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Two-photon anticorrelation is observed when laser and pseudothermal light beams are incident
to the two input ports of a Hong-Ou-Mandel interferometer, respectively. The spatial second-order
interference pattern of laser and pseudothermal light beams is reported. Temporal Hong-Ou-Mandel
dip is also observed when these two detectors are at the symmetrical positions. These results are
helpful to understand the physics behind the second-order interference of light.

Ever since the second-order interference of light was
first observed by Hanbury Brown and Twiss (HBT) in
1956 [1], it has been an important tool to study the
properties of light [2]. The second-order interference of
light has been studied with photons emitted by different
kinds of sources, such as entangled photon pair source [3],
two independent single-photon sources [4–6], laser and
single-photon source [7], laser and entangled photon pair
source [8], two lasers [9–11], two thermal sources [12–17],
etc. Many interesting results were obtained from those
studies. For instance, Hong et al. were able to measure
the time separation between two photons with time res-
olution millions of times shorter than the resolution of
the detector and the electronics [3, 18]. Pittman et al.
got the ghost image of an object with entangled pho-
ton pairs [19]. Bennett et al. observed Hong-Ou-Mandel
(HOM) dip by feeding photons emitted by single-photon
source and laser into the two input ports of a HOM in-
terferometer, respectively [7]. The second-order inter-
ference of photons coming from laser and thermal light
beams seems to have not been studied, in which, some-
thing interesting may happen. In this letter, we will ex-
perimentally study the second-order interference of laser
and pseudothermal light beams in a HOM interferometer,
where two-photon anticorrelation and temporal HOM dip
are observed when these two detectors are at the symmet-
rical positions.

Two-photon anticorrelation is defined as the two-
photon coincidence count probability is less than the ac-
cidental two-photon coincidence count probability, which
is equal to the product of these two single-photon prob-
abilities [20]. It is convenient to employ the normalized
second-order coherence function or the degree of second-
order coherence [21],

g(2)(r1, t1; r2, t2) =
G(2)(r1, t1; r2, t2)

G(1)(r1, t1)G(1)(r2, t2)
, (1)

to discuss the second-order correlation of light. Where
G(2)(r1, t1; r2, t2) is the second-order coherence func-
tion at space-time coordinates (r1, t1) and (r2, t2).
G(1)(r1, t1) and G(1)(r2, t2) are the first-order coherence

functions at (r1, t1) and (r2, t2), respectively [22]. When
g(2)(r1, t1; r2, t2) is greater than 1, these two photon de-
tection events are correlated. When g(2)(r1, t1; r2, t2) is
equal to 1, these two events are independent. When
g(2)(r1, t1; r2, t2) is less than 1, these two events are an-
ticorrelated. In our experiments, we are able to observe
two-photon anticorrelation when these two single-photon
detection events are at the same space-time coordinate
in a HOM interferometer, which can be expressed math-
ematically as g(2)(0) < 1.

The experimental setup is shown in Fig. 1. A single-
mode continuous wave laser with central wavelength at
780 nm and frequency bandwidth of 200 kHz is divided
into two equal portions by a non-polarized beam splitter
(BS1). One beam is incident to a rotating ground glass
(RG) after passing through a convex lens (L1) to simu-
late thermal light [12]. The other beam is expanded by
another identical lens (L2) to ensure that the intensity
of the laser beam is approximately constant across the
measurement range. The focus lengthes of L1 and L2 are
both 50 mm. The distance between L1 and RG is 83
mm. The distances between the lens and detector planes
all equal 825 mm.

The measured normalized second-order coherence
functions of laser and pseudothermal light beams in a
HOM interferometer are shown by the blank squares in
Fig. 2(b), where a periodic modulation of the second-
order coherence function is obvious. x1 − x2 is the
transverse relative position of these two detectors and
g(2)(x1 − x2) is the normalized second-order coherence
function when these two detectors are at x1 and x2, re-
spectively. The red line is theoretical fitting of the ex-
perimental results by employing Eq. (4) in the following.
All the experimental results in Fig. 2 are measured by
scanning the transverse position of D1 while keeping the
position of D2 fixed. The measurement time for each dot
is 120 s. The temporal second-order coherence length of
the pseudothermal light is 90.8 µs and the two-photon
coincidence time window is 12.2 ns. The diameter of the
collecting single-mode fiber is 5 µm, which is much less
than the pseudothermal light spatial second-order coher-
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FIG. 1: (color online). Experimental setup for the second-
order interference of laser and pseudothermal light beams in
a HOM interferometer. Laser: Single-mode continuous wave
laser. BS: 50:50 non-polarized beam splitter. M: Mirror. L:
Lens. RG: Rotating ground glass. D: Single-photon detector.

ence length, 1.37 mm. The intensities of the laser and
pseudothermal light beams at the two input ports of the
HOM interferometer are set to be equal. It is obvious
that g(2)(0) < 1 is observed in Fig. 2(b).

In order to confirm two-photon anticorrelation is ob-
served when these two detectors are at the symmetri-
cal positions, we have measured the spatial second-order
coherence function of pseudothermal light by blocking
the laser light in our experiments. It is well-known that
the second-order coherence function of thermal light in
a HBT interferometer will get its maximum when these
two detectors are at the symmetrical positions [1]. Com-
paring the second-order coherence function in Fig. 2(b)
with the one of pseudothermal light in Fig. 2(a), which
is shown by the red circles, it is obvious that two-photon
anticorrelation in Fig. 2(b) is observed when these two
detectors are at the symmetrical positions. We also mea-
sure the spatial second-order coherence function of laser
light in a HBT interferometer, which is shown by the
black squares in Fig. 2(a). The measurements confirm
that two photon detection events of single-mode continu-
ous wave laser in a HBT interferometer are independent
[22].

In order to study how g(2)(0) changes with the ratio be-
tween the intensities of thermal and total light beams, we
also measure g(2)(0) when the laser and pseudothermal
light beams have different intensities. The experimental
parameters are the same as the ones above except the
temporal second-order coherence length is shorten to be
86.2 ns by enlarging the size of the laser beam on the
ground glass. The results are shown in Fig. 3, where Pt
is the ratio between the intensities of thermal and total
light beams. The red curve is theoretical fitting of the
experimental results by employing Eq. (5), where only
the last constant is changeable in the fitting process. The
value of the measured g(2)(0) changes between 0.74 and

FIG. 2: (color online). Spatial second-order interference pat-
tern of laser and pseudothermal light beams. x1 − x2 is
the transverse relative position of these two single-photon
detectors and g(2)(x1 − x2) is the normalized second-order
coherence function when these two detector are at x1 and
x2, respectively. The red circles and black squares in (a) are
the measured normalized second-order coherence functions of
pseudothermal and laser light beams in a HBT interferometer,
respectively. The blank squares in (b) are the measured nor-
malized second-order coherence functions of laser and pseu-
dothermal light beams with equal intensities in a HOM inter-
ferometer. Please see text for detail.

1.99 as the ratio changes, which means these two pho-
ton detection events can be correlated, independent or
anticorrelated.

Figure 4 shows the two-photon coincidence counts vary
with time difference of these two photon detection events
when g(2)(0) gets its minimum in Fig. 3. CC is two-
photon coincidence count for 270 s and t1 − t2 is the
time difference between these two single-photon detection
events within a two-photon coincidence count. It is obvi-
ous that two-photon coincidence count get its minimum
when t1 equals t2. As the value of |t1 − t2| increases, the
coincidence count increases and finally becomes a con-
stant when the time difference exceeds the second-order
temporal coherence length of pseudothermal light.

Both classical and quantum theories can be employed
to interpret our experimental results [22, 23]. We will
employ two-photon interference theory to interpret our
experiments, for light is intrinsically quantum mechan-
ical and quantum theory is valid for both classical and
nonclassical light [24]. If the same method is employed
to interpret the same experiment with classical and non-
classical light, for instance, the interference of thermal
light beams and of entangled photons in a HOM inter-
ferometer, one may get a unified interpretation, which
might be helpful to understand the physics behind.

There are three different ways for two photons to trig-
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FIG. 3: Anticorrelation. g(2)(0) is the normalized second-
order coherence function when these two single-photon detec-
tion events are at the same space-time coordinate in a HOM
interferometer. Pt is the ratio between the intensities of the
thermal light and total light beams. The red line is the theo-
retical curve of 3P 2

t − 2Pt + 1.09. Please see text for detail.

FIG. 4: Temporal HOM dip. CC is two-photon coincidence
count for 270 s and t1 − t2 is time difference between these
two photon detection events within a two-photon coincidence
count. When t1 equals t2, CC gets its minimum. As time
difference increases, CC increases and finally becomes a con-
stant. It is same as the HOM dip in Ref. [18] except the
visibility is 13.50% in our experiments.

ger a two-photon coincidence count in Fig. 1. The first
way is both photons come from pseudothermal light. The
second way is both photons come from laser light. The
last way is a photon comes from pseudothermal light and
the other photon comes from laser light. The second-
order coherence function in Fig. 1 can be expressed as

[25]

G(2)(r1, t1; r2, t2)

= P 2
t 〈|ei(ϕta+ϕtb+

π
2 )(Ata1,tb2 +Ata2,tb1)|2〉

+P 2
l 〈|ei(ϕla+ϕlb+

π
2 )(Ala1,lb2 +Ala2,lb1)|2〉

+2PtPl〈|ei(ϕta+ϕlb)(Ata1,lb2 −Ata2,lb1)|2〉, (2)

where Pt and Pl (Pt ≥ 0, Pl ≥ 0, and Pt+Pl = 1) are the
probabilities of the detected photon coming from pseu-
dothermal and laser light beams, respectively. It worths
noting that Pt also equals the ratio between the inten-
sities of pseudothermal and total light beams in our ex-
periments. 〈...〉 means ensemble average. ϕtα and ϕlα
are the initial phase of photon α (α = a, and b) com-
ing from pseudothermal and laser light beams, respec-
tively. Ata1,lb2 is the two-photon probability amplitude
that photon a coming from thermal light goes to detector
1 and photon b coming from laser light goes to detector
2, which is equal to the product of two single-photon
probability amplitudes [25]. π/2 is the phase difference
of one photon reflected by a beam splitter comparing to
the transmitted one [21]. The minus sign in the last term
of Eq. (2) is due to π phase difference between these two
different two-photon probability amplitudes, which is the
same as entangled photon pairs in a HOM interferome-
ter [3, 18]. This destructive two-photon interference, at
least from quantum mechanical point of view, is the rea-
son why two-photon anticorrelaiton can be observed in
our experiments.

With similar calculations as the one in Refs. [17, 26,
27], it is straightforward to get the normalized spatial
second-order coherence function as

g(2)(x1, x2)

= P 2
t [1 + sinc2

πLt
λz

(x1 − x2)] + P 2
l × 1

+2PtPl[1− cos
2πd

λz
(x1 − x2) (3)

×sinc
πLt
λz

(x1 − x2)sinc
πLl
λz

(x1 − x2)],

where the temporal part has been ignored and one-
dimension case is calculated for simplicity. Lt is the
diameter of pseudothermal light source and Ll is the di-
ameter of laser light in the same plane as pseudothermal
light source. λ is the central wavelength of the laser. z is
the distance between the source and detector planes. d
is the transverse distance between the midpoints of the
pseudothermal light source and the image of the laser
light source in the ground glass plane by BS2. The first
term on the righthand side of Eq. (3) corresponds to
two photons both come from pseudothermal light. P 2

t is
the probability and the left part of this term is a typical
second-order spatial coherence function of thermal light.
The second term corresponds to both photons come from
laser light. It expresses like this is due to g(2)(x1, x2) al-
ways equals 1 for single-mode continuous wave laser in a
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HBT interferometer. The third term corresponds to one
photon comes from laser light and the other one comes
from pseudothermal light. There is a cosine modulation
of the second-order coherence function, which is a result
of the second-order interference between laser and pseu-
dothermal light.
Lt equals Ll in our experiments, for the distances be-

tween the lens and detection planes are all the same.
When the intensities of these two beams are equal, Eq.
(3) can be simplified as

g(2)(x1, x2)

= 1 +
1

4
sinc2

πL

λz
(x1 − x2)

−1

2
cos

2πd

λz
(x1 − x2)sinc2

πL

λz
(x1 − x2), (4)

where L equals Lt and Ll, respectively. It is easy to see
g(2)(0) = 0.75 from Eq. (4).

We can further calculate how g(2)(0) changes with the
ratio between the intensities of pseudothermal and total
light beams. Substituting Pl = 1 − Pt and x1 = x2 into
Eq. (3), it is straightforward to get

g(2)(0) = 3P 2
t − 2Pt + 1. (5)

When Pt equals 1/3, g(2)(0) gets its minimum, 2/3, which
is obviously less than 1.

Comparing the spatial second-order interference pat-
tern of laser and pseudothermal light beams in Fig. 2(b)
with the interference pattern of two pseudothermal light
beams in a HOM interferometer in Ref. [17], these two
interference patterns are similar and they will get their
minimums when these two detectors are at the symmet-
rical positions, respectively. However, there is an im-
portant difference between these two situations. It is
predicted [28] and experimentally verified [17, 29] that
g(2)(0) equals 1 for two thermal light beams in a HOM
interferometer. This conclusion is true no matter what is
the ratio between the intensities of these two input ther-
mal light beams. While in the case of interference of laser
and pseudothermal light beams, g(2)(0) can get the value
in the domain of [2/3, 2) for different ratios between the
intensities of the pseudothermal and total light beams.
When Pt is in the region of (0, 2/3), g(2)(0) is less than
1 and these two photon detection events are anticorre-
lated. When Pt equals 2/3, g(2)(0) equals 1 and these
two events are independent. When Pt is in the region of
(2/3, 1), g(2)(0) is greater than 1 and these two photon
detection events are correlated.

There is one more thing we would like to point out.
Although we have observed g(2)(0) < 1 and g(2)(0) <
g(2)(τ) (τ = t1 − t2 and τ 6= 0) in our experiments, it
does not mean we have observed sub-Possion distribu-
tion or photon antibunching. Sub-Possion distribution
and photon antibunching are defined as g(2)(0) < 1 and
g(2)(0) < g(2)(τ) in a HBT interferometer, respectively

[21]. These two effects can only be observed with non-
classical light. g(2)(0) < 1 and g(2)(0) < g(2)(τ) observed
in our experiments are in a HOM interferometer. These
two interferometers are different. Therefore, the experi-
mental results in our experiments do not satisfy the defi-
nitions of sub-Possion distribution or photon antibunch-
ing.

In conclusion, we have observed the spatial second-
order interference pattern of laser and pseudothermal
light beams in a HOM interferometer, in which, two-
photon anticorrelation is observed when these two detec-
tors are at the symmetrical positions. Further more, tem-
poral HOM dip is also observed when these two detectors
are at the symmetrical positions. The theoretical inter-
pretations based on two-photon interference theory agree
with the experimental results very well. Two-photon
anticorrelation with laser and pseudothermal light in a
HOM interferometer can be interpreted by the destruc-
tive two-photon interference, which is the same interpre-
tation as two-photon anticorrelation with entangled pho-
ton pairs in a HOM interferometer.
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