaotic sub-fields that contribute to the intensity sum, the less value
of ∆I/I is expected. For any two transverse planes, such as the object and the image planes in
Fig. 9, each with independent and randomly distributed intensities, statistically, there is no reason
to expect any spatial or temporal correlations. What is the physical cause that forces a twice large
probability for the thermal radiation to jointly appear at ~ρ1 = ~ρobj?

In fact, we have been facing this question since 1956, after the discovery of Hanbury Brown
and Twiss (HBT). The lensless ghost imaging setup looks similar to that of the historical HBT
spatial interferometer which was used for measuring the angular size of distant stars. A significant
difference is that the lensless ghost imaging measurement is in near-field7 for imaging purposes [5].

6 To observe thermal light ghost image with maximum 50% contrast requires achieving a necessary experimental
condition: no more than one joint detection event within the coincidence time window.

7The concept of “near-field” was defined by Fresnel to be distinct from the Fraunhofer far-field. The Fresnel
near-field is different from the “near-surface-field” which considers a distance of a few wavelengths from a surface.
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Figure 12: A large number of independent point sub-sources, such as the jth and kth, are
randomly distributed on the plane of a thermal source. These point sub-sources randomly
radiate independent spherical waves to the object and image planes, respectively. Due to the
chaotic nature of the source, these independent sub-intensities simply added together yielding
a constant total intensity in space and in time on any transverse planes.

The HBT experiment created quite a surprise in the physics community with an enduring debate
about the classical or quantum nature of the phenomenon [11][12]. Figure 13 is a schematic of the
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Figure 13: Schematic of the historical Hanbury Brown and Twiss experiment which measures
the transverse spatial correlation of far-field thermal radiation.

historical HBT experiment which measures the transverse spatial correlation of far-field thermal
radiation. Performing the measurement in 1-D by scanning photodetectors D1 and/or D2 along
the axes x1 and x2, the second-order transverse spatial correlation function G(2)(x1, x2) was found
to be

G(2)(x1, x2) ∼ I2
0

{
1 + sinc2

[ π∆θ(x1 − x2)
λ

]}
, (33)

where ∆θ is the angular size of the star, λ the wavelength of the radiation. The far-field HBT
correlation of Eq. (33) has been interpreted as the result of classical statistical correlation of the
intensity fluctuations

〈 I1I2 〉 = 〈(Ī1 + ∆I1)(Ī2 + ∆I2)〉 = Ī1Ī2 + 〈∆I1∆I2 〉,

where Ī1 and Ī2 are the mean intensities of the radiation measured by photodetectors D1 and D2,
respectively. The second term in Eq. (33), I2

0 sinc
2[π∆θ(x1 − x2)/λ], is phenomenologically inter-

preted as the intensity fluctuation correlation 〈∆I1∆I2〉 in classical theory. For visible wavelengths
and large values of ∆θ this function quickly drops from its maximum to minimum when x1 − x2

moves from zero to a value such that ∆θ(x1 − x2)/λ = 1. In this situation we effectively have a
“point-to-point” relationship between the x1 and x2 axes: for each point on the x1 there exists
only one point on the x2 that may have a nonzero intensity fluctuation correlation.
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Figure 14: A phenomenological interpretation of the historical HBT experiment. Upper:
the two photodetectors receive identical modes of the far-field radiation and thus experience
identical intensity fluctuations. The joint measurement of D1 and D2 gives a maximum value
of 〈∆I1∆I2〉. Lower: the two photodetectors receive different modes of the far-field radiation.
In this case the joint measurement gives 〈∆I1∆I2〉 = 0. Unfortunately, this hand-waving
interpretation does not reflect the correct physics in the case of ∆θ 6= 0. For a finite angular
sized source, there is no chance, at least realistically, for D1 and D2 to receive radiation from
a single radiation mode only. Nevertheless, the above theory has convinced us to believe that
the observation of the intensity fluctuation correlation only takes place in the far-field zone of
the thermal source.
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Figure 15: Schematic illustration of the light intensities I1(t) at D1 and I2(t) at D2. The two
upper (lower) curves of I(t) corresponds to the upper (lower) configuration in Fig 14.
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The well-accepted interpretation of the HBT phenomenon is the following: in HBT the mea-
surement is taken in the far-field zone of the radiation source, which is equivalent to the Fourier
transform plane. When D1 (D2) is scanned in the neighborhood of x1 = x2, the two detectors
measure the same mode of the radiation field. The measured intensities have the same fluctuations
and yield a maximum value of 〈∆I1∆I2〉. The two upper curves of I(t) in Fig. 15 schematically
illustrate this situation. When the two photodetectors move apart from x1 = x2, D1 and D2

measure different modes of the radiation field. In this case, the measured two modes may have
completely different fluctuations. The measurement yields 〈∆I1∆I2〉 = 0 and gives 〈I1I2〉 = Ī1Ī2.
This situation is illustrated in the two lower curves of I(t) in Fig. 15. Unfortunately, this hand-
waving interpretation does not reflect the correct physics in the case of ∆θ 6= 0. For a finite
angular sized source, there is no chance, at least realistically, for D1 and D2 to receive radiation
from a single radiation mode only. Nevertheless, the above theory has convinced us to believe that
the observation of the intensity fluctuation correlation only takes place in the far-field zone of the
thermal source.

2D 1D

Figure 16: Modified near-field HBT measurement - an unfolded Klyshko picture of the setup.
Assuming a large sized disk-like near-field chaotic source, each point on the disk can be
considered as an independent sub-source. It is easy to see that (1) D1 and D2 are capable of
receiving radiation from a large number of sub-sources; and (2) D1 and D2 have more chances
to be triggered jointly by radiations from different sub-sources; (3) The ratio between the
joint-detections triggered by radiation from a single sub-source and from different sub-sources
is roughly N/N2 = 1/N in any transverse position of D1 and D2.

What will happen if we move the photodetectors D1 and D2 to the “near-field” as shown in
the unfolded schematic of Fig. 16? Does this hand-waving argument still predict the point-to-
point correlation in this situation? We consider a disk-like thermal source with a large number
of independent and randomly radiating point sub-sources and assume the radiations coming from
the same sub-source have the same intensity fluctuation, and the radiations coming from different
sub-sources have different intensity fluctuations. It is easy to see that in the near-field, (1) each
photodetector, D1 and D2, is capable of receiving radiations from a large number of sub-sources;
and (2) D1 and D2, have more chances to be triggered jointly by radiation from different sub-
sources; (3) The ratio between the joint-detections triggered by radiation from a single sub-source
and from different sub-sources is roughly N/N2 = 1/N in any transverse position of D1 and D2.
For a large value of N the contribution of joint-detections triggered by radiation from a single sub-
source in any transverse position of D1 and D2 has the same negligible value 〈∆I1∆I2〉/Ī1Ī2 ∼ 0.
Following the above philosophy, the near-field G(2)(~ρ1, ~ρ2) should be a constant for any chosen
transverse coordinates ~ρ1 and ~ρ2. The experimental observations, however, have shown a different
story.

The nontrivial near-field point-to-point correlation was experimentally observed in a modified
HBT experiment by Scarcelli et al. in 2005 before the near-field lensless ghost imaging demon-
stration. The modified HBT has a similar experimental setup as that of the historical HBT of
Fig. 13, except replacing the distant star with a near-field disk-like chaotic source. This light
source has a considerably large angular diameter from the view of the photodetectors D1 and D2.
The point photodetectors D1 and D2 are scannable along the axes of x1 and x2, respectively. The
frequency bandwidth ∆ω of this thermal source is chosen to be narrow enough to achieve ∼µs
correlation width of G(2)(t1 − t2) which is shown in Fig. 17. This means to change G(2) from its
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Figure 17: G(2)(t1 − t2) of a chaotic source. The temporal correlation width is measured
∼ 0.5µs, which means that unless t1 − t2 > 0.5µs, the value of G(2)(t1 − t2) will stay at the
neighborhood of its maximum.

maximum (minimum) value to minimum (maximum) value requires a few hundred meters optical
delay in the arm of either D1 or D2. The transverse intensity distributions were examined before
the measurement of transverse correlation. The counting rate (weak light condition) or the output
photocurrent (bright light condition) of each individual photodetector was found to be constant,
i.e., I(~ρ1) ∼ constant and I(~ρ2) ∼ constant by scanning D1 and D2 in the transverse planes of
z1 = z0 and z2 = z0, respectively. There is no surprise to have constant I(~ρ1) and I(~ρ2). The
physics has been clearly illustrated in Fig. 12. By using this kind of chaotic source, Scarcelli et al.
measured the 1-D near-field normalized transverse spatial correlation of g(2)(x1 − x2) by scanning
D1 in the neighborhood of x1 = x2. The measurements confirmed the point-to-“spot” correlation
of

g(2)(x1 − x2) ∼ 1 + sinc2
[ π∆θ(x1 − x2)

λ

]
, (34)

where, again, ∆θ is the angular diameter of the near-field disk-like chaotic source. It is worth
emphasizing that g(2)(x1−x2) dependents on x1−x2 only. Taking x1−x2 = constant, g(2)(x1−x2)
is invariant under the displacements of transverse coordinates.

A simplified summary of the experimental observation is shown in Fig. 18: (1) In the upper
figure, D1 and D2 are placed at equal distances from the source and aligned symmetrically on the
optical axis. The normalized joint-detection, or the value of g(2) achieved its maximum of ∼ 2.
(2) In the middle figure, D1 is moved up a few millimeters to a non-symmetrical position, the
normalized joint-detection, or the value of g(2) is measured to be ∼ 1. (3) In the lower figure,
D2 is moved a few millimeters up to a symmetrical position with respect to D1. The normalized
joint-detection, or the value of g(2) turned back to its maximum of ∼ 2 again.

It is easy to see that the classical theory of statistical correlation of intensity fluctuations is
facing difficulties in explaining the experimental results. In near-field D1 and D2 receive the same
large number of modes at any ~ρ1 and ~ρ2. In the spirit of the traditional interpretation of HBT,
there seems no reason to have a different intensity fluctuation correlation between ~ρ1 = ~ρ2 and
~ρ1 6= ~ρ2 for the G(2) function shown in Fig. 17. In the upper measurement, we have obtained the
maximum value of g(2) ∼ 2 at z1 = z2 and x1 = x2, which indicates the achievement of a maximum
intensity fluctuation correlation as shown in Fig. 17 with |t1− t2| ∼ 0. In the middle measurement,
g(2) ∼ 1 indicates a minimum intensity fluctuation correlation by moving D1 a few millimeters up,
which means the intensities measured by D1 and D2 must have different fluctuations. In the lower
measurement D2 is moved up a few millimeters to a new symmetrical position with respect to D1,
the measurements obtain g(2) ∼ 2 again. The intensities measured by D1 and D2 must have same
fluctuations again. What is the physical cause of the changes of the intensity fluctuations then?
Remember the G(2)(t1 − t2) function has a width of ∼ 0.5µ.

For half a century since 1956, it has been believed that the HBT correlation is observable in
the far-field only. It was quite a surprise that in 2005 Scarcelli et al. successfully demonstrated
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Figure 18: Schematic of the near-field spatial correlation measurement of Scarcelli et al.
Upper: g(2) ∼ 2, where D1 and D2 are placed at equal distances from the source and aligned
symmetrically on the optical axis. In the spirit of the traditional interpretation of HBT
the intensities measured by D1 and D2 must have same fluctuations as shown in the figure.
Middle: g(2) ∼ 1, where D1 is moved up a few millimeters to an asymmetrical position. In
the spirit of the traditional interpretation of HBT the intensities measured by D1 and D2

must have different fluctuations. Lower: g(2) ∼ 2, where D2 is moved up to a symmetrical
position with respect to D1, again. In the spirit of the traditional interpretation of HBT the
intensities measured by D1 and D2 must have same fluctuations again. What is the physical
cause of the changes of the intensity fluctuations then? Remember the G(2)(t1 − t2) function
has a width of ∼ 0.5µ, see Fig. 17.

a near-field point-to-point transverse correlation of chaotic light, indicating that the nontrivial
HBT spatial correlation is observable in the near-field and is useful for reproducing ghost images
in a nonlocal manner.8 The experiment of Scarcelli et al. raised a question: “Can two-photon
correlation of chaotic light be considered as correlation of intensity fluctuations?” [5] At least, this
experiment suggested we reexamine the relationship between the quantum mechanical concept of
joint-detection probability with the classical concept of intensity fluctuation correlation. It seems
that jointly observing a pair of photons at space-time point (r1, t1) and (r2, t2) is perhaps only
phenomenologically connected but not physically caused by the classical statistical correlation of
intensity fluctuations. The point-to-point image-forming correlation is more likely the result of
an interference. In the view of two-photon interference, far-field is not a necessary condition for
observing the partial point-to-point correlation of thermal light. Furthermore, it is quite common
in two-photon interference type experiments to observe constant counting rates or intensities in
individual photodetectors D1 and D2, respectively, and simultaneously observe nontrivial space-
time correlation in the joint-detection between D1 and D2. These observations are consistent with
the quantum theory of two-photon interferometry [9].

4.2 Quantum theory of thermal light ghost imaging

According to the quantum theory of light, the observed partial point-to-point image-forming
correlation is the result of multi-photon interference. In Glauber’s theory of photo-detection [20],
an idealized point photodetector measures the probability of observing a photo-detection event at

8We cannot help but stop to ask: What has been preventing this simple move from far-field to near-field for half
a century?
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space-time point (r, t)
G(1)(r, t) = tr

{
ρ̂ E(−)(r, t)E(+)(r, t)

}
, (35)

where ρ̂ is the density operator which characterizes the state of the quantized electromagnetic
field, E(−)(r, t) and E(+)(r, t) the negative and positive field operators at space-time coordinate
(r, t). The counting rate of a point photon counting detector, or the output current of a point
analog photodetector, is proportional to G(1)(r, t). A joint-detection of two independent point
photodetectors measures the probability of observing a joint-detection event of two photons at
space-time points (r1, t1) and (r2, t2)

G(2)(r1, t1; r2, t2) = tr
{
ρ̂ E(−)(r1, t1)E(−)(r2, t2)E(+)(r2, t2)E(+)(r1, t1)

}
, (36)

where (rj , tj), j = 1, 2, is the space-time coordinate of the jth photo-detection event. The coinci-
dence counting rate of two photon counting detectors, or the output reading of a linear multiplier
(RF mixer) between two photodetectors, is proportional to G(2)(r1, t1; r2, t2). To calculate the
partial point-to-point correlation between the object plane and the image plane, we need (1) to
estimate the state, or the density matrix, of the thermal radiation; and (2) to propagate the field
operators from the radiation source to the object and the image planes. We will first calculate the
state of thermal radiation at the single-photon level for photon counting measurements to explore
the physics behind ghost imaging as two-photon interference and then generalize the result to any
intensity of thermal radiation.

We assume a large transverse sized chaotic source consisting of a large number of independent
and randomly radiating point sub-sources. Each point sub-source may also consist of a large
number of independent atoms that are ready for two-level atomic transitions in a random manner.
Most of the time, the atoms are in their ground state. There is, however, a small chance for each
atom to be excited to a higher energy level E2 (∆E2 6= 0) and later return back to its ground
state E1. It is reasonable to assume that each atomic transition generates a field in the following
single-photon state

|Ψ 〉 ' | 0 〉+ ε
∑
k,s

f(k, s) â†k,s | 0 〉, (37)

where |ε| � 1 is the probability amplitude for the atomic transition, f(k, s) = 〈Ψk,s |Ψ 〉 is the
probability amplitude for the radiation field to be in the single-photon state of wave number k and
polarization s: |Ψk,s 〉 = | 1k,s 〉 = â†k,s | 0 〉. For this simplified two-level system, the density matrix
that characterizes the state of the radiation field excited by a large number of possible atomic
transitions is thus

ρ̂ =
∏
t0j

{
| 0 〉+ ε

∑
k,s

f(k, s) e−iωt0j â†k,s | 0 〉
}

(38)

×
∏
t0k

{
〈 0 | + ε∗

∑
k′,s′

f(k′, s′) eiω
′t0k 〈 0 |âk′,s′

}
'
{
| 0 〉+ ε[

∑
toj

∑
k,s

f(k, s) e−iωt0j â†k,s | 0 〉] + ε2[...]
}

×
{
〈 0 | + ε∗[

∑
tok

∑
k′,s′

f(k′, s′) eiω
′t0k 〈 0 |âk′,s′ ] + ε∗2[...]

}
,

where e−iωt0j is a random phase factor associated with the jth atomic transition. Since |ε| � 1, it
is a good approximation to keep the necessary lower-order terms of ε in Eq. (38). After summing
over t0j (t0k) by taking into account all its possible values we obtain

ρ̂ ' | 0 〉〈 0 |+ |ε|2
∑
k,s

|f(k, s)|2 | 1k,s 〉〈 1k,s |

+ |ε|4
∑
k,s

∑
k′,s′

|f(k, s)|2 |f(k′, s′)|2 | 1k,s1k′,s′ 〉〈 1k,s1k′,s′ |+ ... (39)
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Similar to our earlier discussion we will focus our calculation on the transverse correlation by
assuming a narrow enough frequency bandwidth in Eq. (39). In the experiments of Scarcelli et
al. the coherence time of the radiation was chosen ∼µs, the maximum achievable optical path
differences ∼ps by the scanning of D1 and D2, and the response time of the photodetectors is
much less than the coherence time. The transverse spatial correlation measurement is under the
condition of achieving a maximum temporal coherence of G(2)(t1 − t2) ∼ 2 during the scanning
of D1 and D2 at any ~ρ1 and ~ρ2. In the photon counting regime, under the above condition, it is
reasonable to model the thermal light in the following mixed state

ρ̂ ' | 0 〉〈 0 |+ |ε|2
∑
~κ

â†(~κ)| 0 〉〈 0 |â(~κ) + |ε|4
∑
~κ

∑
~κ′

â†(~κ)â†(~κ′) | 0 〉〈 0 | â(~κ′)â(~κ). (40)

Basically we are modeling the light source as an incoherent statistical mixture of single-photon
states and two-photon states with equal probability of having any transverse momentum. The
spatial part of the second-order coherence function is thus calculated as

G(2)(~ρ1, z1; ~ρ2, z2) = tr[ ρ̂ E(−)(~ρ1, z1)E(−)(~ρ2, z2)E(+)(~ρ2, z2)E(+)(~ρ1, z1) ]

=
∑
~κ,~κ′

〈1~κ1~κ′ |E(−)(~ρ1, z1)E(−)(~ρ2, z2)E(+)(~ρ2, z2)E(+)(~ρ1, z1)|1~κ1~κ′〉

≡
∑
~κ,~κ′

∣∣Ψ~κ,~κ′(~ρ1, z1; ~ρ2, z2)
∣∣2, (41)

where we have defined an effective two-photon wavefunction in transverse spatial coordinates

Ψ~κ,~κ′(~ρ1, z1; ~ρ2, z2) = 〈0|E(+)(~ρ2, z2)E(+)(~ρ1, z1)|1~κ1~κ′〉. (42)

The transverse part of the electric field operator can be written as

E(+)(~ρj , zj) ∝
∑
~κ

gj(~ρj , zj ;~κ) â(~κ), (43)

again, gj(~ρj , zj ;~κ) is the Green’s function. Substituting the field operators into Eq. (42) we have

Ψ~κ,~κ′(~ρ1, z1; ~ρ2, z2) =
1√
2

[
g2(~ρ2, z2;~κ)g1(~ρ1, z1;~κ′) + g2(~ρ2, z2;~κ′)g1(~ρ1, z1;~κ)

]
(44)

and

G(2)(~ρ1, z1; ~ρ2, z2) =
∑
~κ,~κ′

∣∣∣ 1√
2

[
g2(~ρ2, z2;~κ)g1(~ρ1, z1;~κ′) + g2(~ρ2, z2;~κ′)g1(~ρ1, z1;~κ)

]∣∣∣2, (45)

representing the key result for our understanding of the phenomenon. Eqs. (44) and (45) indicates
an interference between two alternatives, different yet indistinguishable, which leads to a joint
photo-detection event. This interference phenomenon is not, as in classical optics, due to the
superposition of electromagnetic fields at a local point of space-time. This interference is the
result of the superposition between g2(~ρ2, z2;~κ)g1(~ρ1, z1;~κ′) and g2(~ρ2, z2;~κ′)g1(~ρ1, z1;~κ), the so-
called two-photon amplitudes, non-classical entities that involve both arms of the optical setup
as well as two distant photo-detection events at (~ρ1, z1) and (~ρ2, z2), respectively. Examining the
effective wavefunction of Eq. (44), we find this symmitrized effective wavefunction plays the same
role as that of the symmitrized wavefunction of identical particles in quantum mechanics. This
peculiar nonlocal superposition has no classical correspondence, and makes the type-two ghost
image turbulence-free, i.e., any phase disturbance in the optical path has no influence on the ghost
image [24]. Fig. 19 schematically illustrates the two alternatives for a pair of mode ~κ and ~κ′ to
produce a joint photo-detection event: ~κ1 × ~κ′2 and ~κ2 × ~κ′1. The superposition of each pair
of these amplitudes produces an individual sub-interference-pattern in the joint-detection space
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Figure 19: Schematic illustration of two-photon interference: a superposition between two-
photon amplitudes g2(~ρ2, z2~κ)g1(~ρ1, z1;~κ′) and g2(~ρ2, z2;~κ′)g1(~ρ1, z1;~κ). It is clear that the
amplitudes g2(~ρ2, z2;~κ)g1(~ρ1, z1;~κ′) and g2(~ρ2, z2;~κ′)g1(~ρ1, z1;~κ) will experience equal optical
path propagation and superpose constructively when D1 and D2 are located at ~ρ1 ' ~ρ2 and
z1 ' z2. This nonlocal superposition has no classical correspondence.

of (~ρ1, z1, t1; ~ρ2, z2, t2). A large number of these sub-interference-patterns simply add together
resulting in a nontrivial G(2)(~ρ1, z1; ~ρ2, z2) function. It is easy to see that each pair of the two-
photon amplitudes, illustrated in Fig. 19, will superpose constructively whenever D1 and D2 are
placed in the positions satisfying ~ρ1 ' ~ρ2 and z1 ' z2; and consequently, G(2)(~ρ1, z1; ~ρ2, z2) achieves
its maximum value as the result of the sum of these individual constructive interferences. In other
coordinates, however, the superposition of each individual pair of the two-photon amplitudes may
yield different values between constructive maximum and destructive minimum due to unequal
optical path propagation, resulting in an averaged sum.

Before calculating G(2)(~ρ1, z1; ~ρ2, z2) we examine the single counting rate of the point photode-
tectors D1 and D2 which are placed at (~ρ1, z1) and (~ρ2, z2), respectively. With reference to the
experimental setup of Fig. 9, the Green’s function of free-propagation is derived in the Appendix

g1(~ρ1, z1;~κ) =
∫
d~ρs

{−iω
2πc

ei
ω
c z1

z1
ei

ω
2cz1
|~ρ1−~ρs|2

}
e−i~κ·~ρs ,

g2(~ρ2, z2;~κ) =
∫
d~ρ′s

{−iω
2πc

ei
ω
c z2

z2
ei

ω
2cz2
|~ρ2− ~ρ′

s|
2
}
e−i~κ·

~ρ′
s ,

where ~ρs is the transverse vector in the source plane, and the field has propagated from the source
to the ~ρ1 plane and ~ρ2 plane in arms 1 and 2, respectively. The single detector counting rate or
the output photocurrent is proportional to G(1)(r, t) as shown in Eq. (35),

G(1)(~ρj , zj) = tr
{
ρ̂ E(−)(~ρj , zj)E(+)(~ρj , zj)

}
∝
∑
~κ

〈 0 | â(~κ)E(−)(~ρj , zj)E(+)(~ρj , zj) â†(~κ)| 0 〉

∼ constant, (46)

where j = 1, 2 indicating the jth photodetector.
Although G(1)(~ρ1, z1) and G(1)(~ρ2, z2) are both constants, G(2)(~ρ1, z1; ~ρ2, z2) turns to be a

nontrivial function of (~ρ1, z1) and (~ρ2, z2),

G(2)(~ρ1, z1; ~ρ2, z2) =
∑
~κ,~κ′

∣∣∣ 1√
2

[
g2(~ρ2, z2;~κ)g1(~ρ1, z1;~κ′) + g2(~ρ2, z2;~κ′)g1(~ρ1, z1;~κ)

]∣∣∣2
≡ G(1)(~ρ1, z1)G(1)(~ρ2, z2) +

∣∣G(1)(~ρ1, z1; ~ρ2, z2)
∣∣2, (47)

where ∣∣G(1)(~ρ1, z1; ~ρ2, z2)
∣∣2 =

∣∣ ∫ d~κ g∗1(~ρ1, z1;~κ) g2(~ρ2, z2;~κ)
∣∣2

∝
∣∣ ∫ d~ρs e

−iωc z1 e−i
ω

2cz1
|~ρ1−~ρs|2 ei

ω
c z2 ei

ω
2cz2
|~ρ2−~ρs|2∣∣2.
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If we choose the distances from the source to the two detectors to be equal (z1 = z2 = d), the
above integral of d~ρs yields a point-to-point correlation between the transverse planes z1 = d and
z2 = d, ∣∣G(1)

12 (~ρ1; ~ρ2)
∣∣2 ∝ ∣∣∣ ∫ d~ρs e

i ωcd (~ρ1−~ρ2)·~ρs
∣∣∣2 = somb2

[R
d

ω

c
|~ρ1 − ~ρ2|

]
∼ δ(~ρ1 − ~ρ2), (48)

where the δ-function is an approximation by assuming a large enough thermal source of angular
size ∆θ ∼ R/d and high enough frequency ω, such as a visible light source. The nontrivial G(2)

function is therefore,

G(2)(~ρ1; ~ρ2) ∼ 1 + δ(~ρ1 − ~ρ2). (49)

In the ghost imaging experiment, the joint-detection counting rate is thus

R12 ∝
∫
d~ρ2 |A(~ρ2)|2G(2)(~ρ1; ~ρ2) ∼ R0 + |A(~ρ1)|2, (50)

where R0 is a constant and A(~ρ2) is the aperture function of the object.
So far, we have successfully derived an analytical solution for ghost imaging with thermal

radiation at the single-photon level. We have shown that the partial point-to-point correlation of
thermal radiation is the result of a constructive-destructive interference caused by the superposition
of two two-photon amplitudes, corresponding to two alternative ways for a pair of jointly measured
photons to produce a joint-detection event. In fact the above analysis is not restricted to single-
photon states. The partial point-to-point correlation of G(2)(~ρ1; ~ρ2) is generally true for any order
of quantized thermal radiation [25]. Now we generalize the calculation to an arbitrary quantized
thermal field with occupation number from nk,s = 0 to nk,s � 1 by keeping all higher order terms
in Eq. (38). After summing over t0j and t0k the density matrix can be written as

ρ̂ =
∑
{n}

p{n} |{n}〉〈{n}|, (51)

where p{n} is the probability for the thermal field in the state

|{n}〉 ≡
∏
k,s

|nk,s〉 = |nk,s〉|nk′,s′〉...|nk′′...′,s′′...′〉.

The summation of Eq. (51) includes all possible modes k, polarizations s, occupation numbers nk,s

for the mode (k, s) and all possible combinations of occupation numbers for different modes in a
set of {n}. Substituting the field operators and the density operator of Eq. (51) into Eq. (35) we
obtain the constant G(1)(~ρj , zj , tj), j = 1, 2, which corresponds to the intensities I(~ρ1, z1, t1) and
I(~ρ2, z2, t2),

G(1)(~ρj , zj , tj)

=
∑
{n}

∫
d~κ

∫
d~κ′g∗j (~ρj , z1, tj ;~κ)gj(~ρj , z1, tj ;~κ′) p{n} 〈{n}| a(~κ)a†(~κ′) |{n}〉

∝
∑
{n}

n~κ n~κ′

∫
d~κ
∣∣ g∗j (~ρj , zj , tj ;~κ)

∣∣2
' constant. (52)

Although G(1)(~ρ1, z1, t1) and G(1)(~ρ2, z2, t2) are both constants, substituting the field operators and
the density operator of Eq. (51) into Eq. (36), we obtain a nontrivial point-to-point correlation
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function of G(2)( ~ρ1; ~ρ2) at the two transverse planes z1 = d and z2 = d,

G(2)( ~ρ1; ~ρ2)

=
∑
{n}

∫
d~κ

∫
d~κ′
∫
d~κ′′

∫
d~κ′′′g∗1(~ρ1, z1;~κ)g∗2(~ρ2, z2;~κ′)g2(~ρ2, z2;~κ′′)g1(~ρ1, z1;~κ′′′)

× p{n} 〈{n}| a(~κ)a(~κ′)a†(~κ′′)a†(~κ′′′) |{n}〉

∝
∑
{n}

n~κ n~κ′

∫
d~κ

∫
d~κ′
∫
d~κ′′

∫
d~κ′′′g∗1(~ρ1, z1;~κ)g∗2(~ρ2, z2;~κ′)g2(~ρ2, z2;~κ′′)g1(~ρ1, z1;~κ′′′)

× p{n}(δ~κ~κ′′′δ~κ′~κ′′ + δ~κ~κ′′δ~κ′~κ′′′)

=
∑
n~κn~κ′

p{...n~κ...n~κ′ ...} n~κ n~κ′

×
{∫

d~κ

∫
d~κ′
∣∣∣ 1√

2

[
g1(~ρ1, z1;~κ)g2(~ρ2, z2;~κ′) + g2(~ρ2, z2;~κ)g1(~ρ1, z1;~κ′)

]∣∣∣2}
∝
{

1 + somb2
[R
d

ω

c
(~ρ1 − ~ρ2)

]}
. (53)

It is clear that in Eq. (53), the partial point-to-point correlation of thermal light is the result of a
constructive-destructive interference between two quantum-mechanical amplitudes. We also note
from Eq. (53) that the partial point-to-point correlation is independent of the occupation numbers,
{n}, and the probability distribution, p{n}, of the quantized thermal radiation.

It is interesting but not surprising to see that the effective two-photon wavefunction in bright
light condition

Ψ~κ,~κ′(~ρ1, z1; ~ρ2, z2) =
1√
2

[
g2(~ρ2, z2;~κ)g1(~ρ1, z1;~κ′) + g2(~ρ2, z2;~κ′)g1(~ρ1, z1;~κ)

]
is the same as that of weak light at single-photon level. In fact, the above effective wavefunction
does play the same role in specifying two different yet indistinguishable alternatives for the two
annihilated photons contributing to a joint-detection event of D1 and D2, which implies that the
partial point-to-point correlation is the result of two-photon interference in bright light condition.
This nonlocal partial correlation indicates that a 50% contrast ghost image is observable at bright
light condition provided registering no more than one coincidence event within the joint-detection
time window. This requirement can be easily achieved by using adjustable ND-filters with D1 and
D2.

Quantum theory predicts and calculates the probability of observing a certain physical event.
The output photocurrent of an idealized point photodetector is proportional to the probability
of observing a photo-detection event at space-time point (r, t). The joint-detection between two
idealized point photodetectors is proportional to the probability of observing a joint photo-detection
event at space-time points (r1, t1) and (r2, t2). In most of the experimental situations, there exists
more than one possible alternative ways to produce a photo-detection event, or a joint photo-
detection event. These probability amplitudes, which are defined as the single-photon amplitudes
and the two-photon amplitudes, respectively, are superposed to contribute to the final measured
probability, and consequently determine the probability of observing a photo-detection event or a
joint photo-detection event. In the view of quantum theory, whenever the state of the quantum
system and the alternative ways to produce a photo-detection event or a joint photo-detection
event are determined, the result of a measurement is determined. We may consider this as a basic
criterion of quantum measurement theory.

4.3 A semiclassical model of nonlocal interference

The multi–photon interference nature of type-two ghost imaging can be seen intuitively from
the superposition of paired-sub-fields of chaotic radiation. Let us consider a similar experimental
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setup as that of the modified HBT experiment of Scarcelli et al.. We assume a large angular sized
disk-like chaotic source that contains a large number of randomly radiating independent point
“sub-sources”, such as trillions of independent atomic transitions randomly distributed spatially
and temporally. It should be emphasized that a large number of independent or incoherent sub-
sources is the only requirement for type-two ghost imaging. What we need is an ensemble of
point-sub-sources with random relative phases so that the sub-fields coming from these sub-sources
are able to take all possible values of relative phases in their superposition. It is unnecessary to
require the radiation source to have either nature or artificial intensity fluctuations at all. In this
model, each point sub-source contributes to the measurement an independent spherical wave as
a sub-field of complex amplitude Ej = aje

iϕj , where aj is the real and positive amplitude of the
jth sub-field and ϕj is a random phase associated with the jth sub-field. We have the following
picture for the source: (1) a large number of independent point-sources distribute randomly on the
transverse plane of the source (counted spatially); (2) each point-source contains a large number
of independently and randomly radiating atoms (counted temporally); (3) a large number of sub-
sources, either counted spatially or temporally, may contribute to each of the independent radiation
mode (~κ, ω) at D1 and D2 (counted by mode). The instantaneous intensity at space-time (rj , tj),
measured by the jth idealized point photodetector Dj , j = 1, 2, is calculated as

I(rj , tj) = E∗(rj , tj)E(rj , tj) =
∑
l

E∗l (rj , tj)
∑
m

Em(rj , tj)

=
∑
l=m

E∗l (rj , tj)El(rj , tj) +
∑
l 6=m

E∗l (rj , tj)Em(rj , tj), (54)

where the sub-fields are identified by the index l and m originated from the l and m sub-sources.
The first term is a constant representing the sum of the sub-intensities, where the lth sub-intensity
is originated from the lth sub-source. The second term adds the “cross” terms corresponding to
different sub-sources. When taking into account all possible realizations of the fields, it is easy to
find that the only surviving terms in the sum are these terms in which the field and its conjugate
come from the same sub-source, i.e., the first term in Eq. (54). The second term in Eq. (54)
vanishes if ϕl − ϕm takes all possible values. We may write Eq. (54) into the following form

I(rj , tj) = 〈I(r, t)〉+ ∆I(r, t), (55)

where
〈I(r, t)〉 ≡ 〈

∑
l

E∗l (rj , tj)
∑
m

Em(rj , tj) 〉 =
∑
l

E∗l (rj , tj)El(rj , tj). (56)

The notation 〈...〉 denotes the mathematical expectation, when taking into account all possible
realizations of the fields, i.e., taking into account all possible complex amplitudes for the large
number of sub-fields in the superposition. In the probability theory, the expectation value of a
measurement equals the mean value of an ensemble. In a real measurement, the superposition
may not take all possible realizations of the fields and consequently the measured instantaneous
intensity I(r, t) may differ from its expectation value 〈I(r, t)〉 from time to time. The variation
δI(r, t) turns to be a random function of time. The measured I(r, t) fluctuate randomly in the
neighborhood of 〈I(r, t)〉 non-deterministically.

In the classical limit, a large number of independent and randomly radiated sub-sources con-
tribute to the instantaneous intensity I(rj , tj). These large number of independent randomly
distributed sub-fields may have taken all possible realizations of their complex amplitudes in the
superposition. In this case the sum of the cross terms vanishes,

∆I(r, t) =
∑
l 6=m

E∗l (rj , tj)Em(rj , tj) ' 0, (57)

therefore,
I(rj , tj) '

∑
l

E∗l (rj , tj)El(rj , tj) = 〈I(r, t)〉.

27



Now we calculate the second-order correlation function G(2)(r1, t1; r2, t2), which is defined as

G(2)(r1, t1; r2, t2) ≡ 〈
∑
j,k,l,m

E∗j (r1, t1)Ek(r1, t1)E∗l (r2, t2)Em(r2, t2) 〉, (58)

where the notation 〈 ... 〉, again, denotes an expectation operation by taking into account all possible
realizations of the fields, i.e., averaging all possible complex amplitudes for the sub-fields in the
superposition. In the following calculation we only take into account the random phases of the sub-
fields without considering the amplitude variations. Due to the chaotic nature of the independent
sub-sources, after taking into account all possible realizations of the phases associated with the
sub-fields, the only surviving terms in the summation are those with: (1) j = k, l = m, (2)
j = m, k = l. Therefore, G(2)(r1, t1; r2, t2) reduces to the sum of the following two groups:

G(2)(r1, t1; r2, t2) = 〈
∑
j

E∗j (r1, t1)Ej(r1, t1)
∑
l

E∗l (r2, t2)El(r2, t2)

+
∑
j

E∗j (r1, t1)Ej(r2, t2)
∑
l

E∗l (r2, t2)El(r1, t1) 〉

= 〈
∑
j

∑
l

∣∣∣ 1√
2

[
Ej(r1, t1)El(r2, t2) + El(r1, t1)Ej(r2, t2)

]∣∣∣2 〉. (59)

It is not difficult to see the nonlocal nature of the superposition shown in Eq. (59). In Eq. (59),
G(2)(r1, t1; r2, t2) is written as a superposition between the paired sub-fields Ej(r1, t1)El(r2, t2) and
El(r1, t1)Ej(r2, t2). The first term in the superposition corresponds to the situation in which the
field at D1 was generated by the jth sub-source, and the field at D2 was generated by the lth
sub-source. The second term in the superposition corresponds to a different yet indistinguishable
situation in which the field at D1 was generated by the lth sub-source, and the field at D2 was
generated by the jth sub-source. Therefore, an interference is concealed in the joint measurement of
D1 and D2, which physically occurs at two space-time points (r1, t1) and (r2, t2). The interference
corresponds to |Ej1El2 + El1Ej2|2. It is easy to see from Fig. 20, the amplitude pairs j1 × l2

2D 1D

j'

j

l

l'

Figure 20: Schematic illustration of
∑
j,l |Ej1El2 + El1Ej2|2. It is clear that the amplitude

pairs j1 × l2 with l1 × j2, where j and l represent all point sub-sources, pair by pair, will
experience equal optical path propagation and superpose constructively when D1 and D2 are
located at ~ρ1 ' ~ρ2, z1 ' z2. This interference is similar to symmetrizing the wavefunction of
identical particles in quantum mechanics.

with l1 × j2, j′1 × l′2 with l′1 × j′2, j1 × l′2 with l′1 × j2, and j′1 × l2 with l1 × j′2, etc., pair
by pair, experience equal total optical path propagation, which involves two arms of D1 and D2,
and thus superpose constructively when D1 and D2 are placed in the neighborhood of ~ρ1 = ~ρ2,
z1 = z2. Consequently, the summation of these individual constructive interference terms will
yield a maximum value. When ~ρ1 6= ~ρ2, z1 = z2, however, each pair of the amplitudes may achieve
different relative phase and contribute a different value to the summation, resulting in an averaged
constant value.
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It does not seem to make sense to claim a nonlocal interference between [(Ej goes to D1)
× (El goes to D2)] and [(El goes to D1) × (Ej goes to D2)] in the framework of Maxwell’s
electromagnetic wave theory of light. This statement is more likely adapted from particle physics,
similar to symmetrizing the wavefunction of identical particles, and is more suitable to describe the
interference between quantum amplitudes: [(particle-j goes to D1) × (particle-l goes to D2)] and
[(particle-l goes to D1) × (particle-j goes to D2)], rather than waves. Classical waves do not behave
in such a way. In fact, in this model each sub-source corresponds to an independent spontaneous
atomic transition in nature, and consequently corresponds to the creation of a photon. Therefore,
the above superposition corresponds to the superposition between two indistinguishable two-photon
amplitudes, and is thus called two-photon interference [9]. In Dirac’s theory, this interference is
the result of a measured pair of photons interfering with itself.

In the following we attempt a near-field calculation to derive the point-to-point correlation of
G(2)(~ρ1, z1; ~ρ2, z2). We start from Eq. (59) and concentrate to the transverse spatial correlation

G(2)(~ρ1, z1; ~ρ2, z2) = 〈
∑
j

∑
l

∣∣∣ 1√
2

[
Ej(~ρ1, z1)El(~ρ2, z2) + El(~ρ1, z1)Ej(~ρ2, z2)

]∣∣∣2 〉. (60)

In the near-field we apply the Fresnel approximation as usual to propagate the field from each sub-
source to the photodetectors. G(2)(~ρ1, z1; ~ρ2, z2) can be formally written in terms of the Green’s
function,

G(2)(~ρ1, z1; ~ρ2, z2)

= 〈
∫
d~κ d~κ′

∣∣ 1√
2

[
g(~ρ1, z1, ~κ)g(~ρ2, z2, ~κ

′) + g(~ρ2, z2, ~κ)g(~ρ1, z1, ~κ
′)
]∣∣2 〉

= 〈
∫
d~κ
∣∣g(~ρ1, z1, ~κ)

∣∣2 ∫ d~κ′
∣∣g(~ρ2, z2, ~κ

′)
∣∣2 +

∣∣ ∫ d~κ g∗(~ρ1, z1, ~κ) g(~ρ2, z2, ~κ)
∣∣2 〉 (61)

≡ G(1)(~ρ1, z1)G(1)(~ρ2, z2) +
∣∣G(1)(~ρ1, z1; ~ρ2, z2)

∣∣2.
In Eq. (61) we have formally written G(2) in terms of the first-order correlation functions G(1),
but keep in mind that the first-order correlation function G(1) and the second-order correlation
function G(2) represent different physics based on different measurements. Substituting the Green’s
function derived in the Appendix for free propagation

g(~ρj , zj , ~κ) =
−iω
2πc

ei
ω
c zj

zj

∫
d~ρ0 a(~ρ0) eiϕ(~ρ0) e

i ω
2czj
|~ρj−~ρ0|2

into Eq. (61), we obtain G(1)(~ρ1, z1)G(1)(~ρ2, z2) ∼ constant and∣∣G(1)(~ρ1, z1; ~ρ2, z2)
∣∣2 ∝ ∣∣〈 1

z1z2

∫
d~ρ0 a

2(~ρ0) e−i
ω
c z1 e−i

ω
2cz1
|~ρ1−~ρ0|2 ei

ω
c z2 ei

ω
2cz2
|~ρ2−~ρ0|2 〉

∣∣2.
Assuming a2(~ρ0) ∼ constant, and taking z1 = z2 = d, we obtain∣∣G(1)

12 (~ρ1; ~ρ2)
∣∣2 ∝ ∣∣ ∫ d~ρ0 a

2(~ρ0) e−i
ω

2cd |~ρ1−~ρ0|
2
ei

ω
2cd |~ρ2−~ρ0|

2 ∣∣2
∝
∣∣e−i ω2cd (|~ρ1|2−|~ρ2|2)

∫
d~ρ0 a

2(~ρ0) ei
ω
cd (~ρ1−~ρ2)·~ρ0

∣∣2
∝ somb2

[ R
d

ω

c
|~ρ1 − ~ρ2|

]
, (62)

where we have assumed a disk-like light source with a finite radius of R. The transverse spatial
correlation function G(2)(~ρ1; ~ρ2) is thus

G(2)(
∣∣~ρ1 − ~ρ2

∣∣) = I2
0

[
1 + somb2

( R
d

ω

c
|~ρ1 − ~ρ2|

)]
. (63)
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Consequently, the degree of the second-order spatial coherence is

g(2)(
∣∣~ρ1 − ~ρ2

∣∣) = 1 + somb2
( R
d

ω

c
|~ρ1 − ~ρ2|

)
. (64)

For a large value of 2R/d ∼ ∆θ, where ∆θ is the angular size of the radiation source viewed at the
photodetectors, the point-spread somb-function can be approximated as a δ-function of |~ρ1 − ~ρ2|.
We effectively have a “point-to-point” correlation between the transverse planes of z1 = d and
z2 = d. In 1-D Eqs. (63) and (64) become

G(2)(x1 − x2) = I2
0

[
1 + sinc2

( π∆θ(x1 − x2)
λ

)]
(65)

and

g(2)(x1 − x2) = 1 + sinc2
( π∆θ(x1 − x2)

λ

)
, (66)

which has been experimentally demonstrated and reported in Fig. 18.

We have thus derived the same second-order correlation and coherence functions as that of the
quantum theory. The non-factorizable point-to-point correlation is expected at any intensity. The
only requirement is a large number of point sub-sources with random relative phases participating
to the measurement, such as trillions of independent atomic transitions. There is no surprise to
derive the same result as that of the quantum theory from this simple model. Although the fields are
not quantized and no quantum formula was used in the above calculation, this model has implied
the same nonlocal two-photon interference mechanism as that of the quantum theory. Different
from the phenomenological theory of intensity fluctuations, this semiclassical model explores the
physical cause of the phenomenon.

5 Classical simulation

There have been quite a few classical approaches to simulate type-one and type-two ghost
imaging. Different from the natural non-factorizable type-one and type-two point-to-point imaging-
forming correlations, classically simulated correlation functions are all factorizable. We briefly
discuss two of these man-made factoriable classical correlations in the following.

(I) Correlated laser beams.

In 2002, Bennink et al. simulated ghost imaging by two correlated laser beams [26]. In this
experiment, the authors intended to show that two correlated rotating laser beams can simulate
the same physical effects as entangled states. Figure 21 is a schematic picture of the experiment
of Bennink et al.. Different from type-one and type-two ghost imaging, here the point-to-point
correspondence between the object plane and the “image plane” is made artificially by two co-
rotating laser beams “shot by shot”. The laser beams propagated in opposite directions and focused
on the object and image planes, respectively. If laser beam-1 is blocked by the object mask there
would be no joint-detection between D1 and D2 for that “shot”, while if laser beam-1 is unblocked,
a coincidence count will be recorded against that angular position of the co-rotating laser beams.
A shadow of the object mask is then reconstructed in coincidences by the blocking−unblocking of
laser beam-1.

A man-made factorizable correlation of laser beam is not only different from the non-factorizable
correlations in type-one and type-two ghost imaging, but also different from the standard statis-
tical correlation of intensity fluctuations. Although the experiment of Bennink et al. obtained a
ghost shadow, which may be useful for certain purposes, it is clear that the physics shown in their
experiment is fundamentally different from that of ghost imaging. In fact, this experiment can be
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Figure 21: A ghost shadow can be made in coincidences by “blocking-unblocking” of the
correlated laser beams, or simply by “blocking-unblocking” two correlated gun shots. The
man-made trivial “correlation” of either laser beams or gun shots are deterministic, i.e., the
laser beams or the bullets know where to go in each shot, which are fundamentally different
from the quantum mechanical nontrivial nondeterministic multi-particle correlation.

considered as a good example to distinguish a man-made trivial deterministic classical intensity-
intensity correlation from quantum entanglement and from a natural nonlocal nondeterministic
multi-particle correlation.

(II) Correlated speckles.

Following a similar philosophy, Gatti et al. proposed a factorizable “speckle-speckle” classical
correlation between two distant planes, ~ρ1 and ~ρ2, by imaging the speckles of the common light
source onto the distant planes of ~ρ1 and ~ρ2, [13]

G(2)(~ρ1, ~ρ2) ∝ δ(~ρo − ~ρ1/m)δ(~ρo − ~ρ2/m), (67)

where ~ρ0 is the transverse coordinate in the plane of the light source.9

The schematic setup of the classical simulation of Gatti et al. is depicted in Fig. 22 [13]. Their
experiment used either entangled photon pairs of spontaneous parametric down-conversion (SPDC)
or chaotic light for obtaining ghost shadows in coincidences. To distinguish from ghost imaging,
Gatti et al. named their work “ghost imager”. The “ghost imager” comes from a man-made
classical speckle-speckle correlation. The speckles observed on the object and image planes are the
classical images of the speckles of the radiation source, reconstructed by the imaging lenses shown
in the figure (the imaging lens may be part of a CCD camera used for the joint measurement).
Each speckle on the source, such as the jth speckle near the top of the source, has two identical
images on the object plane and on the image plane. Different from the non-factorizeable nonlocal
image-forming correlation in type-one and type-two ghost imaging, mathematically, the speckle-
speckle correlation is factorizeable into a product of two classical images of speckles. If two point
photodetectors D1 and D2 are scanned on the object plane and the image plane, respectively,
D1 and D2 will have more “coincidences” when they are in the position within the two identical
speckles, such as the two jth speckles near the bottom of the object plane and the image plane.
The blocking-unblocking of the speckles on the object plane by a mask will project a ghost shadow
of the mask in the coincidences of D1 and D2. It is easy to see that the size of the identical speckles

9 The original publications of Gatti et al. choose 2f-2f classical imaging systems with 1/2f + 1/2f = 1/f to
image the speckles of the source onto the object plane and the ghost image plane. The man-mde speckle-speckle
image-forming correlation of Gatti et al. shown in Eq. (67) is factorizeable, which is fundamentally different from
the natural non-factorizable image-formimg correlations in type-one and type-two ghost imaging. In fact, it is very
easy to distinguish a classical simulation from ghost imaging by examining its experimental setup and operation.
The man-made speckle-speckle correlation needs to have two sets of identical speckles observable (by the detectors
or CCDs) on the object and the image planes. In thermal light ghost imaging, when using pseudo-thermal light
source, the classical simulation requires a slow rotating ground grass in order to image the speckles of the source
onto the object and image planes (typically, sub-Hertz to a few Hertz). However, to achieve a natural HBT non-
factorizable correlation of chaotic light for type-two ghost imaging, we need to rotate the ground grass as fast as
possible (typically, a few thousand Hertz, the higher the batter).
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Figure 22: A ghost “imager” is made by blocking-unblocking the correlated speckles. The
two identical sets of speckles on the object plane and the image plane, respectively, are the
classical images of the speckles of the source plane. The lens, which may be part of a CCD
camera used for the joint measurement, reconstructs classical images of the speckles of the
source onto the object plane and the image plane, respectively. so and si satisfy the Gaussian
thin lens equation 1/so + 1/si = 1/f .

determines the spatial resolution of the ghost shadow. This observation has been confirmed by
quite a few experimental demonstrations. There is no surprise that Gatti et al. consider ghost
imaging classical [27]. Their speckle-speckle correlation is a man-made classical correlation and
their ghost imager is indeed classical. The classical simulation of Gatti et al. might be useful
for certain applications, however, to claim the nature of ghost imaging in general as classical,
perhaps, is too far [27]. The man-made factorizable speckle-speckle correlation of Gatti et al. is
a classical simulation of the natural nonlocal point-to-point image-forming correlation of ghost
imaging, despite the use of either entangled photon source or classical light.

6 Local? Nonlocal?

We have discussed the physics of both type-one and type-two ghost imaging. Although
different radiation sources are used for different cases, these two types of experiments demonstrated
a similar non-factorizable point-to-point image-forming correlation:

Type-one:

δ(~ρ1 − ~ρ2) ∼
∣∣∣ ∫ d~κs d~κi δ(~κs + ~κi) g1(~κs, ~ρ1) g2(~κi, ~ρ2)

∣∣∣2, (68)

Type-two:

1 + δ(~ρ1 − ~ρ2) ∝ 〈
∑
j

∑
l

∣∣ 1√
2

[
Ej(~ρ1)El(~ρ2) + El(~ρ1)Ej(~ρ2)

]∣∣2 〉 (69)

= 〈
∫
d~κ d~κ′

∣∣ 1√
2

[
g1(~κ, ~ρ1)g2(~κ′, ~ρ2) + g2(~κ, ~ρ2)g1(~κ′, ~ρ1)

]∣∣2〉.
Equations (68) and (69) indicate that the point-to-point correlation of ghost imaging, either type-
one or type-two, is the results of two-photon interference. Unfortunately, neither of them is in the
form of |

∑
j Ej |2 or |E1+E2|2, and neither is measured at a local space-time point. The interference

shown in Eqs. (68) and (69) occurs at different space-time points through the measurements of
two spatially separated independent photodetectors.

In type-one ghost imaging, the δ-function in Eq. (68) means a typical EPR position-position
correlation of an entangled photon pair. In EPR’s language: when the pair is generated at the
source the momentum and position of neither photon is determined, and neither photon-one nor
photon-two “knows” where to go. However, if one of them is observed at a point at the object plane
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the other one must be found at a unique point in the image plane. In type-two ghost imaging,
although the position-position determination in Eq. (69) is only partial, it generates more surprises
because of the chaotic nature of the radiation source. Photon-one and photon-two, emitted from a
thermal source, are completely random and independent, i.e., both propagate freely to any direction
and may arrive at any position in the object and image planes. Analogous to EPR’s language:
when the measured two photons were emitted from the thermal source, neither the momentum nor
the position of any photon is determined. However, if one of them is observed at a point on the
object plane the other one must have twice large probability to be found at a unique point in the
image plane. Where does this partial correlation come from? If one insists on the view point of
intensity fluctuation correlation, then, it is reasonable to ask why the intensities of the two light
beams exhibit fluctuation correlations at ~ρ1 = ~ρ2 only? Recall that in the experiment of Sarcelli et
al. the ghost image is measured in the near-field. Regardless of position, D1 and D2 receive light
from all (a large number) point sub-sources of the thermal source, and all sub-sources fluctuate
randomly and independently. If ∆I1∆I2 = 0 for ~ρ1 6= ~ρ2, what is the physics to cause ∆I1∆I2 6= 0
at ~ρ1 = ~ρ2?

The classical superposition is considered “local”. The Maxwell electromagnetic field theory
requires the superposition of the electromagnetic fields, either |

∑
j Ej |2 or |E1 +E2|2, takes place

at a local space-time point (r, t). However, the superposition shown in Eqs. (68) and (69) happens
at two different space-time points (r1, t1) and (r2, t2) and is measured by two independent pho-
todetectors. Experimentally, it is not difficult to make the two photo-detection events space-like
separated events. Following the definition given by EPR-Bell, we consider the superposition ap-
pearing in Eqs. (68) and (69) nonlocal. Although the two-photon interference of thermal light can
be written and calculated in terms of a semiclassical model, the nonlocal superposition appearing
in Eq. (69) has no counterpart in the classical measurement theory of light, unless one forces a
nonlocal classical theory by allowing the superposition to occur at a distance through the mea-
surement of independent photodetectors, as we have done in Eq. (59). Perhaps, it would be more
difficult to accept a nonlocal classical measurement theory of thermal light rather than to apply a
quantum mechanical concept to “classical” thermal radiation.

Conclusion: In summary, we may conclude that ghost imaging is the result of quantum in-
terference. Either type-one or type-two, ghost imaging is characterized by a non-factorizable
point-to-point image-forming correlation which is caused by constructive-destructive interferences
involving the nonlocal superposition of two-photon amplitudes, a nonclassical entity corresponding
to different yet indistinguishable alternative ways of producing a joint photo-detection event. The
interference happens within a pair of photons and at two spatially separated coordinates. The
multi-photon interference nature of ghost imaging determines its peculiar features: (1) it is non-
local; (2) its imaging resolution differs from that of classical; and (3) the type-two ghost image
is turbulence-free. Taking advantage of its quantum interference nature, a ghost imaging system
may turn a local “bucket” sensor into a nonlocal imaging camera with classically unachievable
imaging resolution. For instance, using the Sun as light source for type-two ghost imaging, we may
achieve an imaging spatial resolution equivalent to that of a classical imaging system with a lens of
92-meter diameter when taking pictures at 10 kilometers.10 Furthermore, any phase disturbance
in the optical path has no influence on the ghost image. To achieve these features the realization
of multi-photon interference is necessary.

Acknowledgment: The author thanks M. D’Angelo, G. Scarcelli, J.M. Wen, T.B. Pittman, M.H.
Rubin, and L.A. Wu for helpful discussions. This work is partially supported by AFOSR and
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10The angular size of Sun is about 0.53◦. To achieve a compatible image spatial resolution, a traditional camera
must have a lens of 92-meter diameter when taking pictures at 10 kilometers.
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Appendix: Fresnel free-propagation

We are interested in knowing how a known field E(r0, t0) on the plane z0 = 0 propagates or
diffracts into E(r, t) on another plane z = constant. We assume the field E(r0, t0) is excited by
an arbitrary source, either point-like or spatially extended. The observation plane of z = constant
is located at an arbitrary distance from plane z0 = 0, either far-field or near-field. Our goal is to
find out a general solution E(r, t), or I(r, t), on the observation plane, based on our knowledge
of E(r0, t0) and the laws of the Maxwell electromagnetic wave theory. It is not easy to find such
a general solution. However, the use of the Green’s function or the field transfer function, which
describes the propagation of each mode from the plane of z0 = 0 to the observation plane of
z = constant, makes this goal formally achievable.

Unless E(r0, t0) is a non-analytic function in the space-time region of interest, there must exist
a Fourier integral representation for E(r0, t0)

E(r0, t0) =
∫
dkE(k)wk(r0, t0) e−iωt0 , (A−1)

where wk(r0, t0) is a solution of the Helmholtz wave equation under appropriate boundary con-
ditions. The solution of the Maxwell wave equation wk(r0, t0) e−iωt0 , namely the Fourier mode,
can be a set of plane-waves or spherical-waves depending on the chosen boundary condition. In
Eq. (A−1), E(k) = a(k)eiϕ(k) is the complex amplitude of the Fourier mode k. In principle we
should be able to find an appropriate Green’s function which propagates each mode under the
Fourier integral point by point from the plane of z0 = 0 to the plane of observation,

E(r, t) =
∫
dkE(k) g(k, r− r0, t− t0)wk(r0, t0) e−iωt0

=
∫
dk g(k, r− r0, t− t0)E(k, r0, t0), (A−2)

where E(k, r0, t0) = E(k)wk(r0, t0) e−iωt0 . The secondary wavelets that originated from each
point on the plane of z0 = 0 are then superposed coherently on each point on the observation plane
with their after-propagation amplitudes and phases. It is convenient to write Eq. (A−2) in the
following form

E(~ρ, z, t) =
∫
dω d~κ g(~κ, ω; ~ρ− ~ρ0, z − z0, t− t0)E(~κ, ω; ~ρ0, z0, t0), (A−3)

where we have used the transverse-longitudinal coordinates in space-time (~ρ and z) and in mo-
mentum (~κ, ω).

Fig. A−1 is a simple example in which the field propagates freely from an aperture A of finite
size on the plane σ0 to the observation plane σ. Based on Fig. A−1 we evaluate g(~κ, ω; ~ρ, z), namely
the Green’s function for free-space Fresnel propagation-diffraction. According to the Huygens-
Fresnel principle the field at a given space-time point (~ρ, z, t) is the result of a superposition of the
spherical secondary wavelets that originated from each point on the σ0 plane (see Fig. A−1),

E(~ρ, z, t) =
∫
dω d~κ E(~κ, ω; 0, 0)

∫
σ0

d~ρ0
Ã(~ρ0)
r

e−i(ωt−kr), (A−4)

where we have set z0 = 0 and t0 = 0 at plane σ0, and defined r =
√
z2 + |~ρ− ~ρ0|2. In Eq. (A−4),

Ã(~ρ0) is the complex amplitude or relative distribution of the field on the plane of σ0, which may
be written as a simple aperture function in terms of the transverse coordinate ~ρ0, as we have done
in the earlier discussions.

In the near-field Fresnel paraxial approximation, when |~ρ − ~ρ0|2 � z2 we take the first-order
expansion of r in terms of z and ~ρ,

r =
√
z2 + |~ρ− ~ρ0|2 ' z(1 +

|~ρ− ~ρ0|2

2z2
), (A−5)
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Figure A−1: Schematic of free-space Fresnel propagation. The complex amplitude Ã(~ρ0) is
composed of a real function A(~ρ0) and a phase e−i~κ·~ρ0 associated with each of the transverse
wavevectors ~κ in the plane of σ0. Notice: only one mode of wavevector k(~κ, ω) is shown in
the figure.

so that E(~ρ, z, t) can be approximated as

E(~ρ, z, t) '
∫
dω d~κ E(~κ, ω, 0, 0)

∫
d~ρ0

Ã(~ρ0)
z

ei
ω
c z ei

ω
2cz |~ρ−~ρ0|

2
e−iωt,

where ei
ω

2cz |~ρ−~ρ0|
2

is named the Fresnel phase factor.
Assuming that the complex amplitude Ã(~ρ0) is composed of a real function A(~ρ0) and a phase

e−i~κ·~ρ0 , associated with the transverse wavevector and the transverse coordinate on the plane of
σ0, as is reasonable for the setup of Fig. A−1, we can then write E(~ρ, z, t) in the form

E(~ρ, z, t) =
∫
dω d~κ E(~κ, ω; 0, 0) e−iωt

ei
ω
c z

z

∫
d~ρ0A(~ρ0) ei~κ·~ρ0 ei

ω
2cz |~ρ−~ρ0|

2
.

The Green’s function g(~κ, ω; ~ρ, z) for free-space Fresnel propagation is thus

g(~κ, ω; ~ρ, z) =
ei
ω
c z

z

∫
σ0

d~ρ0A(~ρ0) ei~κ·~ρ0 G(|~ρ− ~ρ0|,
ω

cz
). (A−6)

In Eq. (A−6) we have defined a Gaussian function G(|~α|, β) = ei(β/2)|α|
2
, namely the Fresnel

phase factor. It is straightforward to find that the Gaussian function G(|~α|, β) has the following
properties:

G∗(|~α|, β) = G(|~α|,−β),
G(|~α|, β1 + β2) = G(|~α|, β1)G(|~α|, β2),
G(|~α1 + ~α2|, β) = G(|~α1|, β)G(|~α2|, β) eiβ~α1·~α2 ,∫

d~α G(|~α|, β) ei~γ·~α = i
2π
β
G(|~γ|,− 1

β
). (A−7)

Notice that the last equation in Eq. (A−7) is the Fourier transform of the G(|~α|, β) function. As
we shall see in the following, these properties are very useful in simplifying the calculations of the
Green’s functions g(~κ, ω; ~ρ, z).

Next, we consider inserting an imaginary plane σ′ between σ0 and σ. This is equivalent to
having two consecutive Fresnel propagations with a diffraction-free σ′ plane of infinity. Thus, the
calculation of these consecutive Fresnel propagations should yield the same Green’s function as
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that of the above direct Fresnel propagation shown in Eq. (A−6):

g(ω,~κ; ~ρ, z)

= C2 e
iωc (d1+d2)

d1d2

∫
σ′
d~ρ′
∫
σ0

d~ρ0 Ã(~ρ0)G(|~ρ′ − ~ρ0|,
ω

cd1
)G(|~ρ− ~ρ′|, ω

cd2
)

= C
ei
ω
c z

z

∫
σ0

d~ρ0 Ã(~ρ0)G(|~ρ− ~ρ0|,
ω

cz
) (A−8)

where C is a necessary normalization constant for a valid Eq. (A−8), and z = d1 +d2. The double
integral of d~ρ0 and d~ρ′ in Eq. (A−8) can be evaluated as∫

σ′
d~ρ′
∫
σ0

d~ρ0 Ã(~ρ0)G(|~ρ′ − ~ρ0|,
ω

cd1
)G(|~ρ− ~ρ′|, ω

cd2
)

=
∫
σ0

d~ρ0 Ã(~ρ0)G(~ρ0,
ω

cd1
)G(~ρ,

ω

cd2
)

×
∫
σ′
d~ρ′G(~ρ′,

ω

c
(

1
d1

+
1
d2

)) e−i
ω
c (

~ρ0
d1

+ ~ρ
d2

)·~ρ′

=
i2πc
ω

d1d2

d1 + d2

∫
σ0

d~ρ0 Ã(~ρ0)G(~ρ0,
ω

cd1
)G(~ρ,

ω

cd2
)

× G(|~ρ0

d1
+

~ρ

d2
|, ω
c

(
d1d2

d1 + d2
))

=
i2πc
ω

d1d2

d1 + d2

∫
σ0

d~ρ0 Ã(~ρ0)G(|~ρ− ~ρ0|,
ω

c(d1 + d2)
)

where we have applied Eq. (A−7), and the integral of d~ρ′ has been taken to infinity. Substituting
this result into Eq. (A−8) we obtain

g(~κ, ω; ~ρ, z)

= C2 i2πc
ω

ei
ω
c (d1+d2)

d1 + d2

∫
σ0

d~ρ0 Ã(~ρ0)G(|~ρ− ~ρ0|,
ω

c(d1 + d2)
)

= C
ei
ω
c z

z

∫
σ0

d~ρ0 Ã(~ρ0)G(|~ρ− ~ρ0|,
ω

cz
).

Therefore, the normalization constant C must take the value of C = −iω/2πc. The normalized
Green’s function for free-space Fresnel propagation is thus

g(~κ, ω; ~ρ, z) =
−iω
2πc

ei
ω
c z

z

∫
σ0

d~ρ0 Ã(~ρ0)G(|~ρ− ~ρ0|,
ω

cz
). (A−9)
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