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ABSTRACT

The original intensity interferometers were instruments built in the 1950s and 60s
by Hanbury Brown and collaborators, achieving milli-arcsec resolutions in visible
light without optical-quality mirrors. They exploited a then-novel physical effect, now
known as HBT correlation after the experiments of Hanbury Brown and Twiss, and
nowadays considered fundamental in quantum optics. Now a new generation of inten-
sity interferometers is being designed, raising the possibility of measuring intensity
correlations with three or more detectors.

Quantum optics predicts some interesting features in higher-order HBT. One is
that HBT correlation increases combinatorially with the number of detectors. Signal
to noise considerations suggest, that many-detector HBT correlations would be mea-
surable for bright masers, but very difficult for thermal sources. But the more modest
three-detector HBT correlation seems measurable for bright stars, and would provide
image information (namely the bispectrum) not present in standard HBT.
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1 INTRODUCTION

If two detectors are counting photons from an ordinary incoherent light source, there is a tendency for photons to arrive at

both detectors together. This is known as photon bunching or HBT correlation, after the pioneering work of Hanbury Brown

and Twiss, and is a consequence of the bosonic quantum statistics of photons. In a situation where coherent light would

produce interference fringes, the HBT correlation with incoherent light varies according to those would-be but absent fringe

patterns. This allows a type of interferometry with incoherent light and without optical-quality mirrors, known as intensity

interferometry.

HBT correlation appears naturally in classical wave optics, and was actually first used to build a radio intensity in-

terferometer, which resolved an extra-galactic radio source for the first time (Hanbury Brown et al. 1952). But when the

same ideas were applied to visible light, and the effect was measured, first in the lab (Hanbury Brown & Twiss 1956) and

then with starlight (Hanbury Brown & Twiss 1958), it became controversial, because it implied that different photons could

interfere, contrary to conventional wisdom at the time. The controversies were eventually resolved with the development of

a quantum-statistical theory for incoherent light by Sudarshan (1963) and Glauber (1963) and the emergence of quantum

optics. In quantum optics, ordinary light (or ‘chaotic light’) behaves like a random mixture of lasers, and the semi-classical

picture of interfering waves, the squared amplitudes of which determine the emission rate of photo-electrons, turns out to be

valid.1 The general phenomenon of photon bunching or HBT correlation then spread to different areas of physics in different

guises. For example, it is well known in the context of nuclear collisions (Baym 1998), and it may even be relevant to animal

vision (Sim et al. 2012).

Meanwhile, Hanbury Brown and collaborators developed the Narrabri Stellar Intensity Interferometer (NSII) which

measured stellar diameters down to milli-arcsecs (Hanbury Brown 1968). But the photon detectors then available were only

1 The semi-classical description is not valid in general. A nice counter-example is provided by electrons, which show HBT anti-correlation

(Kiesel et al. 2002) from fermion statistics.
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2 Malvimat, Wucknitz & Saha

blue-sensitive, limiting the instrument to hot stars. So the NSII ran out of stars to observe in a few years, after which it

was dismantled and almost forgotten. Decades later, with a new generation of detectors, intensity interferometry has become

somewhat topical in astronomy again. A number of proposals and experiments have appeared in recent years (Ofir & Ribak

2006a,b; Borra 2008; Jain & Ralston 2008; Foellmi 2009; Horch & Camarata 2012). Particularly ambitious are plans to adapt

Cherenkov telescopes into a giant reincarnated NSII with resolution down to < 0.03 mas (Nuñez et al. 2012; Dravins et al.

2012).

Future intensity interferometers are likely to have many detectors, not just two. Clearly, detectors can work in simultaneous

pairs. The prospect of measuring N -fold photon coincidences has also been suggested (e.g., Ofir & Ribak 2006a). The basic

theory is well established in the quantum-optics literature and three-detector correlations have been measured in laboratory

experiments (Zhou et al. 2010). But are the results interesting for an astronomical instrument? This paper examines the

question.

2 STANDARD HBT

A nice introduction to HBT from a modern quantum-optics perspective appears in Glauber (2006). We quote some key results

here.

The central concept is the field correlation functions. Let x1 and x2 denote the spacetime locations of two detectors. The

first-order correlation2 is defined as the average

G(x1, x2) ≡
〈
E(−)(x1)E(+)(x2)

〉
. (1)

Classically, E(±) denote the positive and negative frequency parts of the electric field at a detector. In quantum statistics, the

fields become operators. We recognize G(x1, x2) as the unnormalized correlation function or ‘visibility’ in radio interferometry,

or the spatial Fourier transform of the source in the sky. Note that G(x2, x1) is the complex conjugate (Hermitian conjugate

in quantum statistics) of G(x1, x2). Thus G(x1, x1), which is the count rate at x1, is automatically real and non-negative. For

a laser source, G(x1, x2) would be independent of time, but for chaotic sources, the correlation falls away over a coherence

time

∆τ ≈ 1/∆ν . (2)

Now consider a form of second-order correlation

G(2)(x1, x2, x2, x1) ≡
〈
E(−)(x1)E(−)(x2)E(+)(x2)E(+)(x1)

〉
(3)

which is the probability of coincident detection within ∆τ . Chaotic sources have the property (cf. Glauber’s equation 37)

G(2)(x1, x2, x2, x1) = G(x1, x1)G(x2, x2) + |G(x1, x2)|2 . (4)

The first term corresponds to the random coincidences that would also be expected for classical particles, but the second term

describes the non-classical HBT correlations.

To estimate the signal to noise, suppose we have two detectors with equal count rates r (photons per time unit),

parametrized as

r∆τ = G(x1, x1) = G(x2, x2) , (5)

so that G(x, x) provides the number of photons per coherence time. Let us now count photons over some time ∆t. The time

resolution ∆t of the detector, typically ∆t � ∆τ , is often called the reciprocal electrical bandwidth, because in the early

experiments it was set by amplifier properties.

The product of photon counts (corresponding to random coincidences) will be close to (r∆t)2, as given by the first term

on the right of equation (4). The HBT signal given by the second term will make a small but non-zero contribution. Over

a coherence time it will be |G(x1, x2)|2. Over the much longer interval ∆t there are, so to speak, ∆t/∆τ coherent slices,

making the HBT signal r2∆τ ∆t. Using Poisson noise for the photon numbers and thus interpreting the square root of the

total coincidence rate as the noise, we get a signal to noise ratio

SNR(∆t) ∼ r∆τ (6)

for full correlation. This applies to a single counting time ∆t. Over many counting times, the SNR adds in quadrature so that

we get

SNR(T ) ∼ r∆τ

√
T

∆t
(7)

when integrating over a duration T . When increasing the coherence time by using narrow-band filters, the photon rate r will

2 In a different terminology our ‘first-order correlation’ would be called ‘two-point correlation’, and our ‘second-order correlation’ is a

‘four-point correlation’.
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decrease with ∆ν ≈ 1/∆τ so that the ‘spectral intensity’ r∆τ stays constant. This has the remarkable effect that adding

narrow-band filters does not reduce the achieved SNR. This makes it possible to increase the SNR further by using spectral

detectors that can distinguish between different photon energies and effectively record many narrow channels simultaneously.

Or one can decrease the optical bandwidth so much that photon count rates are sufficiently low not to be affected by detector

dead times.

In the NSII, the counting time ∆t was ∼ 10 nanosec. Current off-the-shelf instruments can achieve ∆t ' 50 picosec (not

to mention better quantum efficiency and broader wavelength response). Clearly the time resolution is very good, but it is

still orders of magnitude shorter than the coherence time. Both these inequalities are important.

The fact that ∆t� ∆τ is what makes intensity interferometry interesting in the first place. In standard interferometry,

optical paths have to be kept under control to better than λ, which is extremely demanding mechanically. For intensity inter-

ferometry, path differences do not matter as long as they are well below c∆t, corresponding to metres in the first experiments.

This not only relaxes the mechanical tolerances, it makes the signal immune to atmospheric fluctuations. Compared to other

techniques, intensity interferometry is possible with simpler technology. Put in another way, if we lack the precision to measure

the first-order correlation G(x1, x2) directly, we can still get information on it indirectly through the second-order correlation.

The shortness of ∆t, on the other hand, is what makes intensity interferometry usable with very low coincidence rates. The

NSII could operate at r∆τ ∼ 10−5, because it had 108 counting times per second and hence could build up SNR ∼ 104 r∆τ

in a second. Current technology could deliver at least another order of magnitude better.

The above description, in terms of counting photons, is well suited to optical astronomy. In radio astronomy, on the

other hand, a description in terms of waves and intensities is standard. For incoherent sources, the E(±) fields are considered

as (complex) Gaussian random variables with autocorrelation functions determined by the characteristics of the receiving

system. Each measurement naturally consists of a finite sum of random amplitudes, so that the fields and intensities vary with

time even for sources of constant luminosity. This ‘wave-noise’ or ‘self-noise’ defines the fluctuations whose correlations are

measured as the HBT effect. The wave-noise also adds to the photon shot-noise that is important in the optical domain of low

photon rates, and this contribution actually dominates for high r∆τ . In radio observations the noise is generally dominated

by a third contribution, the ‘thermal’ or ‘receiver noise’, which corresponds to the wave-noise of the signals produced by the

receiving system itself.

Here a conceptual difficulty arises: in radio astronomy, the electric field is considered as a classical field which can be

measured, whereas in quantum optics the electric field is a non-Hermitian operator and hence not itself an observable. How

to reconcile the radio-astronomy and quantum-optics pictures? One possible resolution is given in Burke (1969). Here we

suggest another, which goes as follows. Let there be a source field S(±), and let us superpose it on a known local field L(±).

The resulting field

E(±)(x1) = S(±) + L(±) (8)

then gets its intensity measured:

G(x1, x1) =
〈
S(−) S(+)

〉
+
〈
L(−) L(+)

〉
+
〈
S(−) L(+)

〉
+
〈
L(−) S(+)

〉
. (9)

Here the first two terms on the right are just the intensities |S|2 and |L|2 of the two fields. The last two terms give a beating

oscillation in the photon count rates, and it is from these oscillation that the phase S(±) is inferred. Thus, even if the source

field cannot be measured directly, it can be inferred indirectly. The SNR will then be the last two terms in (9) divided by the

noise. If |L| � |S|, the noise in |L| will dominate. If that noise is ∝ |L|, the SNR will be ∝ |S|. In other words, the SNR will

be proportional to the square root of the source field intensity, just as expected from the photon-counting picture.

3 MORE THAN TWO DETECTORS

For chaotic sources, the higher order correlation functions are all given in terms of the first-order correlations. The result is

presented in equation (10.27) of Glauber (1963), which, with a slight modification of notation, reads

G(n)(x1, . . . , xN , xN , . . . , x1) =
∑
P

N∏
k=1

G(xk,Pxk) . (10)

Here Pxk denotes the kth element of a permutation of {x1, . . . , xN}. The sum is over all permutations. In each term, the first

argument always runs as x1, x2, . . . whereas the second argument runs as a permutation of that ordering. As we remarked

earlier, in quantum optics, the G are correlations between the field operators, but the semi-classical approach of treating

the fields as classical and then interpreting intensities as photon probabilities is valid for light (cf. Sudarshan 1963). Indeed,

equation (10) also appears in the classical theory of random Gaussian variables, where it is known as Isserlis’ theorem.
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4 Malvimat, Wucknitz & Saha

For three detectors, the formula (10) gives

G(3)(x1, x2, x3, x3, x2, x1) = G(x1, x1)G(x2, x2)G(x3, x3) +G(x1, x3)G(x2, x2)G(x3, x1) +

G(x1, x2)G(x2, x3)G(x3, x1) +G(x1, x1)G(x2, x3)G(x3, x2) +

G(x1, x3)G(x2, x1)G(x3, x2) +G(x1, x2)G(x2, x1)G(x3, x3) .

(11)

In each term here, the first argument always runs as x1, x2, x3 whereas the second argument runs as a permutation of that

ordering. One can rewrite this expression in another way, which is easier to interpret, by introducing the normalized correlations

g12 =
G(x1, x2)G(x2, x1)

G(x1, x1)G(x2, x2)
,

g123 =
G(x1, x2)G(x2, x3)G(x3, x1)

G(x1, x1)G(x2, x2)G(x3, x3)
.

(12)

The three-point coincidence rate is then

1 + g12 + g13 + g23 + 2< g123 (13)

times the chance coincidence rate. Here the gij terms are the (normalized) power spectrum,3 while the last term is the bispec-

trum, whose phase is well known in radio astronomy as the closure phase. Thus, whereas two-detector intensity interferometry

only measures amplitudes but no phases, multi-detector combinations are actually sensitive to certain combinations of phases

and provide qualitatively new information.

If the detectors are close together, all the terms are equal (gij = g123 = 1), resulting in a six-fold enhancement over the

chance coincidence rate. This has been measured in lab experiments (Zhou et al. 2010). At this point, one may get the idea,

from the N ! terms in (10), that splitting up a single collecting area into N parts will increase the count rate. But in fact that

will not happen. Splitting reduces the count rate in each detector by a factor of N , hence the N -point coincidence rate would

be N ! (r∆τ/N)N ∝
√
Ne−N (r∆τ)N , using Stirling’s approximation for large N .

Let us now estimate the SNR. We have to be careful here, because the combinatorial formulas define the coincidences

over ∆τ . We are interested in coincidences over ∆t, and we have seen before in the case of two detectors that random and

HBT coincidences scale differently. To take care of this, we have to understand that the intensities that are being correlated

are integrated over a duration ∆t consisting of many intervals of ∆τ , and correlations exist only for fields within the same

short interval. The N -point HBT signal will therefore be

g1. . . N × (r∆τ)N (∆t/∆τ) . (14)

We should emphasize that (14) is not the number of coincidences, but the number that remains after subtracting off the

chance coincidence rate and all the lower-order HBT effects. Meanwhile, the chance coincidence rate is

(r∆t)N . (15)

Hence

SNR(N,∆t) ∼ g1. . . N × (r∆τ)N/2 (∆τ/dt)N/2−1 (16)

For N = 2 and g12 ' 1 we recover the simple expression (6) for standard HBT.

As we mentioned above, the N -detector coincidence rate includes all the lower-order HBT signals as well. So, in principle,

N -detector coincidences could be used to extract the two-point HBT signal. Is it advantageous to do so, compared to standard

HBT? To answer this question, let us consider the number of N -detector coincidences over ∆t

rN∆tN + rN∆tN−1∆τ
∑
j<k

gjk + . . . (17)

The random coincidences are given by the first term, and two-point HBT gives the next term. In the same way as before, we

may derive

SNR(N → 2,∆t) ∼ Γ× (r∆t)N/2
∆τ

∆t
, (18)

where Γ denotes the sum in equation (17). Taking many counting times in quadrature and assuming full correlation (gjk = 1),

we have, analogous to equation (7),

SNR(N → 2, T ) ∼ N(N − 1)

2
(r∆t)N/2

∆τ

∆t

√
T

∆t
. (19)

If we keep the total collecting area constant but split it into N detectors, so that the individual counting rate goes with r/N

we have

SNR(N → 2, T )

SNR(2, T )
= (N − 1)

(
r∆t

N

)N/2−1

. (20)

3 In terms of normalized visibilities γjk, we have g12 = |γ12|2 and g123 = γ12γ23γ31.
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In the photon-counting regime, r∆t/N < 1, and hence splitting detectors does not help. The situation is different in the

case of r∆t/N > 1, in which we could not count individual photons anymore but can still measure intensities. The SNR

would then apparently increase with N . Formally, the optimal number of detectors for r∆t = 1/10/100 is N = 3/7/41 with

SNR benefits compared to two detectors of 1.15/14.6/(1.42× 109). These numbers look extremely promising. But there is a

paradox: equation (20) has SNR increasing with ∆t (that is, with coarser time resolution), when r∆t is large enough. Clearly,

this estimate based on photon shot-noise cannot represent the whole truth. In fact, for very high photon rates, a new source

of noise enters: it is the well-known wave noise from radio-astronomy, and as mentioned in the previous section, it can be

considered as HBT correlation at a single space point over different times. We leave a full calculation of the case of high

photon rates for a future paper, but the basic conclusion is that SNR over one counting time ∆t cannot exceed unity, no

matter how bright the source or how ridiculously large the light collectors.

4 FLUXES AND COUNT RATES

From the previous section, we see that the number of photons detectable in a coherence time, or r∆τ , is central to the SNR.

In a passband around ν, a source with flux density Fν gives

r∆τ ' Fν
hν

A, (21)

where A is the collecting area. As mentioned before, the effect of ∆ν cancels between r and ∆τ . Rewriting the expression,

mixing wavelength and frequency, in the form

r∆τ ' 0.05×
(
Fν
Jy

)(
λ

m

)(
A

m2

)
(22)

makes it easy to compare sources.

Bright stars can be Fν ∼ 104 Jy, but λ ∼ 10−6 m. Hence r∆τ � 1 per m2. More detailed estimates are shown in Figure 1.

On the other hand, bright masers4 can have Fν ∼ 100 Jy at λ ∼ 1 cm, so a large dish easily receives r∆τ > 1. Now, intensity

interferometry is not needed to resolve masers, because at radio wavelengths it is much easier to control the delays sufficiently

accurately for standard interferometry. But high-order HBT using astrophysical masers would be a novel quantum-optics

experiment.

Blackbody sources lead to a rather elegant estimate of r∆τ . Consider a blackbody source at temperature T and angular

area Ω on the sky. We detect photons from it using a collector of area A, in a passband ∆λ. For convenience, we will work in

terms of a logarithmic passband

∆(lnλ) =
∆λ

λ
. (23)

We also write

z ≡ hc

λkT
. (24)

Recall the number density of a photon gas

4π

λ3

∆(lnλ)

ez − 1
. (25)

This is for one polarization state; since we are making rough estimates here, we will disregard the second polarization state.

To get the photon flux, we multiply this by cΩ/(4π) or λνΩ/(4π). The photon arrival rate in an area A is thus

r = ΩA
ν

λ2

∆(lnλ)

ez − 1
. (26)

We can rewrite ∆λ in terms of the coherence time (2). The number of photons received in a coherence time is then

r∆τ ∼ ΩA

λ2

1

ez − 1
. (27)

We can also write r∆τ in another way. Consider the baseline needed to resolve the source. The square of the baseline is

the area Aairy ' λ2/Ω of an aperture whose Airy disc corresponds to the size of the source. This is a natural limit for the

collecting area of detectors to just resolve the source and, e.g., measure its size, because larger detectors would require longer

baselines and reduce the correlations g so much that the source would be ‘resolved out’. With this definition, we have

r∆τ ≈ A

Aairy

1

ez − 1
. (28)

4 For natural masers to show HBT correlation, it is essential that they are not single-mode systems like artificial masers, but rather like
chaotic superpositions of laboratory masers.
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6 Malvimat, Wucknitz & Saha

Figure 1. Photon flux (above) and photon flux per coherence time (below) for three blackbody sources, corresponding roughly to Sirius,

Arcturus and Betelgeuse. The lower panel leads to simple estimates of signal to noise.

For very small z

r∆τ ≈ A

Aairy

kT

hc
λ , λ� hc

kT
. (29)

We see that for an HBT baseline adapted to the source size (that is, A/Aairy fixed), the SNR only depends on λT . Thus,

by going far into the Rayleigh-Jeans tail, r∆τ can in principle be made arbitrarily large (with the consequence of increasing

wave noise), but in the brightest part of the spectrum r∆τ � 1. Equation (28) also tells us that intercontinental baselines

are not an option for HBT, because then A/Aairy would inevitably be very very small, driving down the SNR with it.

A simple physical interpretation for the expression (28) is obtained by noting that it is A/Aairy times the phase-space

density of photons in blackbody radiation. As result of Liouville’s theorem, this phase-space density is conserved when the

radiation leaves the sources to travel towards the observer. When increasing the distance, the total flux gets diluted, but at

the same time the apparent size of the source shrinks so that the momentum-space density increases, which compensates for

the former effect. Aairy is a reciprocal measure for the apparent size of the source, and A/Aairy by definition takes care of

both effects. With increasing distance, the light bucket has to grow to pick up more photons, but can also form a smaller field

of view and be susceptible to a smaller part of momentum-space.

Figure 1 shows the count rate and r∆τ for three blackbody sources. These have T = 9940 K and angular diameter

θ = .007′′, which approximates Sirius, T = 4300 K, θ = .02′′, similar to Arcturus, and T = 3500 K, and θ = .04′′, similar

to Betelgeuse. Hanbury Brown & Twiss (1958) measuring Sirius had a collecting area of about 2 m2, and quantum efficiency

15% at .4 micron. From Figure 1 we would predict SNR ' 3× 10−5 per counting cycle, less absorption and other losses. The

reported value is SNR = 8.5 in 345 minutes, using 5–45 MHz, which corresponds to SNR ' 1× 10−5 per counting cycle.
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5 DISCUSSION

We may expand the title of this paper to two questions. First, is the quantum-optical effect of three-point or higher-order

HBT measurable for any astronomical source? If so, would it tell us new things about the source?

Measuring three-point HBT for bright stars appears feasible. Using equation (16) for N = 2 and N = 3 scaled to an

integration time T ,

SNR(T,N = 2) ∼ g12 × (r∆τ)

√
T

∆t
,

SNR(T,N = 3) ∼ g123 × (r∆τ)3/2
√
T∆τ

∆t
.

(30)

For visible light with a narrowband filter, the coherence time ∆τ ∼ 10−12 s. Off-the-shelf photon counters can reach a time

resolution of ∆t ∼ 10−10 s. From Figure 1, a square metre of collecting area gives r∆τ ∼ 10−4 from a bright star. These

numbers suggest SNR ∼ 1 in an hour. For quicker results one would want to increase the collecting area — from (16) we see

that T ∝ A−N for a given SNR. As always in HBT, optical-path tolerances need only be � c∆t.

Three-point HBT would provide the three-point closure phase, or bispectrum, of the source on the sky. Is that worth

having? Since two-point HBT gives only the power spectrum, and no phase information, having the bispectrum is likely to

be an important advantage for image reconstruction of bright stars.

Going to four or more detectors, for bright stars or any other thermal sources, would be difficult. The geometric estimate

(28) of the photon count per coherence time indicates that r∆τ � 1 for any thermal source, except far in the Rayleigh-Jeans

tail. But r∆τ appears at progressively higher powers in the SNR. For non-thermal sources, the situation may be very different.

In particular r∆τ > 1 appears achievable for bright masers. Masers can be imaged using standard radio-telescopes, so HBT

may not provide any new information on them. Nonetheless, it would be an interesting physics experiment to look for the

combinatorial enhancement of the HBT effect for large N . The total number of photons would not increase, of course, they

would just get more and more bunched.
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