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ABSTRACT 
 

 In previous work, we explored the possibility of using intensity correlation techniques, based upon 
the Hanbury Brown-Twiss effect to perform fine resolution imaging in the service of exoplanet astronomy.  
Here we consider a multi-spectral variant of the Hanbury Brown-Twiss technique. At each of a number of 
independent, light-gathering telescopes photodetection data encompassing each of a set of frequency 
channels are obtained and then are communicated to some convenient computational station. At the 
computational station, the correlations among the photodetections in each of the frequency bands are time 
averaged and then further averaged over the various frequency channels to arrive at measurements of the 
mutual coherence magnitude for each pair of telescopes. From these statistics, imaging data are, in turn, 
computed via phase retrieval techniques. Here, within a modern quantum optics framework, we examine 
the signal-to-noise characteristics of the coherence estimates obtained in this way under a variety of non-
ideal conditions. We provide step-by-step derivations of the statistical quantities needed in a largely self-
contained treatment. In particular, we examine the effects of partial coherence on a scene typical of 
exoplanet imaging and show how partial coherence can be used to greatly attenuate the parent star. We find 
that the multispectral version of intensity interferometry greatly improves the signal-to-noise ratio in 
general and dramatically so for exoplanet detection. The results also extend the analysis of signal-to-noise 
to a wider variety of practical conditions and provide the basis for multispectral intensity correlation 
imaging system design.  
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1. INTRODUCTION: THE SYSTEM CONSIDERED 
 
 Over the past several years, much progress has been made in the development of the entry pupil 
processing (EPP) approach to ultra-fine resolution imaging [1-4]. Within the context of a synthetic aperture 
system employing a multiplicity of modest-sized telescopes, this approach  involves the conversion of light 
collected at each sub-aperture into data and the data is transferred to some suitable location where mutual 
coherence information and, finally, the desired image are computed. In contrast to conventional Michelson 
interferometry, entry pupil processing eliminates the need for extreme-precision relative positioning control 
for path length control and the necessity of transporting collected beams to a central combiner. Each 
spacecraft-hosted telescope can be operated as an independent unit with metrology-derived relative position 
knowledge replacing the need for very precise formation control. Two principal detector technologies have 
been investigated for the implementation of entry pupil processing: Multi-channel optical heterodyne 
detectors [1], and Intensity Correlation Imaging (ICI) imaging arrays [5-9]. Recent studies [10] of sparse 
aperture techniques have compared the two EPP technologies with Michelson interferometry. In particular, 
use of ICI offers several decisive advantages. The light collecting telescopes are completely independent, 
not even the propagation of collected beams to some central combiner is needed. Only the data on the 
several photoelectric signals are brought together. As a consequence, the optical path differences do not 
have to be maintained strictly constant and slight optical element motions have a very small effect. The 
requirements on the a priori knowledge of the relative positions of the telescopes are extremely benign, 
being confined to a precision equal to some small fraction of the maximum baseline divided by the square 
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root of the number of pixels that are desired in the final image result.  Furthermore, the light-collecting 
telescopes need not be of very high optical quality, since their chief function is merely to direct the light to 
a photo detector at the focus. Finally, this approach requires only conventional photometric and processing 
technology.  
 Since ICI is based upon the Hanbury Brown-Twiss effect, we consider a system composed of 
several light-gathering telescopes, each equipped with a photodetector and apparatus to record the time 
histories of the photodetector output signals. With each telescope operating as an independent unit, the 
photodetector output data are communicated to some convenient location where the cross-correlation 
statistics of the signals are computed to yield estimates of the mutual coherence in accordance with the 
Hanbury Brown-Twiss relations. From these statistics, imaging data are, in turn, computed.  Here we 
examine the signal-to-noise characteristics of the coherence estimates obtained in this way, providing 
fundamental, step-by-step derivations of the statistical quantities needed in a largely self-contained 
treatment carried out in the framework of modern quantum optics. The results extend the analysis of signal-
to-noise to a wider variety of practical conditions and provide the basis for multispectral intensity 
correlation imaging system design.  
 

2. PHOTODETECTOR OUTPUT STATISTICS: BASIC THEORY 
 
 We consider the following situation. Light from an extended, incoherent, thermal source is 
received by two afocal telescopes. The light collected by each telescope is directed to a photodetector and 
the output signal of the photodetector is acted upon by some signal shaping electronics. We denote the 
impulse response of the photodetector and the signal conditioning electronics by ( )k t . The photodetector 

and conditioning electronics has response time . Hence, the output of the signal conditioning electronics, 

, can be expressed as: 
dT

( ) , 1,kJ t k = 2

                                                ( ) ( )n

n

n
j

jJ t k t t= −∑                                                   (2.1) 

where the sum is to be taken over the various random photon arrival times, , occurring at telescope n.

 We determine the time average of each output. The symbol 
nj

t

aT
L denotes the time average, 

defined as; 

                                                     ( )1 ξ
−

= ∫L L
a a

t

T t T
a

d
T

                                                 (2.2) 

where  denotes the averaging time, where  is assumed here. We reserve the symbol aT >>aT Td L  for the 

ensemble average. We next subtract ( )
a

n T
J t from ( )nJ t  for 1, 2n =  to obtain the fluctuating 

component of the output of each photodetector: 
                                                   ( ) ( ) ( )Δ = −

a a
T n n n T

J t J t J t                                           (2.3) 

More generally, the prefixes “ ” and “Δ
aTΔ ” indicate fluctuations about the ensemble average and about 

the time average, respectively. In other words, for some quantity, ( )A t : 

                                       ( ) ( ) ( ) ( ) ( ) ( ),Δ = − Δ = −
a a

T T
A t A t A t A t A t A t                     (2.4.a,b) 

As the final step in this process, we multiply the two fluctuating outputs and average the result over . 

Assuming that all processes are stationary and ergodic, then as  increases without bound, the time 
averages coincide with ensemble averages. In this limit, as discovered by Brown and Twiss, the correlation 

aT

aT

( ) ( )1 2Δ Δ
a a

a
T T T

J t J t  is proportional to the square of the magnitude of the normalized mutual coherence 

of the incoming radiation at the two telescope locations.  
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 Regarding the incident field, we assume that the field is quasi-monochromatic, i.e. that it is 
confined to a narrow spectral band, νΔ c , centered at frequency ν  such that ν νΔ <<c .  For the moment, 
we consider a single spectral band in evaluating the signal statistics. In a later section, we extend these 
results to the simultaneous correlation of multiple spectral bands. Following [11] we define the spectral 
range, νΔ , from considerations of the extent of a unit cell of photon phase space. With definitions (4.3-78 
to 4.3-81) in [11], pp.179-180, we have: 

                                                                1νΔ =c cT                                                                (2.5) 

where  is the correlation time of the light defined in (2.25) below. We make the “slow detector 

assumption” that .  
cT

<<c dT T
 In calculating the desired statistical characteristics of, ( ) ( )1 2Δ Δ

a a
a

T T T
J t J t  one could follow the 

procedure in reference [11], to produce results pertaining to any impulse response function, ( )k t . 
However, our object is to evaluate higher order statistics than are considered in [11] and calculations for a 
general impulse response would prove very laborious while yielding little insight.  Hence, we resort to 
simplifying approximations for ( )k t . 

Assume that  rises rapidly to a plateau and then falls rapidly to zero at t=T( )k t d, and therefore 
approximates a rectangular pulse:                                                                     

                                                    ( )
, 0

0, otherwise

κ ≤ ≤
=
⎧
⎨
⎩

dt T
k t                                                     (2.6) 

 
Where is a positive constant denoting the output peak response. With this form for the impulse response 
function, it is evident from that  is proportional to the number of detection events in [t-T

κ
( ) , 1,nJ t n = 2 d, t]: 

 

                                                    ( ) ( ),κ=k kJ t n t Td

)

                                                  (2.7) 
 
where  is the number of detection events occurring during the time interval . This 
relation considerably simplifies calculation of the required statistics. 

( ,k dn t T [ ),− dt T t

 The primary statistics to be calculated are the mean and standard deviation of  
( ) ( )1 2Δ Δ

a a
a

T T T
J t J t .  To evaluate these quantities, we need to assemble the basic probabilistic relations 

for . Within the quantum theory, the joint probability density of  ( ,k dn t T ) ( )1 , dn t T  and is: ( )2 , dn t T

( ) ( )1 21 2
ˆ ˆ

1 2 1 2
1 2

1 ˆ ˆ, ,
! !

; : − +
=d

W Wn np n n t T W W e
n n

T :

)

)1,2

                                 (2.8) 

where T  and ( are the time ordering and the normal ordering symbols and where: : :L

( ) (ˆ ˆ ,α
−

′ ′= =∫ ∫
k d

t2
k k kS t T

W c d x dt I t kx                                  (2.9) 

Here, α  is the dimensionless quantum efficiency of the detectors (assumed the same for all detectors). The 
two-dimensional vector, , is the position vector of points on the entrance pupil, , of the kkx kS th telescope 
(where we assume here that the entrance pupil maps one-to-one onto the detector aperture). We suppose 
that both telescopes have total aperture area S. ( )ˆ ,kI tx is the number density per unit volume in the field 
incident upon the entrance pupil of either telescope: 

( ) ( ) ( )†ˆ ˆ ˆ, , *=k k ,kI t tx V x V x t                                          (2.10) 
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where  is the configuration space photon localization operator. In writing (2.9) we assume that 
there is nearly normal incidence on both detectors. Note that in view of the optical equivalence theorem for 
normally ordered operators (2.8) can be expressed as: 

(ˆ ,kV tx )

( ) { }( ) ( ) { }

( ) ( )

( ) ( ) ( )

1 21 2
1 2 1 2

1 2

†

, ,
1;
! !

, 1, 2

, , * ,

φ

α

− +

−

=

′ ′=

=

∫

∫ ∫
k d

d
W Wn n

t2
k k kS t T

k k k

p n n t T v W W e d
n n

W c d x dt I t k

I t t t

x

x V x V x

=

v

                            (2.11) 

Where { }( )φ v  is the phase space functional or the diagonal representation of the density operator for the 

field. is the right eigenvalue of ( ,k tV x ) ( )ˆ ,k tV x  belonging to the coherent state { }v . For a thermal 

source, { }(φ v )

2n

 is actually a probability density that is jointly normal in all the attendant random variables. 
 Using (2..11), it is evident that by exchanging the phase space integrations with the summations 
over , one can express any moment, such as 1  and n 1 2

r sn n , in the form: 

( )

( ) ( )

{ }( )( ) { }

1 21 2

1 2 1 2

1 2 1 2

1 2
1 2 1 2

0 0 1 2 ,  and ,  fixed
! !

φ

φ
φ

∞ ∞
− +

= =

=

⎧ ⎫⎪ ⎪= ⎨ ⎬
⎪ ⎪⎩ ⎭

=

∑∑

∫L L

r s r s

I

r s
W Wn nr s

I
n n I t I t

n n n n

n nn n W W e
n n

v d v

x x

           (2.12) 

1 2
r s

I
n n  may be considered as the conditional expectation of  given particular distributions for the 

functions , with independent Poisson distributions for . Then 

1 2
r sn n

( ) (1,  and ,I t I tx x )2 2n1 and n 1 2
r s

I
n n is a 

functional of ( ) (1 2,  and , )I t Ix x t )k twith . Therefore, the 

operation  

( ) (, * ,α ∗

−
′= ∫ ∫

k d

t2
k k kS t T

W c d x dt tV x V x

φ
L  is the ensemble average over the statistics of the functions ( ), ,  1, 2=k t kV x , all of 

which are jointly Gaussianly distributed. 
 This manner of evaluating moments is particularly convenient due to the properties of Poisson 
distributions. In particular, define the rth factorial moment of ( )n ℑ as: 

                    ( ) ( ) ( ) ( )1 2 1= − − − +Kr
k k k k k II

n n n n n r                           (2.13) 

We can determine moments of any order by using the elegant result that: 

                                               ( ) ( )
( )

( ) ( )1 2 1 2,
=

rr s
I II t

n n n n
r

s
                                      (2.14) 

where the average of  conditional upon kn ( ) ( )1,  and ,I t I tx 2x is given by: 

                                           ( ) ( ) (, ,α
−

′ ′= = =∫ ∫
k d

t2
k d k k kI S t T

n t T W c d x dt I t kx )1,2                        (2.15) 

The phase space averaging generally involves evaluation of  cross-correlation functions of order 2M:           
( ) ( ) ( ) ( ) ( )2

1 1 2 2 1 1 2 2, ; , , , ,M
M Mt t I t I t I tΓ =r r r r rK                        (2.16) 

Or, substituting ( ) ( ) ( )†, , *=k k ,kI t tx V x V x t : 
 

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )

2
1 1 2 2

1 1 2 2 1 1 2 2

, ; , ; ; ,

            , , , , , ,

M
M M

M M M M

t t t

V t V t V t V t V t V t∗ ∗ ∗

Γ

=

r r r

r r r r r r

K

K K
      (2.17) 
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Since is a Gaussian process, the Gaussian moment theorem implies that: ( ,V tr )

                

( ) ( )
( ) ( ) (

( ) ( ) ( )

)1 1 1 1 2 2 2 2

2
1 1 2 2, ; , ; ; ,

              , ; , , ; , , ; ,

, ; , , ,
π

∗

Γ =

Γ Γ Γ

Γ =

∑
K

K
M M M M

M
M M

i i j j i i j j i i j j

i i j j i i j j

t t t

t t t t t t

t t V t V t

r r r

r r r r r r

r r r r

      (2.18.a,b)  

where the subscripts  are integers and  and ,p qi j (1 ,1p qi M j M≤ ≤ ≤ ≤ )
π
∑ denotes summation 

over all the !M  possible permutations of the subscripts. 
Equations (2.16)-(2.18) pertain to scalar fields. Extension to vector fields is straightforward. Let 

the z-axis be the direction of propagation at the space-time point ( ), tr . Then the instantaneous intensity 
is: 

                                                   

( ) ( ) ( )
( ) ( ) ( )
( ) ( ) ( )

, ,

, ,

, ,

∗

∗

= +

=

=

x y

x x x

y y y

,

,

,

I t I t I t

I t V t V t

I t V t V t

r r

r r r

r r

r

r

)r

                                         (2.19.a-c) 

Here,  are the x- and y-axis components of the analytic vector field representing the 
electric field. For an unpolarized source, these are zero-mean, uncorrelated, and identically distributed 
Gaussian processes. In particular the 2

( ) (, and ,x yV t V tr

nd order correlation function for x and y components vanishes: 
                                     ( ) ( ) ( )(2)

, 1 1 2 2 1 1 2 2, ; , , , 0∗Γ =x y x yt t V t V tr r r r =                               (2.20) 

Moreover, from the point of view of their correlation properties, the x- and y-components of the field are 
indistinguishable: 

( ) ( ) ( ) ( )
( ) ( )

( ) ( ) ( )

2 (2 ) (2 )
1 1 2 2 , 1 1 2 2 , 1 1 2 2

(2 ) (2 )
, 1 1 2 2 , 1 1 2 2

1
2

, ; , ; ; , , ; , ; ; , , ; , ; ; ,

, ; , ; ; , , ; , ; ; ,

, , ,

Γ = Γ + Γ

Γ = Γ

= =

K K

K K

M M M
M M x x M M y y M M

M M
x x M M y y M M

x y

t t t t t t t t t

t t t t t t

I t I t I t

r r r r r r r r r

r r r r r r

r r r

K

                             

(2.21.a,b) 
Where ( , )I tr  denotes ( ),I tr . 

In view of the above relations, one can see that the counterpart of (2.18) for un-polarized light is: 

           

( ) ( )
( ) ( ) ( ) ( ) ( ) ( )1 1 1 1 2 2 2 2

2
1 1 2 2

2 2 21
2

, ; , ; ; ,

              , ; , , ; , , ; ,
M M M MM

M
M M

i i j j i i j j i i j j

t t t

t t t t t t
π

Γ =

Γ Γ Γ∑

r r r

r r r r r r

K

K
    (2.22) 

where, again, denotes summation over all the 
π
∑ !M  possible permutations of the subscripts. 

 Finally, we also assume the light is cross-spectrally pure. Under this assumption, the normalized 
cross-correlation, defined by: 

( )
( ) ( )
( ) ( )

2
1 1 2 2

1 1 2 2

1 1 2 2

, ; ,
, ; ,

, ,
γ

Γ
=

t t
t t

I t I t

r r
r r

r r
                                                 (2.23) 

takes the form (M&W, Section 4.5.1): 
( ) ( ) ( )1 1 2 2 1 2 2 1, ; , , ,0γ γ γ= −t t t tr r r r                                                 (2.24) 
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where  is the normalized autocorrelation function of the field, or the Fourier transform of the 
normalized spectral density. Then a natural measure of the coherence time of the light is the integral: 

( 2 1γ −t t )

( ) 2
γ τ

∞

−∞
= ∫cT τd                                                              (2.25) 

 
3. THE MEAN VALUE OF ( ) ( )1 2Δ Δ

a a
a

T T T
J t J t   - THE BROWN-TWISS EFFECT  

 In this section, we determine the mean value of ( ) ( )1 2Δ Δ
a a

a
T T T

J t J t  and thereby derive the 

basic relationship discovered by Brown and Twiss. Using (2.2), (2.3) and (2.7), we have: 
 

( ) ( ) ( ) ( ) ( ) ( )2
1 2 1 2 1 2

1 , , , ,κ ξ ξ ξ
−

⎡ ⎤
Δ Δ = −⎢ ⎥

⎣ ⎦
∫a a a aa a

t

T T d d d dT TT t T
a

J t J t n T n T d n t T n t T
T

          (3.1) 

Now we commence to determine the mean value of this quantity. Taking the conditional expectation of 
both sides in (3.1) and using (2.14) and (2.15): 

( ) ( ) ( ) ( ) ( ) ( )

( ) ( )

( ) ( )1

1

2
1 2 1 2 1 2

1 2 1 1 2 2
2 2 2

1 2

1 1 2 1 1 2 2

1 , , , ,

, ,
1     1 , ,

φ

ξ ξ

φξ ξ

ξ ξ

φξ ξ

κ ξ ξ ξ

κ α ξ
ξ

−

− −

−

− − −

⎡ ⎤
Δ Δ = −⎢ ⎥

⎣ ⎦

⎡ ⎤′ ′ ′ ′
⎢ ⎥

= ⎢ ⎥
⎢ ′ ′ ′ ′−
⎢⎣ ⎦

∫

∫ ∫
∫ ∫ ∫

∫ ∫ ∫

a a
a a a a

d d

1 2 a

a d d

t

T T d d d dI I I IT t T T T
a

T Tt2 2
tS S t T

a
t T T T

a

J t J t n T n T d n t T n t T
T

dt dt I t I t
c d x d x d

T d dt dt I t I t
T

x x

x x

                   

⎥
⎥

   (3.2) 

Using the Gaussian moment theorem, we have: 
( ) ( ) ( )( )

( ) ( ) ( )

1 1 2 2 1 1 1 1 2 2 2 2

1 1 2 2 1 1 2 2 1 1 2 2 1 1 2 2

2
1 2 1 1 2 2

1

2

, ,

               

               1 , ; ,

φ φ

φ φ φ φ

γ

∗ ∗ ∗ ∗

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗

′ ′ = + +

= + + +

⎡ ⎤′ ′= +⎢ ⎥⎣ ⎦

x x y y x x y y

x x x x x x y y y y x x y y y y

I t I t V V V V V V V V

V V V V V V V V V V V V V V V V

I I t t

x x

x x x x

      (3.3) 

Substituting this into (3.2) and employing the cross-spectrally pure assumption and stationarity gives: 

( ) ( )

( ) ( )

( ) ( )

( ) ( )

1

1

1 2

1 2 1 1 2 2
2 2 2

1 2

1 1 2 1 1 2 2

2 2 2
1 2 1 2 1

, ,
1          1 , ,

1          
2

ξ ξ

φξ ξ

ξ ξ

φξ ξ

κ α ξ
ξ

κ α γ

− −

−

− − −

Δ Δ

⎡ ⎤′ ′ ′ ′
⎢ ⎥

= ⎢ ⎥
⎢ ⎥′ ′ ′ ′−
⎢ ⎥⎣ ⎦

=

∫ ∫
∫ ∫ ∫

∫ ∫ ∫

∫ ∫

a a
a

d d

1 2 a

a d d

1 2

T T T

T Tt2 2
tS S t T

a
t T T T

a

2 2
c d S S

J t J t

dt dt I t I t
c d x d x d

T d dt dt I t I t
T

c T T G d x d x I I

x x

x x

x x x( ) 2
2, ,0

                   

x

     (3.4) 

where: 
 

( ) ( )1

1

2 2

1 2 2 1 1 1 2 2 1
1 1ξ ξ ξ ξ

ξ ξ ξ ξ
ξ γ ξ γ

− − − − − −

⎡ ⎤
′ ′ ′ ′ ′ ′ ′ ′− − −⎢ ⎥

⎣ ⎦
∫ ∫ ∫ ∫ ∫ ∫@

a d d a d d

t t

t T T T t T T T
a c d a

G d dt dt t t d dt dt t t
T T T T

          (3.5) 

Considering the first integral in G, as long as neither 1′t  nor 2′t  are within several multiples of  of their 
integration limits, the limits of the inner integral may be taken from minus to plus infinity, with an error of 
order 

cT

1<<c dT T : 

( ) ( )
2 2

1 2 2 1 1

ξ ξ ξ

ξ ξ ξ
γ τ γ

∞

− − − −∞
′ ′ ′ ′ ′− ≅ =∫ ∫ ∫ ∫

d d d
d cT T T

dt dt t t dt d T Tτ                          (3.6.a) 

where use has been made of  (2.25). For the second integral, similar reasoning leads to: 
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( )1

1

2 2
1 1 2 2 1

1 2
ξ ξ

ξ ξ
ξ ξ γ

− − − −
′ ′ ′ ′− ≅∫ ∫ ∫ ∫

a a d d

t t

d ct T t T T T
a

d d dt dt t t T
T

T                      (3.6.b) 

Hence, substituting (3.6) into (3.5), we find ( )1 2= + +d a c dG T T O T T , and aside from terms of order 

1<<c dT T , (3.4) becomes: 

( ) ( ) ( ) ( ) ( ) ( ) 22 2 2
1 2 1 2 1 2 1 2

1 1 2 , ,0
2

                   

κ α γΔ Δ = − ∫ ∫a a
a 1 2

2 2
T T c d d aT S S

J t J t c T T T T d x d x I Ix x x x     (3.7) 

This is the basic expression of the Hanbury Brown-Twiss effect [7]. 
 
      

4. Standard Deviation of ( ) ( )1 2Δ Δ
a a

a
T T T

J t J t  -  SNR Calculation 

Using (2.7): 

( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
2 1 1 1 2 1 2

4
1 2 1 22

1 1 1 2 1 2

, , , ,1

, , , ,

                                                                              

ξ ξ
κ ξ ξ

ξ ξ
− −

⎡ ⎤− −
⎢ ⎥⎡ ⎤Δ Δ Δ = ⎢ ⎥⎢ ⎥⎣ ⎦ − − −⎢ ⎥
⎣ ⎦

∫ ∫
a a

a a
a a a

a a

d d d dT Tt t

T T T t T t T
a

d d d dT T

n T n t T n T n t T
J t J t d d

T n T n t T n T n t T

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 2 1 2 2 2

1 2 1 2 2 2

, , , ,
         

, , , ,

ξ ξ

ξ ξ

⎡ ⎤− −⎢ ⎥
×⎢ ⎥
− − −⎢ ⎥
⎣ ⎦

a a

a a

d d d dT T

d d d dT T

n T n t T n T n t T

n T n t T n T n t T

  (4.1) 

Next, change the variables of integration to: 
( )1

2 1 1 22,τ ξ ξ ζ ξ ξ= − = +                                                         (4.2) 
Then: 

( ) ( )( )

[ ]

[ ]
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )

2

1 2

1 1
1 1 2 22 22max ,4

2 2min , 1 1
1 1 2 22 2

, , , ,1     
, , , ,

                                        

ζ ζ

ζ ζ

ζ τ ζ τ
κ ζ τ

ζ τ ζ τ

− − +

− − − −

⎡ ⎤Δ Δ Δ⎢ ⎥⎣ ⎦

⎡ ⎤− − − −⎢ ⎥
= ⎢ ⎥

− − − − −⎢ ⎥
⎣ ⎦

∫ ∫

a a
a

a aa

a a

a a

T T T

d d d dT Tt t t T

t T t t T
a

d d d dT T

J t J t

n T n t T n T n t T
d d

T n T n t T n T n t T

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1
1 1 2 22 2

1 1
1 1 2 22 2

, , , ,
                 

, , , ,

ζ τ ζ τ

ζ τ ζ τ

⎡ ⎤+ − + −⎢ ⎥
×⎢ ⎥
− + − + −⎢ ⎥
⎣ ⎦

a a

a a

d d d dT T

d d d dT T

n T n t T n T n t T

n T n t T n T n t T

       (4.3) 

But we now note that if τ ≥ +dT lTc
 for some multiple, l, of correlation times, ( )1

1 2 ,ζ τ− dn T  comprises 

detection events that are statistically independent of those events contributing to ( )1
1 2 ,ζ τ+ dn T . The same 

remarks apply to ( )1
2 2 ,ζ τ− dn T  and ( )1

2 2 ,ζ τ+ dn T . Thus when τ ≥ +dT lTc
, the two main factors in the 

integrand are nearly statistically independent. Since the average of each factor separately is zero, it follows 
that the integrand is negligible when τ ≥ +dT lTc

. Then except for contributions of order 1<<c dT T , we 
have: 

( ) ( )( ) [ ]{ }
[ ]{ } ( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
1 1

2 1 1 2 22 2min ,2 max ,4
1 2 2 max ,2 min , 1 1

1 1 2 22 2

, , , ,1

, , , ,

                                

ζ ζ

ζ ζ

ζ τ ζ τ
κ ζ τ

ζ τ ζ τ

− − +

− − − − −

⎡ ⎤− − − −
⎢ ⎥⎡ ⎤Δ Δ Δ = ⎢ ⎥⎢ ⎥⎣ ⎦ − − − − −⎢ ⎥
⎣ ⎦

∫ ∫
a ad a

a a
a a d a

a a

d d d dT Tt T t t T

T T T t T T t t T
a

d d d dT T

n T n t T n T n t T
J t J t d d

T n T n t T n T n t T

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

1 1
1 1 2 22 2

1 1
1 1 2 22 2

, , , ,
                                                                           

, , , ,

ζ τ ζ τ

ζ τ ζ τ

⎡ ⎤+ − + −
⎢ ⎥

× ⎢ ⎥
− + − + −⎢ ⎥
⎣ ⎦

a a

a a

d d d dT T

d d d dT T

n T n t T n T n t T

n T n t T n T n t T

      (4.4) 

Moreover, the terms [ ]max ,ζ ζ− − + at t T  and [ ]min ,ζ ζ− − − at t T  to the upper and lower limits of the 

τ integration produce contributions of order 1<<d aT T . Neglecting these and invoking stationarity, we get: 
 

Next, invoking stationarity, we find: 
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( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( )

( ) ( )

2 1 1 2 2
4

1 2 0
1 1 2 2

1 1 2 2

1 1

0, , 0, ,2

0, , 0, ,

, , , ,
                                                  

, ,

κ τ

τ τ

τ

⎡ ⎤− −⎢ ⎥⎡ ⎤Δ Δ Δ = ⎢ ⎥⎢ ⎥⎣ ⎦ − − −⎢ ⎥
⎣ ⎦

− −
×

− −

∫
ad

a a
a

a a

a a

d d d dTT

T T T
a

d d d dT T

d d d dT T

d d

n T n t T n T n t T
J t J t d

T n T n t T n T n t T

n T n t T n T n t T

n T n t T( ) ( ) ( )

aT

( )2 2

,
, ,τ

⎡ ⎤
⎛ ⎞⎢ ⎥

+ ⎜ ⎟⎢ ⎥
⎝ ⎠−⎢ ⎥

⎣ ⎦a a

d c

a d
d dT T

T T
O

T Tn T n t T

              (4.5) 

Note that ( ) ( ) ( )0, , 0,τ τ τ= − + −k d k d k dn T n T n T  and ( ) ( ) ( ), , 0,τ τ τ τ= + −k d k k dn T n n T : 

( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( )

2

1 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2
4

0

1

, , , , , , , ,

, , 0, 0, , , 0, 0,2  
0,

τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ τ τ τ
κ τ

τ

⎡ ⎤Δ Δ Δ⎢ ⎥⎣ ⎦

− − − − − − − − − − − − −

+ − − − − − − − − − − − − −
=

+ −
∫

a a a

a a a a

a a a ad

T T T

d d d d d d d dT T T

d d d d d d d dT T T TT

a
d

J t J t

n T n T n T n T n T n T n T n T

n T n T n T n T n T n T n T n T
d

T n T ( )

T

( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1

0, , , 0, 0, , ,

0, 0, 0, 0, 0, 0, 0, 0,

,

                          

τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ

τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥

− − − − − − − − − − − −⎢ ⎥
⎢ ⎥
⎢ ⎥+ − − − − − − − − − − − − −⎢ ⎥⎣ ⎦

×

a a a a

a a a a

d d d d d d dT T T T

d d d d d d d dT T T T

n T n T n T n T n T n T n T

n T n T n T n T n T n T n T n T

n ( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )
( ) ( )

1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1 2 2 1 1 2 2

1 1

, , , , , , ,

, , 0, 0, , , 0, 0,

0, 0, , , 0, 0, , ,

0, 0,

τ τ τ τ τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ τ τ τ

τ τ τ τ τ τ τ τ τ τ τ τ

τ τ

− − − − −

+ − − − − − − − − −

+ − − − − − − − − −

+ − − −

a a a a

a a a a

a a a a

T T T T

d d d dT T T T

d d d dT T T T

d d T

n n n n n n n

n n n T n T n n n T n T

n T n T n n n T n T n n

n T n T( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )2 2 1 1 2 20, 0, 0, 0, 0, 0,τ τ τ τ τ τ

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥− − − − − − − − − −⎢ ⎥⎣ ⎦a a a a

d d d d d dT T
n T n T n T n T n T n T

T

(4.6) 
 
We can see that contributions from ( ) ( ) ( ), , , ,  and 0,τ τ τ τ τ− −k d k k dn T n n T  are approximately mutually 
statistically independent. In consequence, we have: 

( ) ( )( )
( ) ( )( ) ( ) ( )( ) ( ) ( )( ) ( ) ( )( )

2

1 2

2 2
4

1 1 2 2 1 1 2 20

2     , , , , , , , ,κ τ τ τ τ τ τ τ τ τ

⎡ ⎤Δ Δ Δ⎢ ⎥⎣ ⎦

⎡ ⎤= − − − − − − − − − − − − −⎢ ⎥⎣ ⎦∫

a a
a

d

a a a a

T T T

T

d d d d d d d d d d d d d d d dT T T
a

J t J t

d n T T n T T n T T n T T n T T n T T n T T n T T
T T

 

(4.7) 
where we again invoked stationarity, shifting the time arguments by . Now we are ready to use (2.13) 
and (2.14) to evaluate the integrand above. Dropping the time arguments for the moment: 

dT

( )( ) ( )( )
( )

( )

2 2

1 1 2 2 1 1 2 2

2 2
1 2 1 2 1 2 1 2 1 2

2 2 2
1 2 1 2 1 2 1 2 1 1 2 2

2 2 2 2 2 2
1 2 1 2 2 1 1 2 1

            2

              4 2 2

              2

φ

φ φ φ φ

φ φ φ φ

φ φ φ

⎡ ⎤− − − − −
⎣ ⎦

= − + + +

+ − − −

+ + + +

a a a aT T T T
I

I I I I I I I I

I I I I I I I I

I I I I

n n n n n n n n

n n n n n n n n n n

n n n n n n n n n n n n

n n n n n n n n n n2

2 2 2 2
1 2 1 2 1 2              4+ + −n n n n n n

       (4.8) 

According to (2.15): ( ) ( ) (,
τ

τ α ′ ′− = =∫ ∫
d

k

T2
k d d k kI S

n T T c d x dt I t kx ), 1, 2 . Now consider the term 

1 2 φI I
n n : 

( ) ( )

( ) ( ) ( ) ( )

2 2
1 2 1 2 1 2 1 1 2 2

2 2
1 2 1 2 1 2 1 1 2 2 1 2

, ,

        , ,

φ τ τ

τ τ

α

α

′ ′ ′ ′=

⎡ ⎤′ ′ ′ ′= + −⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

d d

1 2

d d

1 2

T T2 2
I I S S

T T2 2

S S

n n c d x d x dt dt I t I t

n n c d x d x dt dt I t I t I I

x x

x x x x

          (4.9) 

Using (3.3) and (2.24): 
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( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2 1 2

2 22 21
1 2 1 2 1 2 1 2 2 12

2 22 21
1 2 1 2 1 22 0 0

        , ,0

        , ,0

φ

τ τ

τ τ

α γ γ

α γ τ τ γ τ τ τ γ τ
− −

−

′ ′ ′ ′= −

2⎡ ⎤′ ′ ′ ′ ′= − −⎢ ⎥⎣ ⎦

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

d d

1 2

d d

1 2

I I

T T2 2

S S

T T2 2
dS S

n n n n

c d x d x I I dt dt t t

c d x d x I I T d d

x x x x

x x x x

 (4.10) 

 
The first term in brackets is clearly of order  and the second term is of order . Thus, we obtain: cT 2

cT
( )1 2 1 2φ

= + cI I I I
n n n n O T                                               (4.11) 

Similarly, for the other terms in (..), we obtain: 
 

( ) ( ) ( )2 2 2 2 2 2 2 2
1 2 1 2 1 2 2 1 1 2 2 1, ,

φ φ φ
= + = + = +c cI I I I I I

n n n n O T n n n n O T n n n n O Tc

a

  

(4.12.a-c) 
Considering our assumption that , the << <<c dT T T ( )cO T  terms make negligible contributions to the 

integral for ( ) ( )( )2

1 2
⎡Δ Δ Δ⎢ ⎥⎣ ⎦a a

a
T T T

J t J t ⎤  in (4.7). Then (4.8) yields:  

( )( ) ( )( )
( ) ( ) ( )

2 2

1 1 2 2 1 1 2 2 1 2

22 2
1 1 2 2                                                                                           

φ

α τ

⎡ ⎤− − − − − ≅
⎣ ⎦

= − ∫ ∫

a a a a

1 2

T T T T
I

2 2
d S S

n n n n n n n n n n

c T d x I d x Ix x

 (4.13) 

Substitution of this into (4.7) gives: 

( ) ( )( ) ( ) ( )
2

4 2 2 3
1 2 1 1 2

2
3

κ α⎡ ⎤Δ Δ Δ =⎢ ⎥⎣ ⎦ ∫ ∫a a
a 1 2

2 2
T T dT S S

a

J t J t c T d x I d x I
T

x 2x                  (4.14) 

Thus, defining the signal-to-noise ratio associated with the correlation measurement, denoted by JSNRΔ , 
as the ratio of the average of ( ) ( )1 2Δ Δ

a a
a

T T T
J t J t to the standard deviation of this quantity, we have: 

( ) ( ) ( ) ( ) ( ){ }2
1 2 1 2 1 2 1 1 2 2

3
4 , ,0α γΔ ′ ′ ′ ′= ∫ ∫ ∫ ∫

1 2 1 2

2 2 2 2a
J c S S S S

d

TSNR cT d x d x I I d x I d x I
T

x x x x x x       (4.15) 

It is convenient to recognize that the quantity ( )ccT I x  is the average number of photon arrivals at 

location  per second, per Hertz per unit area. This parameter, which we denote byx N , is dependent only 
upon the physical condition and location of the source. Also, let us express results in terms of the detector 
bandwidth, 1νΔ @d Td . Then our results for the mean and SNR associated with 

( ) ( )1 2Δ Δ
a a

a
T T T

J t J t become: 

( ) ( ) ( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( ){ }

22 2
1 2 1 1 2 2 1 2 1 2 1 2

2
1 1 2 2 1 2 1 2 1 2

3
4

2

2

1 1 ,
2

1 ,

ν

ν

νκ α μ μ γ
ν

α ν μ μ γΔ

Δ

Δ

Δ ′ ′ ′ ′Δ Δ = −
Δ

′ ′ ′ ′= Δ −

∫ ∫ ∫ ∫

∫ ∫ ∫ ∫

a a
a 1 2 1 2

1 2 1 2

2 2 2 2c
T T T S S S S

d

2 2 2 2
J a d S S S S

a d

a d

T

T

J t J t d x N d x N d x d x

SNR T d x N d x N d x d x

x x x x x x

x x x x x x

,0

,0

(4.16.a,b) 
where: 

( ) ( ) ( ) ( )1 1 2 2μ ′ ′ ′= ∫ ∫
1 2

2 2
k k S S

N d x N d x Nx x x x′                                      (4.17) 

 
While these expressions are useful, the usual practice is not to work with ( ) ( )1 2Δ Δ

a a
a

T T T
J t J t  directly but 

rather with the correlation coefficient: 
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( ) ( )

( ) ( )

1 2

2 2

1 2

Δ Δ
=

⎡ ⎤ ⎡ ⎤Δ Δ⎣ ⎦ ⎣ ⎦

a a a

a

a a
a a

T T T
T

T T
T T

J t J t
C

J t J t

                                          (4.18) 

Where ( )
2

⎡ ⎤Δ⎣ ⎦a
a

T k
T

J t is the observed time-averaged mean square of the output fluctuations of detector k. 

Proceeding as before, we find: 

( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 2
1 1 2 2

2
1 1 2 2

1 2       1 , ,0
2

ν
κ α

ν

μ α μ μ γ
ν

Δ⎡ ⎤ ′ ′ ′ ′Δ =⎣ ⎦ Δ

⎧ ⎫⎛ ⎞⎪ ⎪′ ′ ′ ′ ′ ′ ′× + −⎨ ⎬⎜ ⎟Δ⎪ ⎪⎝ ⎠⎩ ⎭

∫ ∫

∫ ∫ ∫ ∫ ∫

a
1 2a

k 1 2 k k

2 2c
T k S ST d

2 2 2 2 2
k k k k k k k kS S S S S

a d

J t d x N d x N

d x d x N d x N d x d x
T

x x

x x x x x x x

(4.19) 

Ignoring the higher order terms that arise from ( ) ( )
2 2

⎡ ⎤ ⎡ ⎤Δ − Δ⎣ ⎦ ⎣ ⎦a a
a

T k T k
T

J t J t , the expression for 

aTC becomes: 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( ) ( )

2
1 2 1 2 1 2

1 1 1 1 2 2 2 2 1 1

2
1 1 1 1 1 1

2

2 2

1 1 , ,0
2

1 11 1
2 2

                             , ,0

ν

ν ν

α μ μ γ

μ α μ α

μ μ γ

Δ

Δ Δ

=

−

⎧ ⎫′ ′ ′ ′ ′ ′+ − + −⎪ ⎪
⎨ ⎬
⎪ ⎪′ ′ ′×
⎩ ⎭

∫ ∫

∫ ∫ ∫ ∫ ∫

∫ ∫

a

1 2

1 1 2 2 1 2

1 1

T

2 2

S S

2 2 2 2 2

S S S S S S

2 2

S S

a d

a ad d

T

T T

C

d x d x

d x d x N d x N d x d x N d

d x d x

x x x x

x x x x x

x x x x

2 ( )

( ) ( ) ( )

2 2

2
2 2 2 2 2 2                             , ,0μ μ γ

⎧ ⎫′ ′⎪ ⎪
⎨ ⎬
⎪ ⎪′ ′ ′×
⎩ ⎭

∫

∫ ∫
2 2

2 2

S S

x N

d x d x

x

x x x x

 

(4.20) 

Then if we ignore the noise contributions from ( ) ( )
2 2

⎡ ⎤ ⎡ ⎤Δ − Δ⎣ ⎦ ⎣ ⎦a a
a

T k T k
T

J t J t , the signal-to-noise ratio 

associated with is identical to the expression for 
aTC ΔJSNR , i.e., Δ≅C JSNR SNR  

 
5. Output Statistics for Multi-Channel Correlators 

 
 Suppose that N  and the coherence are approximately constant over a broad frequency band, say 

[ ]1 2,ν ν ν∈ , so that they characterize the light in the entire band. It would be desirable to make combined 

measurements over [ ]1 2,ν ν ν∈  in order to improve the signal-to-noise ratio. To accomplish this, let us 

divide the light received at each telescope into cM equal and contiguous frequency bands. For each band 
we have a separate photodetector and we correlate the output fluctuations associated with the same band 
separately and then average the results for a given pair of telescopes over all cM bands. The width of each 

band is ( )2 1ν ν νΔ = −c cM  . cM is chosen so that quasi-monochromicity is satisfied for each band, 

i.e., 1ν νΔ <<c . In addition, we must ensure that the slow detector assumption is satisfied for each band: 

( )2 1ν ν ν νΔ << Δ = −d c cM                                                  (5.1) 
Under these assumptions, it is evident that the average of the correlation of the fluctuations over all these 
frequency bands is given directly by the right-hand side of  (4.16.a): 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

1 2
1

22 2
1 1 2 2 1 2 1 2 1 2

2

1

1               1 , ,0
2 ν

νκ α μ μ γ
ν

=

Δ

Δ Δ

Δ ′ ′ ′ ′= −
Δ

∑

∫ ∫ ∫ ∫

c

a a
a

1 2 1 2

M
m m

T T Tmc

2 2 2 2c
S S S S

d
a dT

J t J t
M

d x N d x N d x d xx x x x x x

  (5.2) 
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Where ( ) ( )Δ
a

m
T kJ t is the fluctuation at the kth light collector for the mth  frequency band. However, since the 

frequency bands are not overlapping, the quantities ( ) ( ) ( ) ( )1 2
⎡ ⎤Δ Δ Δ⎢ ⎥⎣ ⎦a a

a

m m
T T T

J t J t  

and ( ) ( ) ( ) ( )1 2
⎡Δ Δ Δ⎢⎣ ⎦a a

a

n n
T T T

J t J t ⎤
⎥

 for ≠m n  are statistically independent and of zero mean. Consequently, 

the signal-to-noise ratio in this case is augmented by a factor of cM : 

( ) ( ) ( ) ( ) ( ) ( ){ }2
1 1 2 2 1 2 1 2 1 2

3
4

21 ,να ν μ μ γΔ Δ ′ ′ ′ ′= Δ − ∫ ∫ ∫ ∫
1 2 1 2

2 2 2 2
J a c d S S S Sa dTSNR T M d x N d x N d x d xx x x x x x ,0  (5.3) 

In effect, via this artifice, the bandwidth of the detectors is increased 
cM -fold. 

 
6. Coronography Using Partial Coherence  

 
 The expression for ( ) ( )1 2Δ Δ

a a
a

T T T
J t J t is not simply proportional to ( ) 2

1 2, ,0γ c cx x  where 

are the positions of the centroids of the collecting apertures unless neither telescope can resolve 
the object. For the case in which the telescopes can partially resolve the object, Brown and Twiss [7] 
examined simple geometries consisting of uniformly bright disks and arrived at the “partial coherence 
factor” as a correction to the SNR results for the unresolved case. Our results for SNR are suited to 
examine the more general case involving scenes that have both large, resolvable objects and smaller, 
unresolvable objects. The effect of resolvable elements in the image to be reconstructed is apparent in the 
factor 

1,and cx x 2c

( ) ( ) ( ) 2
1 2 1 2 1 2, ,0μ μ γΦ = ∫ ∫

1 2

2 2

S S
d x d x x x x x  in the expression for ( ) ( )1 2Δ Δ

a a
a

T T T
J t J t , (4.16.a). We 

may usually assume that the intensities falling on the region occupied by the telescopes are nearly constant. 
Then ( ) 1μ ≅k Sx . Also, the normalized degree of coherence is approximately dependent upon the 
difference in positions, . Thus we are concerned with the quantity: 

2 −x x1

( ) 2
1 2 2 12

1 γΦ ≅ −∫ ∫
1 2

2 2

S S
d x d x

S
x x                                                     (6.1) 

Moreover, under the same assumptions, the intensity image, ( )M θ , is the inverse Fourier transform of  

( )2 1γ −I x x : 

( ) ( ) ( )

( ) ( ) ( )

2

2

exp 2 *

1 exp 2 *

π γ λ

γ π

= − Δ

=

∫

∫

M I d i

d i M
I

θ u u θ r u

u θ u θ θ

=
                                      (6.2.a,b) 

Now consider a case representative of imaging an exo-solar planet next to its planet star, where we model 
the star as a uniformly luminous disk centered on the origin of the look angle plane: 

( ) ( )

( ) ( ) ( )

( )

( )

( ) ( )

2

2

2
2

1,  

0,  

4 2 exp 2 *

1 exp 2 *

δ

δ

δγ δ π
π δ

γ π
π δ

⎧ ≤ ⎫⎪ ⎪= + −⎨ ⎬
>⎪ ⎪⎩ ⎭

≅ +

= ∫

S
S P P

S

P P
S P

S S

P P
P P

M B M

Bjinc i
B

d i M
B

θ
θ θ θ

θ

u u u θ u

u θ u θ θ

γ P

                         (6.3.a-c) 

Here, the star has intensity , and angular radius SB δS . ( )PM θ is the image of the planet alone, when it is 

centered at the origin,  is the corresponding (approximately normalized) coherence, and ( )γ P u Pθ  is the 
angular position of the planet. PB is the average intensity over the extent of the planet δP is its approximate 

angular radius.  The jinc function is defined as ( ) ( )1 2π=jinc Ju u u  and in normalizing the expression 
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for  we have ignored terms of the order of the ratio of the planet brightness to the star brightness. 
With these expressions, we have: 

( )γ u

( )

( ) (( ))

( )

( ) ( ) ( ) ( )

2 1

2
2 12

2
2 *

1 2 2 1 2 12 2

22

2 12

2

2 1 2 1 2 12

16 2

81 2 Re

4 2 exp 2 *

π λ

δ λ
π

δ δ λ γ
π δ

δ γ λ
δ

δγ δ λ π λ γ λ
π δ

−

⎡ ⎤
⎢ ⎥−⎢ ⎥
⎢ ⎥
⎢ ⎥Φ ≅ + − −
⎢ ⎥
⎢ ⎥
⎢ ⎥
+ −⎢ ⎥
⎢ ⎥⎣ ⎦

≅ − + − −

∫ ∫ P

1 2

S

i2 2 P P
S PS S

S S

P P
P

S S

P P
S P P

S S

jinc

Bd x d x jinc e
S B

B
B

Bjinc i
B

x x θ

x x

x x x x

x x

u x x x x θ x x

λ
           (6.4.a,b) 

 
Now suppose that 210 ,  10δ δ δ− −≅ ≅ 2

P S S Pθ , as is the case for the Earth-Sun system. Let us also consider 

circular apertures of diameter  with their centers distance TD 1
2 >> TX D  from the origin along the x-axis, 

so that the two aperture surfaces have the form: 
1

1 1 1 12

1
2 2 2 22

ˆ: ,
ˆ: ,

= + ≤

= − + ≤
T

T

S Xx D

S Xx

x ξ ξ

x ξ ξ D
                                                  (6.5.a,b) 

Then: 

( )

( ) ( ) ( )( )( )

( )( )

1 2

1 1

2
1 22

2
ˆ2 *

1 2 1 2 1 22 22 2

22

1 22

16 ˆ2

81 ˆ ˆ2 Re

ˆ

π λ

δ λ
π

δ δ λ γ
π δ

δ γ λ
δ

+ −

≤ ≤

⎡ ⎤
⎢ ⎥+ −⎢ ⎥
⎢ ⎥
⎢ ⎥Φ ≅ + + − + −
⎢ ⎥
⎢ ⎥
⎢ ⎥
+ + −⎢ ⎥
⎢ ⎥⎣ ⎦

∫ ∫ P

T T

S

i Xx2 2 P P
S PD D

S S

P P
P

S S

jinc Xx

Bd d jinc Xx e Xx
S B

B Xx
B

ξ ξ θ

ξ ξ

ξ ξ

ξ ξ ξ ξ ξ ξ

ξ ξ

λ
   (6.6) 

Further, suppose that the collecting apertures are nearly large enough to resolve the planetary disk, so that 

1 2max 2 0.1λ δ− = ≅TDξ ξ P , which implies ( ) ( )1 2ˆ ˆγ + − ≅P γ PXx ξ ξ Xx . Also because 210δ δ−≅P S
 

we can use the asymptotic expression for large arguments in evaluating ( )1 2ˆ2δ λ+ −Sjinc Xx ξ ξ  to 

get: 

( ) ( )( )

( )

1 2

1 1

3
2

1 24

3 22
ˆ2 *

1 2 1 22 2 22 2

22

2

1 3ˆcos 2
4

21 3ˆ ˆcos 2 Re
4

ˆ

π λ

λ π δ λ
δπ

δ λ π δ λ γ
δπ δ

δ
γ

δ

+ −

≤ ≤

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞⎢ ⎥+ − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠
⎢ ⎥

⎛ ⎞ ⎛ ⎞⎢ ⎥⎛ ⎞Φ ≅ + + − −⎜ ⎟ ⎜ ⎟⎜ ⎟⎢ ⎥⎝ ⎠⎝ ⎠⎝ ⎠⎢ ⎥
⎢ ⎥
⎢ ⎥+
⎢ ⎥⎣ ⎦

∫ ∫ P

T T

S
S

i Xx2 2 P P
S PD D

SS S

P P
P

S S

Xx
X

B
d d Xx e X

XS B

B
Xx

B

ξ ξ θ

ξ ξ

ξ ξ

ξ ξ ξ ξ x

  

(6.7) 
Using the approximation ( )1 2 1 2ˆ ˆ*+ − ≅ + −Xx Xξ ξ ξ ξ x , we have: 

( )

( )
( ) ( )

23 32
2 2

4 2 4

3 2 3 32 ˆ ˆ2 * 2 *2 28 8
2 2

41 1 3ˆ cos
22 2

ˆ     Re
δ δ

π λ π λ
λ λ

πδδλ λγ π
δ δ λπ δ π

δ λ γ
δπ δ

⎛ ⎞ ⎛ ⎞− + − − −⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

+ −

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎡ ⎤Φ ≅ + + − −⎜ ⎟ ⎜ ⎟ ⎜ ⎟ ⎣ ⎦⎝ ⎠⎝ ⎠ ⎝ ⎠
⎧ ⎫⎛ ⎞⎛ ⎞ ⎪ ⎪⎜ ⎟+ +⎨ ⎬⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎪ ⎪⎝ ⎠⎩ ⎭

S S
P P

SP P
P c

S SS S

i X Xx i X Xx
P P

P
SS S

B
Xx X P P

X XB

B
Xx e E e E

XB

θ θ

s             (6.8) 

where: 
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ˆ ˆ2 * 2 *

2 2

2 2

4 41 1ˆ ˆcos * , sin * ,

1 1,
δ δ

π λ π λ
λ λ

πδ πδ
λ λ

⎛ ⎞ ⎛ ⎞
⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

≤ ≤

+ −≤ ≤

⎛ ⎞ ⎛ ⎞= =⎜ ⎟ ⎜
⎝ ⎠ ⎝

= =

∫ ∫

∫ ∫
g g

T T

S Si x i xP P

T T

2 2S S
c sD D

2 2

D D

P d x P d x
S S

E d e E d e
S S

ξ θ ξ θ

ξ ξ

ξ ξ

ξ ξ ξ ξ

ξ ξ

⎟
⎠                   (6.9.a,d) 

Examine the above integrals. First: 

( ) ( )

2
2

2 0
4

22

20
2

2 221 sin cos cos cos 1
4 cos 4 cos

4 1 1 1       sin cos 1
22

π

π

πδ
λ

πδ πδλ λθ θ
πδ θ λ πδ θ λ

λ
π ππδ

λ

⎡ ⎤⎛ ⎞
θ

δ

⎡ ⎤⎛ ⎞ ⎛⎢ ⎥= + ⎜ ⎟⎜ ⎟ ⎜
⎞ −⎟⎢ ⎥⎝ ⎠ ⎝⎢ ⎥⎠⎣ ⎦⎝ ⎠⎣ ⎦

⎡ ⎤ ⎛ ⎞⎛ ⎞= + − ≈⎡ ⎤⎢ ⎥ ⎜ ⎟⎜ ⎟ ⎣ ⎦⎝ ⎠⎢ ⎥ ⎝ ⎠⎣ ⎦⎛ ⎞ −⎜ ⎟
⎝ ⎠

∫

∫
S

T

S ST
c T

T S S

D

S TS
T

DP d D D
D

du u u O
u u D

D u

T

           (6.10) 

 
We can show similarly that: 

, ,
2 2 2

λ λ
πδ π π+ −

⎛ ⎞ ⎛⎛ ⎞
≈ ≈ ≈⎜ ⎟ ⎜⎜ ⎟ ⎜ ⎟ ⎜⎝ ⎠ ⎝ ⎠ ⎝

s
S T P T P T

P O E O E O
D Dθ θ

λ ⎞
⎟⎟
⎠D

                    (6.11.a-c) 

By virtue of the assumption 1 2max 2 0.1λ δ− = ≅T PDξ ξ ,  are seen to be of order and cP sP δ δP S  and 

 are of order  and +E −E δP Pθ . Therefore the only appreciable contributions in (6.8) are the first two terms 
 

( )
3 22

4 2

1 ˆ . . .
2

δλ γ
π δ δ

⎛ ⎞
Φ ≅ + +⎜ ⎟

⎝ ⎠
P P

P
S S S

B Xx H O T
X B

                                      (6.12) 

Suppose that X is chosen so that the system images the planetary disc with 100 pixels on a side. Then 
210λ δ−≅ PX

. Hence 
3

12
4 4

1 1 10
2 2

λ
π δ π

−⎛ ⎞
≅⎜ ⎟

⎝ ⎠S X
 . In other words, the effect of partial coherence is to reduce the 

contribution of the star to the square of the magnitude of the coherence by a factor of  . Therefore, 

even if the ratio of the planet flux to the star flux, 

155 10−×
2

2

δ
δ

P P

S S

B
B

, is 610− ,  the observed coherence magnitude 

differs from that of the planet alone by a relative error of approximately 32 10−× . The partial coherence 
effect allows the system to behave as if it were a coronograph. 
 As a final remark, we note that it would not be necessary to make each light collector so large that 
it actually just misses resolving the planet. The same effect can be obtained with a formation of small 
apertures by taking the intensity fluctuations from a set of apertures covering a larger zone and adding them 
before calculating the cross-correlations among several such zones. The resulting cross-correlation has a 
partial coherence equivalent to what would be obtained from telescopes as large in spatial extent as the 
zone containing the small apertures.  
 

7. CONCLUDING REMARKS 
 

 In this paper, we derived signal-to-noise statistics for the Brown-Twiss effect within a modern 
quantum optics framework. While largely in agreement with previous results, the formulae given here 
provide more precise expressions reflecting certain non-ideal conditions, including a fresh look at the 
effects of partial coherence. Results are obtained corresponding to a multi-channel correlator and we 
demonstrate that the signal-to-noise ratio of the coherence estimate can be markedly improved. Further, 
examined the effects of partial coherence on a scene typical of exoplanet imaging and showed how partial 
coherence can be used to greatly attenuate the parent star. With appropriate processing, a formation of 
small light collectors can be used to measure the planet coherence while suppressing the contribution of the 
star.  
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