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Noise in optical synthesis images. I. Ideal Michelson
interferometer

Sudhakar Prasad

Center for Advanced Studies, University of New Mexico, Albuquerque, New Mexico 87131

Shrinivas R. Kulkarni

Palomar Observatory, California Institute of Technology, Pasadena, California 91125

Received April 25, 1989; accepted July 10, 1989

We study the distribution of noise in optical images produced by the aperture synthesis technique, in which the
principal source of noise is the intrinsic shot noise of photoelectric detection. The results of our analysis are directly
applicable to any space-based optical interferometer. We show that the signal-to-noise ratio of images synthesized
by such an ideal interferometric array is essentially independent of the details of the beam-combination geometry,
the degree of array redundancy, and whether zero-spatial-frequency components are included in image synthesis.
However, the distribution of noise does depend on the beam-combination geometry. A highly desirable distribu-
tion, one of uniform noise across the entire image, is obtained only when the beams from the n primary apertures are
subdivided and combined pairwise on n(n - 1)/2 detectors.

INTRODUCTION

With the advent of ground-based optical interferometers1

and nonredundant masking on large single telescopes 2,3 it is
now possible to produce aperture synthesis images of astro-
nomical objects in much the same way as radio astronomers
synthesize images by using interferometers such as the Very
Large Array (VLA). Owing to the turbulence caused by the
atmosphere, the sensitivity of terrestrial interferometers is
limited to sources probably no fainter than 10th magnitude.
This limit, when contrasted with the truly large astrophysi-
cal advances in high-resolution imaging and astrometry of
faint objects, makes a space-based optical interferometer
highly desirable.

The technology to build a modest-length (10-30-m) space-
based interferometer exists now, and with proper funding it
will be possible to put such an instrument up in space within
a decade. Indeed, several proposals with realistic goals have
been submitted to the National Aeronautics and Space Ad-
ministration for continued studies.

The fundamental basis of synthesis imaging is the van
Cittert-Zernike theorem4: the image is the Fourier trans-
form of the spatial coherence function. This statement is
independent of the wavelength and thus at one stroke de-
scribes image synthesis at both radio and optical wave-
lengths.

Despite this commonality, there are many differences be-
tween radio and optical interferometers. These differences
arise in part because of technology and in part because of the
fact that the signals assume chiefly photonlike characteris-
tics at optical wavelengths and wavelike features at radio
wavelengths. The dominant source of noise in radio inter-
ferometers is the additive Gaussian noise generated by the
receiving apparatus, whereas optical detectors are noise-free
and the dominant source of noise in optical interferometers
is the Poisson fluctuations of the signal itself. The distribu-

tion of noise in a radio synthesis image is a well-studied
topic, and indeed descriptions of it can be found in standard
textbooks.5 However, for the reasons discussed above, this
theory is not applicable to optical interferometers. In par-
ticular, the covariance properties of the fringe phasors are
markedly different for optical and radio interferometers.
Given this and the burgeoning interest in optical synthesis
imaging, we believed it worthwhile to undertake a systemat-
ic investigation of noise in optical synthesis images.

This paper is the first of a three-paper series. In this
paper we analyze the performance of an ideal interferome-
ter. Specifically we assume that the rays reaching each of
the n elements are not phase corrupted by the intervening
medium. In such an ideal interferometer the Michelson
fringe phasor, which is second order in the electric field, is
the best estimator, and the van Cittert-Zernike theorem can
be applied directly. Thus the analysis presented here is
applicable to a space- or lunar-based optical interferometer.
Owing to the corruption of the wave front by the atmo-
sphere, ground-based interferometers must use a sixth-or-
der estimator, referred to as the bispectrum or the triple
product, whose phase is the closure phase. In subsequent
papers we shall extend the analysis to images synthesized
from bispectrum data.

A space-based interferometer, to the first order, is essen-
tially an n-slit Young interferometer. The absence of the
atmosphere permits the use of a large aperture for each
element, and coherent integration times are limited only by
the changes in the spatial-frequency plane (or the uv plane,
in the jargon of radio astronomy) resulting from changes in
the orientation of the interferometer with respect to the
source. Every coherent integration time, nb n(n - 1)/2
complex fringe phasors Zgh (g < h = 1, 2,. , n) are obtained,
and, when enough spatial frequencies have been measured,
the van Cittert-Zernike theorem can be applied to yield the
object intensity distribution.
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Although the above description summarizes the basis of
all astronomical interferometry, many questions arise that
are peculiar to optical interferometers. These peculiarities
arise because, unlike the situation at radio wavelengths, it is
not possible to amplify weak optical signals without a large
degradation in the signal-to-noise ratio (SNR). The follow-
ing questions must be answered before a practical design for
a space-based optical interferometer is considered:

(1) Does the beam-combination geometry matter?
There are many different ways of combining the n beams.
The simplest is to bring all the beams together to one com-
mon focus, as in a telescope. We refer to this as an nCn
interferometer, for which the superscript represents the to-
tal number of primary beams and the subscript represents
the number of beams per detector. This notation has the
additional advantage that the number of detectors, which in
this case is 1, is also given by the value of the combinatoric
factor nCn. Another possible geometry is the nC2 interfer-
ometer, in which each of the n primary beams is split up n -
1 ways and the resulting n(n - 1) subbeams are combined
pairwise on nb = nC2 detectors. Other beam-combination
geometries (C 3, nC4, etc.) lie between these two extremes.

(2) What is the SNR in a synthesis image? How does
the variance vary across the image? Is it possible to trade
off sensitivity for uniform variance?

Intuitively, it is clear that beam combination should not
be a major factor for an ideal interferometer and that the
SNR in the map should be proportional to BL, where L is the
number of photoelectrons collected by the array within the
total integration time. However, this is not the consensus
view, as is clear from our experience at various meetings and
workshops on high angular resolution.

In this paper we report exact calculations of the sensitivity
as well as the distribution of variance of ideal interferometer
arrays that are assumed to be limited only by the shot noise
of the photoelectric detection process. Thus we assume
implicitly that the detectors do not have any dark current
and do not suffer from any readout penalty. Most modern
cooled photoelectric detectors or the newer solid-state pho-
tomultipliers (SSPM's) satisfy this constraint, as a result of
which they are the choice detectors for optical interferome-
try. These calculations enable us to answer decisively the
questions raised above and should lay to rest the disagree-
ment among astronomers as to the sensitivity of an ideal
interferometer.

Specifically, we have obtained expressions for the distri-
bution of variance for the two extreme cases of beam combi-
nation: C2 (Section 1) and nCn (Sections 2 and 3). The
results for other beam-combination geometries should lie
between the results for these two cases. We find that, to
better than 40%, beam combination does not affect the SNR
and that the sensitivity of an interferometer is equal to the
square root of the total number of photoelectrons collected
by the array. There are, of course, differences in details
between different beam combination geometries. These
differences and trade-offs are discussed in Section 4. We
conclude by arguing, among other points, that, even if an
ideal noise-free amplifier were available, the SNR of an
optical interferometer could not exceed the SNR estimated
in this paper.

1. _G2 INTERFEROMETER ARRAY

Let there be n identical principal apertures from which we
derive n main beams. Each main beam is divided into n - 1
identical subbeams by the use of beam splitters. The result-
ing n(n - 1) subbeams are combined pairwise on nb = nC 2

detectors. The detectors are assumed to be identical array
detectors with pixels ranging from 1 to P. The intensity
pattern on any one detector is then given by

(Igh)(X) = 2(IO)[1 + 'Ygh COS(KX BghId + "kgh)], (1.1)

where (Io) is the average intensity in each subbeam at the
detector, Bgh is the vector or the baseline that connects
apertures g and h (g < h = 1, 2, . . ., n), K is the light-wave
vector, d is the distance between the aperture and detector
planes, x is the spatial vector in the detector plane, and 'Ygh
exp(igh) is the complex visibility function (or the complex
spatial coherence function) at the separation vector Bgh In
deriving Eq. (1.1) we have assumed that the incident light is
spectrally narrow so that the fringe visibility depends on
only the spatial correlations in the field. In an effort to
reduce the clutter in the equations we henceforth drop the
vector notation (boldface), but bear in mind that spatial
frequencies, pixel locations, etc. are really vectors.

According to the photoelectron-detection theory, the av-
erage photoelectron count (kgh(p)) at the pixel location
specified by the integer index p of the detector upon which
subbeams from apertures g and h are incident is proportion-
alto (Igh(x)):

(kgh(p)) = 2(Ko)[1 + Ygh CoS(PWgh + 'kgh)]- (1.2)

Here, ( ... ) denotes averaging over the photoelectron-detec-
tion process. The product Pgh is understood to be the
scalar product of the pixel position vector p and the spatial
frequency wgh (Wg - Wh), expressed in inverse pixel units.

Let (C) be the average number of photoelectrons detected
by the entire array in one integration period, and let 2 (N) be
the average number of photoelectrons per detector per inte-
gration time. Clearly, then, (C) = 2(N)nb, and thus (N) =
(C)/n(n-1). AccordingtoEq. (1.2),theaveragenumberof
photoelectrons per detector is equal to 2 (Ko)P, and thus
(Ko)P = (N).

Each detector yields two fringe phasors: Zgh, the spatial-
frequency component corresponding to the vector or base-
line connecting apertures g and h, and Zgho, the photoelec-
tron count or zero-spatial-frequency component. These
quantities are defined operationally as follows:

(1.3a)Zgh = X kgh(p)exp(-ipWgh).
p1l

As shown by Walkup and Goodman,6 the quantity Zgh SO

defined is an optimum estimator of the actual fringe phasor
under ideal photon-limited conditions such as the one that
we are discussing here. We shall see below that the SNR in a
map made by using this estimator has the desirable quality
of being independent of the total number of pixels in the
detector.

The average of the phasor Zgh over many coherent integra-
tion intervals is given by

Zgh = (Zgh) = gh(N)exp(iogh). (1.3b)
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Throughout this paper we use uppercase symbols for the
ensemble average of a random variable. Likewise,

Zgh
0 = E3 kgh(P),

p=
1

the mean of which is

Zgh
0

= 2(N).

(1.3c)

(1.3d)

Note that the zero-spatial-frequency phasors are not com-
plex but real numbers and represent the total photoelectron
counts in the detectors.

There are two different ways by which the synthesized
image can be constructed from the visibility data:

(1) Inversion without total counts. In this method, we
use only the complex phasors Zgh in the Fourier inversion.
The neglect of Zgh

0 means that the total number of photons
in the map synthesized by this technique is zero! Note that,
despite this unattractive feature, this is the standard meth-
od in radio astronomy.

(2) True inversion. This is a strict application of the
van Cittert-Zernike theorem and uses the nb complex pha-
sors Zgh as well as the nb zero-spatial-frequency components
Zgh

0
. The image produced by this technique has the desir-

able property of being nonnegative.

We now discuss the noise distribution in the maps pro-
duced by these two methods. The image produced by the
application of the van Cittert-Zernike theorem suffers from
two sources of noise:

(a) In practice we can obtain measurements over only a
finite number of baselines or spatial frequencies, whereas
the strict application of the van Cittert-Zernike theorem
requires measurement of the entire continuum of spatial
frequencies. This leads to errors that may be called sam-
pling errors.

(b) The photoelectron detection process suffers from
shot noise, which in turn limits the accuracy with which
fringe phasors can be measured. Shot noise is governed by
Poisson statistics, on account of which the variance in the
photoelectron count in pixel p is equal to the average photo-
electron count (k(p)). Modern deconvolution methods
such as CLEAN and MEM, when applied to radio-interfero-
metric data, appear to compensate for the sampling errors,
and with some care radio synthesis images can be obtained
that are limited only by the measurement uncertainties in
the fringe visibility functions. (The reader is referred to
Ref. 7 for a discussion of the current methods of imaging and
deconvolution methods that are used commonly at radio
frequencies.) In contrast to the sampling errors, there is no
technique by which the effects of shot noise can be reduced.
Thus in what follows we do not discuss sampling errors but
restrict the study to the effects of shot noise on the maxi-
mum achievable SNR in the synthesized map. (Clearly,
practical situations in which the photoelectron shot noise is
small enough that sampling and other errors cannot be made
smaller still lie beyond the scope of this paper.)

A note should be made here regarding the notation. De-
pending on our convenience, we sometimes use double indi-

ces to denote a spatial frequency such as Wgh, with g < h = 1,
2,. , n, and at other times use a single index such as wr, with
r = 12...,nb.

A. Inversion without Total Counts
The synthesized image is the real portion of the Fourier
transform of the spatial coherence function:

n,

i1(q) Re[Z Zr exp(+iqo.,)
r=1

= E [Re(z,)cos(rq) - Im(zd)sin(wq)]. (1.4a)
r

Index q refers to pixels in the synthesized image; in particu-
lar, q ranges from -Q/2 to +Q/2, and q = 0 refers to the
central pixel in the synthesized map. The variable il(q)
refers to the image obtained from one set of visibility data.
Note that the sense of the Fourier transform used in Eq.
(1.4a) is consistent with the definition of z, [cf. Eq. (1.3)].
The mean map Ii(q) is the average of il(q) and is given by

1 (q) = Re[ Z, exp(+iqw,)] (1.4b)

which, by virtue of Eq. (1.3b), can be simplified to yield

Ij(q) = (N) >3 Tr COS(Wrq + Od)- (1.4c)

The image Ij(q) is referred to as the dirty image in the
parlance of radio astronomy. The dirty image is the convo-
lution of the true image and the Fourier transform of the
spatial-frequency-sampling function, which is also called
the dirty beam. If the uv plane is sampled sufficiently well,
then the dirty beam will be peaked with a full-width at half
maximum given by the maximum extent of the uv coverage.
A synthesized image can be obtained from the dirty image by
any one of the popular deconvolution techniques (see, e.g.,
Ref. 7).

The variance V[i1(q)] in the synthesized map i(q) [Eq.
(1.4a)] is given by

V[ij(q)] (i1(q) 2) - (ij(q))2

nb nb

= [(Re(z)Re(z,)) - (Re(z,)) (Re(z8 ))1
r1= s=1

X cos(coq)cos(wcq) - [(Re(z,)Im(z 8 ))

- (Re(z,)) (Im(z,))] cos(wXq)sin(,wq)

- [(Im(z,)Re(zs)) - (Im(z,)) (Re(z) )]sin(wq)

X cos(wcoq) + [(Im(z)Im(z)) - (Im(z,))

(1.5)

The problem of estimating the variance in the map thus
reduces to one of estimating three types of covariance term:
cov[Re(z,), Re(zj)], cov[Re(z,), Im(z,)], and cov[Im(z,),
Im(zs)], where, for example,
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cov[Re(z,), Re(z.)] (Re(z,)Re(zs)) - (Re(z,)) (Re(z,8 ))

P P

= X [(kr(p)ks(p'))
p1l p'1l

- (kr(p)) (k,(p')) cos(wrp)cos(Ap').

(1.6a)

Similar expressions can be obtained for the other three co-
variance terms.

There is no correlation of the photoelectron shot noise
between different detectors or between different pixels of
the same detector. From the Poisson distribution of the
shot noise, it then follows that

(k,(p)k,(p')) - (k,(p)) (ks(p')) = rsb5pp(k,(p)). (1.6b)

Thus Eq. (1.6a) simplifies, and only the covariance terms
with r = s are nonzero:

cov[Re(zr), Re(z)] = V[Re(z)I6r.s

= brs X (k,(p))cos(wrp) 2

p

= (N)brs,

Using similar algebra, one can show that

cov[Im(z), Im(z)] = (N)6rs

and

cov[Re(zr), Im(z)] = 0-

By symmetry, cov[Im(zr), Re(z,)] = 0. Substituting the
nonzero covariance elements into Eq. (1.5), we obtain

V[il(q)] = E {V[Re(zr)]cos2(Wrq) + V[Im(zd)Jsin2(wrq)}
r

(N) = (C) (1.8)
r

Thus the variance is equal to half the total number of
photoelectrons intercepted by the entire array, and further-
more the variance is independent of the pixel position as well
as the object structure. This may be a highly desirable
feature of an aperture synthesis technique, particularly
when one is willing to sacrifice resolution in favor of sensitiv-
ity, e.g., in doing some kind of source count for which the
uniformity of the background noise in the image plane may
be the most useful requirement.

Now we consider the specific case of a point source (Yr = 1)
at the phase center (r = 0) for which

Il(q) = 2C. q0

and V[ii(q)] is specified by Eq. (1.8). The use of the Kro-
necker in Eq. (1.9a) is valid only when one has a dense and
infinite uv coverage. However, I(O) = (C)/2 regardless of
the uv coverage. The uv coverage or the lack of it gives rise
to sidelobes, which are assumed to be removed by algorithms
such as CLEAN. Since the source is located at the phase

center, the SNR of the central pixel in the map can be
considered to be indicative of the SNR in the map:

I(O) _ (()\112

1V~ii(0)]}/2 2 
(1.9b)

Indeed, apart from the factor of CJi, this is the SNR that we
expect from simple physical considerations.

We clarify here that the variance given in Eq. (1.8) is the
variance in an image obtained by synthesizing one single set
of measurements of the nb phasors. If the measurements
were repeated m times, then both the image [Eq. (1.4c)] and
the variance [Eq. (1.8)] would be scaled up by m and the
SNR in the resulting map would be ((L)/2)1/2 , where (L) =
(C)m is the total number of photoelectrons intercepted by
the array over the m coherent integration levels.

B. True Inversion
There are three reasons why one may wish to use the nb zero-
spatial-frequency components ZghO:

(1) The integral of a dirty image made without using any
zero-spatial-frequency counts is zero. However, the astro-
nomical source does put out some finite nonzero power.

(1.7a) (2) Some pixels of a dirty image made without using the
zero-spatial-frequency components could be negative. This
is clearly an artifact, since a true image, made, for example,

(1.7b) by using a telescope, is nonnegative on a pixel-by-pixel basis.
(3) Given the nb zero-spatial-frequency components, it

would appear only logical to use these nb measurements

(1.7c) rather than simply to throw them away.

According to the van Cittert-Zernike theorem, all the spa-
tial-frequency components must be used to construct the
images. Thus the simplest method is to include the zero-
spatial-frequency components in the Fourier inversion. In
our inversion, we include only positive nonzero spatial fre-
quencies, as is clear from an inspection of Eq. (1.4a). This is
a valid procedure, since the corresponding negative-fre-
quency components are merely their complex conjugates.
Thus the zero-spatial-frequency phasor, which is its own
complex conjugate, must be halved (or, equivalently, all the
positive-frequency terms must be doubled) before it is in-
cluded in such an inversion procedure, one that suppresses
all nonzero spatial frequencies of one sign. Although we
shall use this weighting for the zero-frequency phasor, our
calculations may be modified trivially to include a different
weighting. The synthesized image is then specified by

i2(q) [Re(z)cos(wq) - Im(z)sin(wq) + (1/2)z 0I,
r

(1.lOa)

the mean value of which is

I2(q) = (N) Y.E [Yr cos(Or + q) + 1] = 11(q) + (
2

r

(1.lOb)

We note that I2(q) 2 0 for all q, since the term Yr cos(r +
Wrq) + 1 in Eq. (1.lOb) is always nonnegative for all r. The
average of I2(q) over the map can be shown easily to be (C)!
2, which is greater than zero. Finally, we demonstrate below

(1.9a)
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that using the zero-spatial-frequency phasors results in an
enhanced SNR. Thus all three of the points raised at the
beginning of this subsection have been illustrated.

As above, we ignore the uncertainties introduced by the
sampling process and estimate the variance that is due to the
shot noise of the detection process:

nb nb

V[i2(q)] = V[il(q)] + E Z 1(1/2)cov[Re(z,), z3
0]cos(wo,q)

1 a3=1

- (1/2)cov[Im(z,), z, 0]sin(wq)

+ (1/2)cov[zr', Re(z,)]cos(wsq)

- (1/2)cov[zro, Im(z,)]sin(wsq)

+ (1/4)cov(zr0, z 0)1. (1.11)

As in the treatment above [cf. Eq. (1.7)], only terms with r=
s are nonzero. This reduces the sum in Eq. (1.11) to a single
sum, which we now evaluate. We note that

cov[Re(z,), zr0] = (I k,(p)cos(pwr) E k,(p')
P P

-(I k,(p)cos(p,))( k,(p'))

= E (k,(p))cos(w~p). (1.12a)
p

Similarly,

cov[Im(zr), Zr 0] - (kp(p))sin(wrp),
p

Cov(Zr
0
, Zr

0) = E (kr(P)) = 2(N), (1.12b)
p

and the remaining two terms are evaluated easily by noting
that cov(A, B) = cov(B, A). These results simplify Eq.
(1.11) to

V[i2(q)] = , [(N) + (1/2)(N) + E (k,(p))
r p

X cos(WrP - rq)]

= (N) E [(3/2) + Yr cos(wrq + Ok)I. (1.13a)
r

Using Eq. (1.4c), we simplify the above equation to obtain

V[i2(q)] = (3/4) (C) + Il(q)

= (C) + 2(q). (1.13b)
4

Thus, in contrast to the previous method, in this method the
variance is no longer uniform across the map. In particular,
the variance is composed of a fixed amount ((C)/4) and a
variable amount that is equal to the dirty image. Indeed,
such behavior can be expected on physical grounds because
the additional noise comes from including the zero-spatial-

frequency components, which are highly correlated with the
corresponding fringe phasors. That the variance follows the
dirty image is a natural consequence of the statistics of
Poisson noise, viz., the variance is equal to the mean.

Now we consider the specific case of a point source at the
phase center, in which case y, = 1 and 0, = 0. Then

(1.14a)I2(q) = (C),

and the SNR in the map is

I2 (0) = (8)1/2((C))1/2

{Vli2(0)]1/ 5 2}

Normalizing to the previous case, we note that the SNR is
enhanced by a factor F = (8/5)1/2. Henceforth we refer to F
as the enhancement factor. We shall use F as a kind of a
figure-of-merit indicator. Thus inclusion of the zero-spa-
tial-frequency components improves the SHR, but the pen-
alty that we pay is that the variance is no longer uniform
across the image.

Why is it that in Subsection 1.A, in which we excluded the
zero-spatial-frequency components, we obtained uniform
variance across the image, whereas in Subsection 1.B, in
which we included the zero-spatial-frequency components,
we obtained a nonuniform variance? This difference arises
because in Subsection L.A we found that there is no covari-
ance or cross talk between pairs of fringe phasors. Thus the
variance must be white, i.e., uniform. On the other hand, in
Subsection 1.B we found that there is a finite covariance that
introduces structure into the variance distribution function.
This is a general result, as can be seen by considering the
variance distribution function in a radio synthesis image.8

At radio frequencies, the large source of noise is an additive
Gaussian noise, which comes from the receiving electronics,
etc. Kulkarni8 found that, for sources with a flux density
(S) considerably weaker than the receiver additive noise (N),
fringe phasors are pairwise uncorrelated, and the variance is
indeed uniform across the synthesized image, a fact that is
verified every day at the VLA. However, for S comparable
with N, the fringe phasors start to become correlated, as a
result of which the variance is predicted to be nonuniform
across the synthesized image.

2. NONREDUNDANT nCn INTERFEROMETER

An nCn interferometer is necessarily more complicated than
an nC2 interferometer because in the former all the n beams
interfere on one single detector. The nb different fringes lie
on top of one another. Application of Eq. (1.3a) with differ-
ent spatial frequencies results in the extraction of the nb

fringe phasors, and the image may be synthesized in the
usual fashion. One might think at the outset that image
synthesis that requires the retrieval of individual spatial-
frequency components is bound to be rather noisy with a
single detector. However, our careful analysis proves other-
wise and at the same time provides insight into improved
schemes of imaging.

If the interferometer geometry allows two or more base-
lines to be exactly equal to one another, then the fringes in
question will be indistinguishable from one another. In
ground-based interferometers such a situation would be di-

(1.14b)
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sastrous, since the atmospheric phase aberrations would
lead to a complete washout of the fringes on redundant
baselines. In a space-based interferometer there is no aper-
ture-dependent phase error, and thus redundancy in base-
line is not a problem. On the other hand, redundancy inhib-
its rapid covergence of the uv plane. Thus, even in a space-
based interferometer, nonredundant baseline geometry
would be advantageous because it would reduce the sam-
pling errors.

In this section we consider an nCn interferometer with no
redundancy of baselines, and in Section 4 we consider an nC,,
interferometer with the maximum possible redundancy.
We consider both cases because many analytical simplifica-
tions that are possible in the former case are invalid in the
latter. However, we show that in either case the SNR in the
map is roughly the same and, in fact, approximately equal to
that of an "C2 interferometer.

Let the nonredundant mask consist of n identical aper-
tures, not necessarily in a one-dimensional geometry, and let
it be illuminated by a source. The classical intensity distri-
bution of the interference pattern by the n apertures has the
average value

(I(x)) = o n + 2 E Ygh COS(KX Bgh/d + Ogh) (2.1)
g<h

where the various symbols have meanings similar to those in
Eq. (1.1). Let (k(p)) denotethephotoelectroncountdistri-
bution due to (I(x)). As in Section 1 we discontinue the
vector notation, assume that the total number of pixels is P,
and note that (k(p)) is proportional to (I(x)):

(k(p)) = (QO)[n + 2 ,Ygh cos(pCgh + Ogh)]- (2.2)
g<h

Here (Qo) has approximately the same meaning as (Ko) in
Section 1. However, since there is no beam splitting, (Qo) =
(n - 1) (Ko). In a typical setup, one can imagine integrating
on a detector (usually a two-dimensional one) for a period
equal to the coherent integration interval. A two-dimen-
sional Fourier transform of the resulting image yields nb
peaks, which can be identified with the nb fringe phasors
corresponding to the nb spatial-frequency components.

As in the treatment above, we must compute the means,
variances, and covariances of the fringe phasors, zij, in order
to estimate the variance in the synthesized image. Here i
and j, like g and h, are aperture indices. The mean phasor
on the ij baseline (i.e., the baseline connecting aperture i to
aperture j) is given by

Zj = (Qo) Zexp(-ipwij) n + 2 E Ygh COS(POgh + 'gh)]

p g<h

= (Qo) E E Yghlexp(ikgh)exp[iP(wgh -ij)]

p g<h

+ exp(-ikgh)exp[-ip(gh + 0ij)]I- (2.3)

We now assume that the geometry of the interferometer is.
such that the baselines are nonredundant; i.e., wij F +gh
unless (ij) and (gh) refer to the same baseline. With this
assumption, only the g = i, h = j term remains in Eq. (2.3):

Z. = (M),yjexp(ikij), (2.4)

where we define (M) P(Q0 ) = (C)/n, (C) being, as before,
the total number of photoelectrons intercepted by the array
per coherent integration interval. The zero-spatial-fre-
quency phasor, zo, has the following average value:

ZO= (QO)Pn = (C). (2.5)

By using Eqs. (1.6) one can easily show that the covariance of
the real components of a pair of fringe phasors is given by

cov[Re(zij), Re(zkl) = E (kp)cos(pWij)cos(pWkl)

p

= (QO) n + 2 E gh COS(PWgh + gh)

p g<h

X COS(pWij)CoS(PWkl)- (2.6)

By writing every cosine in this equation as a sum of two
exponential functions, we can see that we have terms that
involve all possible combinations of two and three spatial
frequencies: 4LWij I (Wkj and +Wgh Wij Wkl- We obtain
nonzero contributions from the pixel sum only when these
spatial-frequency combinations vanish. For combinations
of two frequencies +°ij I WM their nonvanishing is ensured
for i 5d k, j 1 by the criterion of nonredundancy of base-
lines. We now impose an additional condition in order to
simplify the calculations. This condition, hereafter referred
to as the nonredundancy of triangles, concerns three-fre-
quency combinations. Specifically, we assume that

(2.7)

unless (gh), (ij), and (kl) form the sides of a triangle. Thus,
whereas the first condition maximally constrains the base-
lines or vectors in any array, the second condition imposes
the maximal nonredundancy condition on triangles.

By making use of the two nonredundancy conditions, it is
easy to show that, for i < j and k < 1,

cov[Re(zij), Re(zkl)I = (M) bik6jl + 2 t i,kl (2.8)

where the symbol Aijkl = 0 unless the ij and k baselines form
two sides of a triangle, in which case it equals 1, and ei is
the phasor on the third side of that triangle. Similarly, one
may compute the covariances of the imaginary parts of the
Zgh'S

cov[Im(zij), Im(zkl)] = (M) ( bikbjl ' COS Aikl (2.9)

Everywhere in this section, the upper sign (or expression) is
the correct one when the sides (ij) and (kl) of the triangle
meet at that vertex for which the label has a value intermedi-
ate to those of the two vertices, i.e., either when i < j = k < 
or when k < = i < j. The lower sign (or expression) is the
correct one otherwise, i.e., when i = k or when j = 1.

Mixed covariances are computed similarly. They vanish
unless the two baselines have one common aperture. We
obtain
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cov[Re(zij), Im(zkL)I = -(Q 0) E (k,)cos(pwjj)sin(pcokL)
p

= -2(Qo) E E oYgh COS(P Wgh + 'kgh) cos(pw)j)sin(PWkd)
p g<h

= Y ( 2i i X g -fikg f=+1
= (M) 2 (sin 0i'k) X sgn(l - j) for i = k, sgn(i -k) for j = 1 

where sgn(x) is +1 if x > 0 and -1 if x < 0. Furthermore,

cov[Re(zij), Im(zkl)] = cov[Im(zij), Re(zkl)]. (2.11)

V[i3 (q)] = E E cov[Re(zjj), Re(Zkl)]cos(qwij)cos(qokl)

i<j k<l

Finally we need those covariances in which at least one of
the two fringe phasors has zero spatial frequency. It is easy
to show that

V(z 0) = (k,) = ZO = (C), (2.12)
p

cov[zo, Re(zij)] = (QO) I cos(pc.jj)
p

X [n+2 Y Ygh COS(PWgh + Ogh)]

g<h

= (M) yj cos ij

+ cov[Im(zLj), Im(zhl)]sin(qwij)sin(qWkl)

- cov[Re(zij), Im(zhj)]cos(qCoij)sin(qw)kl)

- cov[Im(zij), Re(zkl)]sin(qwij)cos(qWkl))-
(2.15)

The first two terms in the sum can be evaluated easily by
using Eqs. (2.8) and (2.9). The remaining two terms are
simplified best by noting that they are nonzero only if they
involve baselines that form sides for a triangle, for which we
have discussed two possibilities, summarized in Eq. (2.10).
We display these terms explicitly in the following expres-
sion:

(2.13a)

and

cov[z0, Im(zij)] = (M)'yij sin kij. (2.13b)

This is a convenient point at which to pause and discuss
the implications of the nonzero covariances that we found in
Eqs. (2.8)-(2.11). In Subsection 1.B we found that Zgh° were
correlated with Zgh. That was not at all surprising, since
both Zgh and Zgh

0 were derived from the same data. Howev-
er, here we find the surprising result that the covariance
between different fringe phasors is not zero. This is unex-
pected, since it is assumed commonly that the fringe phasors
are uncorrelated. Indeed, this is the case in radio interfer-
ometers, because of which the SNR of a radio synthesis
image (which is, after all, a linear combination of the fringe
phasors) is equal to (nb)"/

2 X S, where S is the SNR of one
fringe phasor. We show below that, despite the apparent
nonzero covariances, the SNR in an optical synthesis map is
equal to (nb)1/2 X S (C) 1/2. Thus we conclude that in the
map-making process the covariance terms cancel each other.

A. Inversion without Total Counts
By following the formulation in Subsection L.A we find the
mean synthesized image to be

(I3(q)) = (M) 3 yij cos(qwij + j). (2.14)
i<j

To evaluate the variance, we first expand it in terms of the
covariances of the individual fringe phasors. The expres-
sion is

V[i3 (q)] = LI, {n [cos2(qwij) + sin2(qwij)]

+ Aijk i cos[q(wLj 4 C0017 COS

i<j k<l

- E sin[q(wij + cop)],yi, sin il

i<j=k<l

- > sin[q(cowj + wkl)'Ykj sin (kkj
k<l=i<j

-> (n - 1 + j - 1)sinqil - ij),yjl sin kfjl
j<l

-, (n-j + 1-1)sin[q(-.il + ij)]Iylj sin kii}

I<j
(2.16)

The triple sums in the third and fourth terms on the right-
hand side of Eq. (2.16) are equal to each other, as are the
double sums in the last two terms. This can be seen clearly
if the sum indices are relabeled. Furthermore, the jth sum
of the third term (and the Ith sum in the fourth term) is
trivial, since coij + wjl = wil is independent of j. It thus
merely produces a factor of 1 - i - 1. We shall also now
interpret, in the second sum above, the symbol Aij,kl explicit-
ly for the two cases for which it does not vanish. The
resulting expression for V[i 3(q)] is then

(2.10)
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V~i3(q)] (M) Tnb + 2 E cos(qw'il)-yi cos oil
2 1

i<j=k<l

+ 2 E (n - 1 + j - 1)cos(qwjl)yjl cos

j<l

- 2 E(1 - i - 1)sin(qwil)'yil sin kil
i<l

-2 E (n - + j- )sin(qwjlyjl sin -Pi}
j<l

Clearly, even for n = 2, a single nontrivial baseline, the
variance is not uniform throughout the map. However, the
SNR at the map center for a point source (-yij = 1, qbij = 0) is

I4(0) /(C)\1/2 2n2 X1/2

V[i4(O)]jl/2 \2 3n 2 - 5n + 3

(2.17)

By relabeling the indices slightly and combining the various
sums, using simple trigonometric identities, we obtain the
following final expression:

V[i3(q)] = (2)
2

X [nnb + 2(n - 2) E yij cos(qcoj + tij)]. (2.18)
i<j

The variance is seen to consist of a constant component
nb(C)/2 and a comparable variable component, equal to the
dirty image, which is reminiscent of the situation considered
in Subsection 1.B. Note the curious fact that the noncon-
stant component disappears for n = 2.

Consider a point source at the phase center, for which 'yij =
1 and aij = 0. Then the SNR of the central pixel may easily
be evaluated to be

13(0) -(C) \/ 2 /2n-2 1 2 (219)

IV[i 3(0)J1/2 k 2 (3n - 4

The enhancement factor F = [(2n - 2)/(3n - 4)]1/2 is unity
for n = 2 and decreases steadily to 73 as the number of
apertures increases. Thus this interferometer is not quite so
efficient as the nC2 interferometer.

B. True Inversion
The mean and the variance of the map constructed by in-
cluding zo are given by appending to Eqs. (2.14) and (2.15)
terms that arise from the inclusion of zo in the Fourier
inversion. Using Eqs. (2.12) and (2.13), one has

I4(q) = (M)[ 2 + E yij cos(qwij + jii)] (2.20)

and

V[i4(q)] = V[i3(q)] + - V(z0 ) + cov[z0 , Re(zij)]cos(qw~j)
4 ~ 1j

i<j

- E cov[zo, Im(zij)]sin(qwij)
i<j

(M) 
= n(2 + nb + 2(n - 1) E 2( - ),y2 Ik2 b/Z.'j+ Y)

L ~~~~~~~i<j

X cos(qwii +'0j 

(2.22)

which is larger by a factor of I8S, for n = 2, than for the case
in Subsection 2.A, in which zo is excluded. However, as in
Subsection 2.A, for large n the enhancement factor F attains
an asymptotic value of 73.

3. MAXIMALLY REDUNDANT -C,
INTERFEROMETER

In Section 2 we considered an nCn interferometer using non-
redundant baselines. We imposed an additional condition
of nonredundant triangles [see relation (2.7)] that simplified
the calculation of the covariances. Intuitively it is clear that
neither of these conditions should affect the final sensitivity
of the interferometer in an essential way. In order to dem-
onstrate this point, we now consider an interferometer for
which these two conditions are not satisfied, viz., an array
with maximal redundancy.

Specifically, we consider here an array of n regularly
spaced apertures in a one-dimensional geometry. For this
mask there are (n - 1) distinct spatial frequencies o, 2oo,
.. ., (n - 1)wo, where w0 is the fundamental frequency corre-
sponding to any two successive apertures. Clearly the spa-
tial frequency ro (1 r n - 1) is (n - r)-fold redundant.

Owing to its complexity, we restrict the sensitivity analy-
sis to the case of a point source at the phase center. The
average photoelectron count is given by

( ) Q [ +-n- 1

(k(p)) = (0) n + 2 E (n -r)cos(prwo) 
r=1 

(3.1)

The constant term in Eq. (3.1) is the zero-spatial-frequency
component. The fringe phasor Zr for spatial frequency rwo is
defined as in Eq. (1.3b):

P

Zr = E1 (k(p))exp(-iprw0 ) (0 r n - 1). (3.2a)
p=1

Its mean value is

(Zr) = (M)(n-r), (3.2b)

to derive which we made use of the fact that, for P >> 1,

E exp(ipm,)w0 ) Pbm. (3.3)

Here, as in Section 2, (C) = n(M) is the average number of
photoelectrons in one coherent integration time across the

Ji entire detector. The mean source flux or the mean value of
the central pixel is given by the sum of all the (z,) 's.

We must calculate the covariances of the real and imagi-
(2.21) nary parts of z, in order to estimate the variance in the

image. As in Section 2,
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cov[Re(zr), Re(z8)] = E E cov[k(p), k(p')]cos(prw0 )
P P'

X coso'swo)

= E (k(p))cos(prc,0 )cos(psw 0), (3.4)
p

in which we have used the statistical independence of the
photoelectron counts at two different pixels and the fact
that these counts are Poisson distributed.

By substituting the expression in Eq. (3.1) for (k(p)) into
Eq. (3.4) and making use of relation (3.3), one may show that

cov[Re(zr), Re(zs)] = (M) [rs + (n - Ir - sl)(1 - rs)

+ (n-r-s)O(n-r-s)], (3.5)

V[i5(q)] = 2 + n(n -2)
2

sinn-x1)
X Cosn )()

2)sin-
(2

+ n sin 2 d s( 2 )
2 ( 2 ) dx s InXN

dco(n.- ix)(n - 1X)
d 2 s
dx 2(2)

where the symbol 0(i) vanishes for all i < 0 and equals 1 for i
> 1. In a similar fashion one may show that

cov[Im(z,), Im(zs)] = (M) [nbr, + (n - Ir - sl)(1 - r)
2

- (n-r-s)O(n-r-s)]. (3.6)

Finally, all the mixed covariances, namely, cov[Re(zr),
Im(zs)], may be shown to vanish identically. We are now
ready to calculate the variace in the map. However, in order
not to detract from the physical discussions of imaging, we
relegate the details of the long calculation to Appendix A.

A. Inversion without Total Counts
The calculations are straightforward, and we merely sum-
marize the results obtained in Appendix A. The mean is
found to be

I5(q) = (M) sincos( ) ]

sinx sin n- 1X
-2 d i2 n(- 2 
2 dx sin

(m2)

nx d2

( 2 ) dx
x=qwo

At the phase center,

I5(0)= (C) (n - )

V[i5(0)] = (C) (5n2 - 9n + 4),
12

leading to a SNR at the phase center of

IO() _ /C 1/2

I V1i5(0)] jI2 2 )
(3.11)

where

6(n-11/2
F= In4 (3.12)

is our enhancement factor. For n = 2 we find F = 1, and the
value of F in the limit of large n is 6.

- sin(n )+ 1 (3.7)

x=qw0

and the variance is

B. True Inversion
As in Subsection 3.A, we merely summarize the results. The
reader is referred to Appendix A for the details of the calcu-
lations. Including the zero-spatial-frequency component in
the Fourier inversion, we obtain the following mean and
variance at pixel location q:

(3.8)

(3.9)

(3.10)
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/ sin(n-
16( = (N) + n 2

-si COS(y d n( ) =

and

3 I _~

V[i6 (q)] = V[i5(q)] - (M) n + (M)In cos(n 2-).N 2 [ 2 )

X x\ ) -sin(f 2 1)x - I - 1) 

(3.14)

where V[i5(q)] is given by Eq. (3.8).
These expressions are rather opaque for general values of

q, but at the phase center of the map, q = 0, they take quite
simple forms:

16(0) = (C) - (3.15)

and

V[i6(0)] = () 3n + 1). (3.16)

122

Thus the SNR at the phase center is

(3.17)

where F, the enhancement factor, is given by

For n = 2, when zo is included in the reconstruction process,
F is enhanced from 1 to of The limiting value of F for
large n is :

4. DISCUSSION AND CONCLUSION
In this paper we have analyzed the distribution of noise in
the image synthesized by an ideal n-element optical interfer-
ometer. By an ideal interferometer we mean one for which
the rays reaching the elements are assumed not to be cor-
rupted by local agents such as the atmosphere. Thus the
analysis reported here is applicable to space- or lunar-based
optical interferometers. We have also assumed that the
detectors are photon-counting detectors without significant
dark current or readout noise.

At radio wavelengths the availability of low-noise amplifi-
ers makes it possible to make multiple copies of the signal at
each element and to detect the fringes on a pair-by-pair
basis. Unfortunately, at optical wavelengths, amplification
without substantial degradation in the SNR of the signal is

not possible. This is most important for low photon num-
bers per coherence volume, a condition that characterizes
faint optical sources. For each mode of the input field, if G
- 1 copies of the input photons are generated by an ideal,
phase-preserving amplifier, then at least G - 1 noise (spon-
taneously emitted) photons are added incoherently by the
amplifier as well. 9 10 These noise photons will in general
overwhelm the amplified signal. Thus one must address the
issue of how to combine beams without being able to amplify
them faithfully.

There are many possibilities, and we have studied two
extreme cases: (1) the so-called C2 interferometer, in
which the beam from each element is split into n - 1 sub-
beams and the resulting n(n - 1) subbeams are combined
pairwise onto nb = nC 2 detectors, and (2) an nCn interferome-
ter, in which all the beams are combined on one detector.
We have performed a complete covariance analysis and eval-
uated the variance across the synthesized image. Our calcu-
lations neglect any errors caused by an incomplete sampling
of the spatial frequencies.

Our most important result is that the SNR in the synthe-
sized image, defined operationally as the SNR for detecting
a point source, for either kind of array is equal to F((L) /2)1/2,
where (L) is the total number of photoelectrons collected by
the array. The values of F, the enhancement factor, is ap-
proximately unity for both the geometries. By including the
zero spatial frequencies (i.e., the total counts in the detec-
tors) one can increase the value of F to a maximum of 87/5.

This point is illustrated graphically in Fig. 1, in which we
display our results for the enhancement factor F of the SNR
as a function of the number of array elements for all six
interferometers considered in the present study. That the
SNR of an nC2 array (the horizontal dashed lines labeled F,
and F2), for a given total number of photoelectrons detected
by the entire array, is independent of n arises from the fact
that individual fringe phasors are detected on independent
detectors. What is most striking about the graph is that the
SNR is more or less independent of the details of the array,
whether it is C2 or nCn or whether it is redundant. The
sensitivity of ideal Michelson interferometers is limited sole-
ly by the total number of photoelectrons detected by the
entire array and not by how individual beams are combined
on the detectors. Thus, if detectors are limited only the
photoelectron-counting noise, then the sensitivity of an nCr
array should be qualitatively independent of r, the number
of subbeams per detector. Thus our most important conclu-
sion is that the beam-combination geometry should not be a
critical issue in the design of a space interferometer.

We find that the nC2 array with the zero-spatial-frequency
components excluded yields uniform variance across synthe-
sized images. Including the zero-spatial-frequency compo-
nents for the C2 array results in the variance's mimicking
the dirty image. The variance is not uniform for the nCn
case regardless of whether the zero-spatial-frequency com-
ponents are included. Overall, we favor the nC2 array for its
constant-variance feature.

Some detectors, such as charge-coupled detectors (CCD's),
have a small but nonneglible readout noise. Improvements
in detector technology may make CCD's, which have a high
quantum efficiency compared with the modern cooled pho-
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of the amplified signal would in fact be lower than that of the
input signal. This argument should settle the issue of the
(nonexistent) role of amplifiers for optical interferometry.

c0

LL

LU

I 

zo'

Z6-
LU

0
*-1 I I I 1

2 4 6 8 10

NUMBER OF APERTURES
Fig. 1. Enhancement factor F of SNR versus the number n of
apertures in the array. F and F2 refer to the C2 array without and
with the zero frequency, F3 and F4 refer to the nonredundant nCn
array, and F5 and F6 refer to the maximally redundant nCn array.

toelectric detectors, suitable detectors for interferometry.1 1
For such detectors the nC2 array is not suitable because beam
splitting reduces the single strength. The performance of
the interferometer would degrade rapidly when (Ko) be-
came comparable with the read noise. Thus in this case we
advocate an nCn detector.

Why is it that the nC2 and nCn interferometers are more or
less equally sensitive? This is by no means an obvious
result. In an ideal nC2 interferometer each of the two beams
incident upon any one detector is weaker by a factor of (n -
1) than the original beam from each aperture. By contrast,
in an nCn array all the beams are incident upon a single
detector and therefore do not suffer from beam splitting.
Thus it may appear that the nCn array should be superior to
the nC2 array. However, the compensating factor is that the
fringe visibilities, say, for a point source, are equal to unity
for the nC2 interferometer, whereas they are 2/n for the nCn
interferometer. Thus the SNR of the synthesized image,
which, after all, a linear combination of the fringe phasors, is
essentially the same for both geometries. On the other
hand, were we to use an estimator such as the bispectrum,
this would no longer be true, and in that case beam splitting
would degrade the sensitivity of the interferometer.

Our analysis shows that the limiting sensitivity of an ideal
optical interferometer is a result of the counting fluctuations
in the signal itself. Thus when the signal is so weak that we
are detecting only a few photons, then the SNR is of order 1,
and nothing can be done to improve it. Specifically, one
might consider using an amplifier to improve the signal, but
since any real amplifier would add quantum noise, the SNR

APPENDIX A: DERIVATION OF EQS. (3.7),
(3.8), (3.13), AND (3.14)

We shall first derive Eqs. (3.7) and (3.8) for the mean and the
variance of the map at pixel q and then use those results to
deduce Eqs. (3.13) and (3.14). Without the zero-frequency
phasor, the map i5(q) defined by the relation

i5 (q) = Re[ Zr exp(iqrco)] (Al)

takes the following mean value:

I5(q) = (M)Re[ (n - r)ex(iqrw0)]^ (A2)

where use is made of Eq. (3.2b). By writing this sum in
terms of the sum Er exp(iqrcoo) and its derivative, we may
evaluate it easily to obtain the result of Eq. (3.7).

To derive Eq. (3.8), we note that we may write V[i5(q)] as

n-1 n-1

V[i5(q)] = Y Ecov[Re(zd), Re(z3)]cos(qrwo0)cos(qsw0)
r=l s=l

+ cov[Im(zr), Im(z,)]sin(qrw0 )sin(qsw0 )j, (A3)

since all mixed covariances are zero. We rewrite Eq. (A3),
by separating the r = s terms and the r sz4 s terms, as

[(n-1)/2]

V[i 5(q)] = E {V[Re(zd)cos2 (qro) + V[Im(zd)]sin 2(qrwo)I
r=1

n-1

+ I fV[Re(zr)]cos 2(qrcoo)

r=[(n+l)/2]

n-l

+ V[Im(z)]sin2(qrco0)I + 2 E 1cov[Re(zr),
r>s=l

Re(zs)] cos(qr 0)cos(qsw0 ) + cov[Im(zr), Im(z.)I

X sin(qrw0)sin(qsw0)j, (A4)

where, for the summation indices, [x] is the greatest integer
function, which is to say that [x] = the largest integer that is
Sx. The single sums in Eq. (A4) are obtained easily by
using Eqs. (3.5) and (3.6) for r = s. They add up to the
expression

SS = (M) [ n + [(n-)/21 (n-2r)cos(2qrwo0)
r=l r=l

= 2 {n(n- 1) + [n Re- a(q) Imi

[(n-1)/2]

X E exp(2iqo0) (A5)
r=l

The double sums in Eq. (A4) may be simplified in terms of
the following simpler double sums:
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n-1

S, = Y exp[iq(r - s)o0]
r>s=1

and
n-1

S2 = 1 exp[iq(r + s)w0 ]O(n-r-s).
r>s=l

In terms of SS and

S -=S1 + S2,

we may write V[i5(q)] as

V[i5(q)] = SS + (M)[n Re - a) Im]S.

since its contribution to Eq. (A9) cancels exactly with an
(A6) identical term in SS. We finally have the expression

1 n 2 1 a
S2 = -- exp (inqwo/2)[ 2 0qw)

(A7) sin[q(n - 1)wo/2] 1 [(n-i)/2]

sin(qwo/2) 2 Z exp(2iqa 0).s~~n~qco0 , r=1
(A15)

By using Eqs. (A5), (A8), (A12), and (A15) in Eq. (A9), we
(AS) may rewrite V[i5(q)] as

(A9)

We now turn to an evaluation of S, and S2.
By making use of the simple geometric-sum formula,

r-1

Z exp(-isqw0 ) =
s=1

exp(-iqo0) - exp(-irqw0 )

1 - exp(-iqco0 )
(A10)

we may express S1 as

n-1

S1 = -exp(-iqw 0) E Iexp[i(r - 1)qwo0] - . (All)

We now extend the lower limit on the preceding sum to r = 1
without changing the result and use Eq. (A10) again to ob-
tain

-i exp[i(n - 1)qw0/2]sin[q(n - 1),wo/2
=, 2 sin2(qw0/2)

i(n - l)exp(iqw 0/2)
+ ~~~~(A12)
2 sin(qw0/2)

We evaluate S2 by noting that the restricted double sum is
over terms symmetric under the interchange of r and s. We
may therefore transform it into an unrestricted double sum
minus a single sum obtained with only the r = s terms:

V[i5 (q)] = 2) n(n -1) + (M) n Re- a Im2 a[ (qwo) J
-i exp[i(n -1)qw0 /2]sin[q(n-1)o/21

2 sin2(q)w0/2)

i(n - l)exp(iqw0/2) 1
+ ~~~+ exp(inqcoo/2)
2 sin(qw0 /2) 2

[n-2 . 1 sin[q(n - )wo/21l

X 2 (qw0) sin(qwo/2) J

(A16)

It is now only a matter of straightforward, although tedious,
algebra to express this equation in the following explicit
form:

V[i5 (q)] = 2 + n(n- 2) cos(nx)
2 co 2 

sin(%n x n-.lnx sin(n -j i)
i(t 2 ) + n . nx\ d sd n (2x
sin( / ) 2 2 ) dx si /I:

1n-1 n-1

S2 = -4 - exp[iq(r + s)]O(n -r-s)
r=l s=l

[(n-1)/2j

- exp(2iqrw0 ). (A13)
r=l

By now transforming the dummy variable pair (r, s) to the
pair (r, R = r + s) in the double sum, we may easily reduce it
to a single sum. The result of this manipulation is

n-i1 [(n-1)/2

S2 = 2E exp(iqRw0 )(R - 1) - -2 exp(2iqr).
R=2 r=1

(A14)

The two single sums above can be evaluated easily. We note
that, in the first sum, extending the lower limit of R to 1
leaves the sum unchanged. Then, when R is replaced by R +
1, the sum becomes a derivative of a simple geometric-series
sum. The second single sum is of course itself a simple
geometric-series sum, but we need not evaluate it explicitly,

+ d
dx

Cos~f 1) I sin n - 1)
2 ( ) 2 x

sin2(-E2)

dx (2)

sin(nxsin( l 1)

2 dx .ix\smn 2)

/nx d 2

+ os, 2 X2 (A17)

x=qwo

This was the equation to be derived.
We now consider the case of imaging, in which the zero-

frequency phasor is included in the image. The map i6(q) is
defined to be
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n-i 

i6(q) = Re [ Zr exp(iqrcoo) + O
r=1

= i(q) + Z. (A18)

The average map then is given by Eq. (3.13):

I6(q) = I5(q) + (C). (A19)

Similarly, the variance V[i6 (q)] of this map differs from
V[i5(q)] only by terms that contain the variance and covari-
ances of zo:

n-1

V[i6(q)] = V[i 5(q)] + - V(z0 ) + E cov(z0 , Re z,)cos(qrwo)
r=1

= V[i5(q)] + - (M)n + (M)4

= V[i5 (q)] - (M)n + (M)

n-i

X > exp(iqrw0 )
r=O

n-1

) (n - r)cos(qrwo)
r=1

n Re - (q 0) I

3 F I2n - I
= V[i5(q)] - (M)n + (M)n c 2 

. /nx\ /~~nx\1

gin- d sin( 2 1 )

;x) dx (2 ) snx ~Usin ( ) sin (-~
(2) (~~~\2) x-qco 0

(A20)

where V[i 5(q)] is given by Eq. (3.8). This completes the
derivation of Eq. (3.14).
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