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ABSTRACT

This paper considers the Hanbury Brown-Twiss effect and its application to astrometry in the
service of extra-solar planet detection, particularly terrestrial planets at a range of 15 pc or less. The system
considered comprises several modest-sized telescopes (light collectors) each equipped with photodetection
apparatus and the means to record the photodetector signal time-history. At some convenient location, the
cross-correlations of the individual light collector photodetection histories is computed to yield, in turn, a
collection of values for the magnitudes of the mutual coherence of the target scene at various measurement
baselines. With this type of observation system, we show that if there are known guide stars within the
picture frame, the computed coherence magnitudes may be used to infer the apparent motion of the target
star. Provided sufficiently large measurement baselines, the resolution of the target star motion can be very
fine.

We first compute the signal-to-noise (SNR) ratio of a single coherence magnitude measurement
and then, using simple models of the telescope array and the target star gravitational perturbation due to a
terrestrial planet, we compute the SNR for determination of the planet orbit parameters, up to the
determinacy afforded by astrometric measurements. We have provided expressions for the region in the
(planetary mass-orbital semi-major axis) plane for which SNR is above a desired value. With these results,
we can determine the sensitivity and range of the overall instrument for astrometry in planet detection.
Moreover, one can assess the relative advantages of this technique in comparison with amplitude
interferometry.
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1. INTRODUCTION: THE SYSTEM CONSIDERED

Here we reconsider the Hanbury Brown-Twiss effect14 and its potential uses in the service of
planetary astronomy. In particular, we examine the possibility that this effect could provide the basis for an
inexpensive but large scale intensity correlation interferometry array with sufficient precision to detect
terrestrial-sized planets within 50 light-years, and if possible to form multi-pixel images of a some of the
detected planets.

Consider a system composed of several, N> 1, light-gathering telescopes, each equipped with a
photodetector and apparatus to record the time histories of the photodetector output signals. The telescopes
are distributed at various locations on the surface of the earth or in space with, perhaps large distances
between them, but with the stipulation that all telescopes are capable of simultaneously collecting light
from the object under study. In the case of most interest here, the objective might be to determine the
location of a star to see if its motion is perturbed by a nearby planet. We suppose that there is no physical
connection among the telescopes, nor is there any propagation of collected light between them, as there
would be if the system were a Michelson interferometer. With each telescope operating as an independent
unit, photon arrivals are separately recorded and the data communicated to some convenient location where
the cross-correlation statistics of the N signals are computed. From these statistics, imaging or astrometry
data are, in turn, computed. We attempt to answer the various questions that inevitably arise: Is the
statistical data of photodetection events sufficient for imaging or astrometry? What is the sensitivity of the
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entire observation system, and what sort of astronomical objects could it profitably study? What are the
demands on the data-handling system and how precisely does one need to determine the relative positions
of the telescopes? We specifically address all the above questions, with particular emphasis on astrometry.

To begin, we first consider the photoelectric counting statistics of a fluctuating intensity field
created by a thermal source. Explaining the basic assumptions concerning our system, we derive the basic
relation of the Hanbury Brown-Twiss effect14 which links the cross-correlation between photodetector
output currents collected at two spatially separated locations and the magnitude of the mutual coherence of
the incident radiation collected at the two locations. Considering in detail the process used to compute the
cross-correlations from photodection record, we determine the signal-to-noise ratio of the measured
coherence magnitudes. From this we can determine the sensitivity and range of the overall instrument for
astrometry in planet detection.

2. PHOTODETECTOR OUTPUT STATISTICS: THE HANBURY BROWN-TWISS
EFFECT

Each telescope of the system receives light from an unpolarized thermal source and directs this
light onto a photodetection device. Since the intensity of the optical field fluctuates, the probability

p(n, t, r,) of detecting n photoelectric emissions in the time interval t to t +i , where 1 is the detector

response time, is given by (reference [5], Section 9.7)
I \ I _\ r'÷7: i ,p(fl,t,T)—W e ,, W=iij Ir,t)dt

\n! I
Where 77 is the detector quantum efficiency and I (r, t') is the intensity field of the source as observed at

the location ofthe telescope, r.

For the detection apparatus considered here, 7 >> T . Thus, I (r, t') under the integral undergoes

many changes in time and the time integral divided by T can be approximated by a time average.
Assuming the fluctuating intensity is an ergodic process, the time integral in W is proportional to the
ensemble average:

çt+T ,, ' , I I \\W=llj, IIr,t)dt T7IIr,t))T (2.2)

Then it follows that the statistics of the number of photons collected over time is Poissonian and the

probability of n photons is;

p(n,t, Td) = —(ii (i)7 )fl e' (2.3)
n!

and the moments of n are given by:

E[i?] i[c(sp)1
.k [ ök ]s=O

C(s,p)=exp((e' _l)p) (2.4)

Now to consider the operation of the detector in more detail, we suppose that every photoelectron emitted

at time t' produces a current pulse k (t — t') which is nonzero only for t — t' � 0 . Then the

photodetector output current , J(t), is given by:
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J(t)= : k(t_t) (2.5)

Here the sum is taken over the several random emission times. We can now follow a process similar to the
derivation of the generalized Campbell theorem to determine the correlations of J(t) for the photodetectors
of our system.

In particular (see [5], eq. 9.8-1 1), the cross-correlation of the fluctuations of the output currents
obtained from two spatially separated detectors is:

(a1 (t) (t + )) = 7172 [ dt' [dt"k(t')k (t")(&i (t) v2 (t + t' — t" + r)) (2.6)

The condition T >> T also implies that we can treat the intensity correlations under the above time integral

as being approximately proportional to a delta function. Then, setting,

KAl1 (t) M2 (t +)) = (M1M2 ) (r) we find that the cross-correlation of the photodetector current
fluctuations recorded at two spatially separated detectors is related to the correlation of the light intensity
fluctuations at the two locations by:

K'i (t) '.J2 0' + r)) 7172 (M1M2 )T f° k(t')k (t' + r) dt' (2.7)

Note that we observe thermal sources. Consequently:

((M)2)
(2.8)

(M1A'2) =

where ( r2,) is the normalized mutual coherence for the two detector locations. Using these
expressions, the cross correlation ofthe photodetector current fluctuations becomes:

(&i (t)&12 (t+r)) I2 (1)(12)lr(r,r2,r)I T £k(t')k(t'+r)dt' (2.9)

This is the essence of the Hanbury Brown-Twiss effect. Also, setting the detector locations equal and the
time delay to zero, gives:

([&i, (t)]2) (i) [k (t')dt' (2.10)

Let us next define the single-time normalized correlation coefficient:

c(d) (Al (t)&12 (t)) (2.11)

j([AJ ]2)([AJ ]2)

Then making use of the above expressions to evaluate C(d), we obtain:

c(d)= Iy(,o)I2
(2.12)

ök 2hlk(1k)TC ,k=1,2
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The basic idea is to measure C(d) and then invert to above formula to obtain the magnitude of the
mutual coherence. Here we shall suppose that the two detectors have identical characteristics. Thus:

ii+s
(2.13)

Where Cmeas(d) denotes the measured value. This measurement is carried out by averaging AJ (t)z.J2 (t),

etc. over some time period of duration 7 where we assume that 1 >> T
It is necessary to evaluate the statistics of these empirical time averages, particularly the standard

deviation of the fluctuations of Cmeas(d), in order to assess the accuracy of the estimated coherence
magnitude. This entails the lengthy calculation given in the Appendix. Here we briefly review the results.
Retaining only terms ofthe first order in the fluctuations:

C(d)=C(d)[1+Z]; a[z]=
2

(2.14)

Hence we have:

Ir( i:; ,0)1 /jc(a') [i + -- z] Ir ( ? ,°)I + Ir( r2, o)f (2.15)

or, in other words:

Ir(''°)Isiai (d)
I (2.16a,b)

I_1+8

Now the signal is of order unity. Consequently, the signal-to-noise ratio is approximately:

I6i(I)T
SNR171

a 6 -i(i)i (2.17)
1+8

Finally, suppose that the frequency band being collected is reasonably narrow. Then:

(i) = nL\v (2.18a,b)

where n,, is the number of photons per second, per Hertz collected by the receiver. Moreover, the

correlation time of the collected light may be estimated as T 1/A v. Using these relations, the signal-to-

noise ratio becomes:

fi(i, 0)Isjgnai iJ c (d)

a[Iy(?,i,o)I] Jiä/J282AvI (2.19a,b,c)

SNR11 j262AvI/(1+8), 8--in
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This is the signal-to-noise ratio of the coherence magnitude measurement. The above expression bears a
strong resemblance to the signal-to-noise result derived for an optical heterodyne receiver68, where the
unity in the denominator arises from vacuum state fluctuations. This should not be surprising since both
heterodyne detection and intensity correlation entail measurement of two non-commuting observables and
therefore must display uncertainty principle noise.

3. RELATIONS BETWEEN IMAGE INTENSITY AND COHERENCE

We wish to reconstruct the intensity distribution deposited by an extended incoherent source on a
nearby image plane, I, using light collected in a set of regions, A1, A2, etc., (the entry pupils of our several
telescopes) situated on a very distant observation surface, 0. Let r and r' denote the position vectors of
points on 0 and I, respectively. Consider one polarization state and let U denote some component of the
electric field of quasi-monochromatic light with mean frequency V . Provided that for all points at which
the field is evaluated, the mutual path differences between points within 0 or within I are small compared
with the coherence length, an approximate expression of the Huygens-Fresnel principle is (see [5], section
4.4.3):

U(r,t)= Jd2rlAU(rl,t) (3.1)

apart from a phase factor, where A is the inclination factor and k denotes 2,rV I c .To obtain the energy
preserving estimate of the inverse of this given that light is collected over a limited entry pupil, one can
reverse the time direction in the imaging situation of Fig. 1 , treating light collectors as projectors, reverse
the roles of surfaces I and 0 and again apply the Huygens-Fresnel principle to obtain9:

-,kR

U'(r',t)= fd2r__A* U(r,t) (3.2)

ue (r', t)is the field on the focal plane of an optical instrument having the specified entry pupil. The above
classical result carries over into the quantum theory by substitution of the electric field operator, U for U

(where the notation () distinguishes the operator of an observable from the observed numerical value).

Proc. of SPIE Vol. 5905  590511-5

Downloaded from SPIE Digital Library on 17 Dec 2010 to 137.132.123.69. Terms of Use:  http://spiedl.org/terms



Denoting the field state by '+') , the energy density that wljld be accumulated by a photodetector at image
plane point r' over detection time Ata j5 proportional to Ie (r', t) At ' where:

j(e) (r',t) = (q(jet (r,t)Ue (r',t)I'P)
Ue(rt) $d2rA* U(r,t) (3.3.a,b)

A slight manipulation gives:
-lk(R! -R2)

j(e) (r',t) = : $d2r $a2r
e

A*A J(r,r ,t)
""n

A,,

2

RR2
' 2 1 2

(3.4.a,b)

J(r,r2,t) ('+'JU (r,t)U(r,t)f")= /F(r,t)i(r2,t) 7(r,r2,O)

Thus we have the direct relation between measured values of mutual coherence and the energy-preserving
estimate of the image intensity given coherence values only over a restricted set of apertures. In
comparison, if we were to acquire coherence data over the entire observation surface, 0, the actual image
intensity could be found from:

r i' 2 e_&_
J(r,t)= Id2r Idr A*A J(r,r,t)

.3 1,J 2 RR 2 1 2
0 0 12

_____________ (3 .5a,b)

J(r,r2,t)-.JI(r,t)J(r2,t) y(r,r2,O)

The above formulae are valid for any configuration of light collectors, including significant in-range
displacements among the component telescopes. Although these results can be retained in their full
complexity it is convenient for further developments to specialize these relations to the case in which I and
0 are planes normal to the line-of-sight. Then we recover the well-known formulae:

j(e) (r',t)= f d2u exp(—2,riu.O) J(u)

I(r',t) =fd2ueXP(_2lriU.O) J(u) (3.6a,b,c)

where:
u=&/A.

and the integral in the first relation is taken over all the relative position vectors among all the subapertures.
0 is the lateral component of a unit vector pointing toward a point on the image plane, i.e., a look-angle
vector. Obviously one can invert the second equation to express the coherence in terms of the image
intensity:

J(u,t)= Jd2Oexp(2,riu.O)I(O) (3.7)

4. PHASE RETRIEVAL FROM A PRIORI INFORMATION -IMAGING EXAMPLE

As is clear from (2. 1 9), intensity correlation measurements only furnish the magnitude, but not the
phase, of the mutual coherence. However, in many situations, one has sufficient a priori constraints on the
image that, with sufficient coherence magnitude estimates, one can retrieve the phase and, hence,
reconstruct the image or desired astrometric information. In this section, we show a relatively sophisticated
instance of this, involving multi-pixel imaging of an object with bounded support. In the next section, we
pick up the planet detection theme and show, in a much more elementary fashion, how guide star
knowledge can be used to obtain astrometric measurements.

Suppose we are trying to obtain a multi-pixel image of an object with bounded positive support,
i.e., an illuminated planet against a black background, using only coherence magnitude estimates on a
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N1 x N2grid. Suppose also, that we know that a subset of pixels in the image plane must have a particular
value of intensity, e.g. zero intensity (representing the black background of space surrounding a planetary
disk). Our task is to use the image constraints and the coherence magnitude measurements to estimate
coherence phase and then reconstruct the full image.

Using the formulation of (3.6,7), it is evident that the image intensity may be related to the
coherence via a discrete Fourier transform. Employing Kronecker algebra notation, vec (J) denotes the
N1 N1N2 -dimensional vector obtained by stacking the columns of the matrix of coherence values,
J E CN2 . Likewise, let vec (I) R be the vector formed from the N1 x N, array of image intensity.

. . . . . ,ñNxN
It is evident from (3.6) that we can readily define a unitary transformation, - such that:

vec(I)=Fvec(J) (4.1)

. . . . imNxN .
Also, we can define a projection (idempotent matnx), T E IL , which projects elements of

CNI onto the subspace containing the pixels whose intensity is known to be zero. Using this, we can
express the constraints on pixels that are known to be black by the condition:

Tvec(I)=O (4.2)

Now, vec(J) may be expressed as vec(J)Io exp(iço) where (..)o(...) denotes the Hadamard
product and N is the vector of unknown coherence phases. Considering the hermitian symmetry of J,
it is clear that the measured values of coherence magnitude together with image constraints may suffice to
determine the phase vector provided that the number of constrained pixels is more than half the total
number of pixels in the picture frame. Given this condition, we are still faced with a difficult nonlinear
estimation problem. However, we may have recourse to various recursive schemes. We display the simplest
gradient-descent scheme here.

Let and vec(I) Fvec(J)O exp(ico) denote the currently estimated phase vector and
the correspondingly reconstructed image intensity. A suitable measure of the extent to which the image
constraints are violated is given by:

P rvec(I)2 (4.3)

The gradient ofP with respect to the kth element ofthe phase vector is readily found to be:

op .[I I (e)\\T 1 / H I (e)\\
=2iiirvecI )I rFi IF vecI )I (4.4)

ak L' I Jk' 1k

With this result the most straightforward approach is to recursively update the phase estimates via a
repeated substitution ofthe form:

(e) (e) f3P
cok °k

Figure 2 shows results obtained from a simple algorithm of this kind, in a plot of P versus iteration
number.. It is supposed that the pixels at least one pixel width distant from the planetary disk are known to
be black. We start the algorithm assuming I is a uniform intensity disk having the measured value of total
flux. It is seen that after some tens of iterations, the algorithm converges rapidly to the actual image. Of
course, much can be done to improve the convergence behavior. The point here is that prior image
information combined with the Hanbury Brown-Twiss technique can successfully reconstruct image data
even in the most complex of situations. In the next section, we consider the much simpler problem of
determining astrometry data given guide star information.
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Image constraint satisfaction parameter vs. number of iterates
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Figure 2: Illustration of the convergence of a simple phase retrieval algorithm.

5. INTENSITY CORRELATION INTERFEROMETRY FOR ASTROMETRY

Now we return to the principal theme of this paper and show how intensity correlation
measurements, combined with a priori guide star information can be used to determine complete
astrometric measurement of a target star. Such a measurement is accordingly used to infer the existence of
unseen planetary companions.

Suppose the sky presents the picture sketched in Fig. 3 to the observer. We have a target star whose
averaged position defines the origin of the picture frame coordinates. In addition, there are several point
sources (more distant stars) with positions shown within the picture frame which we here assume are
known to be fixed over the observation time. Then it is evident that the image plane intensity distribution
takes the form:

I(O,t) = BT6(O—OT)+Bk8(O—Ok) (5.1)

Where B , Bk k = 1, 2, ... denote the brightnesses of the various objects. Using Eq.(3.6), we find that the

mutual coherence produced by this collection ofpoint sources is:

J(u, t) = BT exp(2,riu.OT ) + Bk exp(2riu.Ok) (5.2)

Consequently, the magnitude ofthe coherence that we could hope to measure via intensity correlations is:

2 B +2BTBk cos(2ru.(OT Ok))
r(u t)12

J(u,t) 1 k
(5.3ab)'

.j(O,t) 2 +2BkB cos(2ru.(O —Ok))
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where : BT + Bk . Now suppose we make observations of the square of the magnitude of coherence at
two successive times, t— i, and t and then compute the change in results:

(5.4)

where we assume A (o) z 1, and O °k Thus by tracking the changes in the coherence magnitude,
we uncover the timevarying component of the target star position. Suppose we make measurements of

AT (ir(u, t)J2
) at several different relative positions of the light collecting telescopes, i.e. for

u = u°, u(2 , ..., etc. and denoting the components of the vectors
and OT by u) and (T' T2) , respectively, we obtain the relations:

(i) (I)
U1 U2

u2) u2) JA (8 (t))l ( (t))
(Al) (11)

U1 U2

It is evident that under broad conditions, this relation can be inverted to yield a unique determination of

L\T (OT). Indeed, some algebraic manipulation yields:

1

Fig. 3 : Target star and several stationary
guide stars in the picture frame

AT (i(u, t)12) Ir(u, t)12 - Ir (u, t - )I

= BTBk [cos(2u.(0T (t)— 0k)) — cos (2u.(0T (t — i) — 0k))]

{BTB sin(27ru.Ok)}u.AT
(OT (t))

4,rB

'T (I(u', t)12 )/ Bk sin (2ru° 0k)

AT ((u(2), t)12 )/ Bk sin (2,ru(2) .01)

AT (I7uh1,t2)/Bk sin(27ru"s0k)

(5.5)
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Al 2\ I
(& ) - u A fy(u ,t)f )/Bk

[: ::1{: ())} =T
where: kj

(5.6a,b)

C1ear1y.a&LQiig as the two M-dimensional vectors [u° ,u2) uM) ]T and [u' ,u2) uM) ]T are distinct,

12 < Sj1122 and the matrix ga is nonsingular.

With regard to minimum requirements, no more than one guide star is needed and a minimum of
two coherence measurements are necessary. The latter requirement implies that a minimum of three
telescopes must be used. For example, under the above minimal constraints, if the relative positions of the
telescopes are chosen so that and are orthogonal and we take the coordinate axes parallel to
(l) and , then the above expression becomes:

1A ( (t))1 2 A ((u1,t)2)/u1 sin(2,ru°.O)

1AT (e2 (t))1
=

4BB A (r(u(2),t)2)/u2) sin(2u(2).O)
(5.7)

Thus provided that neither sin (2,ru° .0 ) nor sin (2,ru(2) ) vanish, AT (T ) is uniquely determined.
Having derived the foregoing expressions, let us determine the capabilities of this approach to

astrometry with regard to planet detection, in particular, the anticipated signal-to-noise ration of the final
astrometric measurement. Let us assume the conditions of the above example, with one reference star and
two measurements with distinct baselines. Return to expression (5.4)and consider measurement of the
coherence magnitude along only one baseline vector. Let:

D
u=—-u, luI=l (5.8)

And denote ü.O by O and recognize that in employing the above formulae, it is the measured values of the
coherence magnitude that we must use. Hence, O must also have a fluctuating component, call it
A ( (è (t))) . Usingrelation (5.4):

A ([Ii(t)Lgi +Iy(u,t)I]2)
"2,rD (5.9)

sin(2ru.O)sin( B ('ST (T (t))+A(A (T (t))))

Or expanding both sides and retaining only first order terms in the fluctuations:

AT (r(u, t)2 ) + 2y(u, t)jgn1 U (u, t)Loise — I (u, t —
)Loise I

BTBI sin (2ru.O1 )}[ 27rDB
(A (T (t))) JJ

+sin 27rDB
(A (T (t))) JI

(5.10)

Then separating the signal and noise components, we obtain:
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A (Ir(u,t)12 ) {BB sin(2u.O)}sin-(A( (t))),gj
—Iy(u,t—)I1

{BB Sifl(2U.O)}COSA ( ( (t))) )
(5.1 la,b)

Evaluating the standard deviation ofboth sides ofthe second equation above gives:

—BTBI Sjfl(2U.O)COS(A ( (t)))gi)3a[(A ( (t)))]
(5.12)

Then we obtain:

SNR) - KA ( (t))),/cT[( ( (t))) I

{BTB Isin(2u.o1)I}sin((AT,( (t))) )/IrutLi
I (2ND \\ 2irD

J282AvT {
BT/BI

Isin(2u.o)I}-(T (
(t)))XIc02

(T (t)))j, if (9 (t))) �
1+8 2(B/B+1)T 0 otherwise

(5.13)

Where we have used expression (2.19b) for o-[I7(u,t)I].
Now, with the above expression, we can ascertain appropriate design values for various

parameters and determine the observational limits ofthis technique.

6. CAPABILITIES FOR PLANET DETECTION

Considering the one-baseline measurement situation with one guide star, it is evident that we can
readily improve the signal-to-noise ratio, SNR by choosing the guide star and baseline combination so

T0( )

that sin (2,u.O )I 1 . Moreover, SNRT() is also maximized if we can acquire a guide star with

luminosity approximately equal to that ofthe target. Assuming these choices are possible:

1 I282AvT 27rD
SNR (e) J

B

('ST (e (t)))8 1+8 2

(2gw '\ 2W (6.1)—( (T (t)))
if B

(A (e (t))) � -

0, otherwise

Then the SNR is limited only by the photon count and the baseline distance, DB. To relate the
T( )

detector signal-to-noise ratio to instrument variables, suppose that each telescope is of circular aperture and
employ a simple black-body model of the target star:
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8 ' iyt2D (Rsiar2 1
—

2 'P1p = 422 jj) _ i)
A v = C/Rspecir2 (6.2a,b)

Given the above choices, we next consider the relationship between SNR and the accuracy with

which the orbital parameters of the unseen planet may be estimated from the measurements of AT. (OT (t)).

This latter task is the principal objective ofthe observational system. The general estimation problem is too
complex to be described in its entirety here, but to obtain rough estimates of the capabilities ofthe intensity
correlation approach, we confine attention to the case in which the stellar perturbation due to a single planet

may be isolated, and the stellar orbit is apparently circular with angular radius and period P . Let the

time between correlation observations, 2 , be some fraction, f0 , of P . Then the standard deviation of

the estimated angular radius is roughly:

[(e)] a[r (Or (t))]; ()s,zai
k (9t)s,ai

(6.3)

Hence:

I , ((2yD (2,YD
1 1 J2SAvT (2,) D cosi -t I if fa �

SNR. r— SNR _ j— tI ja ' 2 ) A 2 (6.4)
2,rJf 162riJf '1 1+

0, otherwise

Further, the averaging time for each correlation measurement, T , must be some fraction, ía ' of the time

period between observations. Thus 7T faTo fafos and making these substitutions, we get:

I ((2)2 D ' (2)2 D
1 1282L\vf P (2r)2 D cosi

B fA I, f B fA � —
SNR.

S B f0a5 x 2 ) 2 2 (6.5)
l6r'4 1+8 2

0, otherwise

Necessarily, f0 � 1/3 because at least three measurements are needed to estimate the angular radius.

Next, â is related to the radius of the planet orbit by:

a Ma
= = —---- (6.6)H MH

where the ratio of masses and the actual planet orbit radius, a, can be determined from the measured

apparent stellar orbit radius, the measured orbit period and the estimated stellar mass. Making substitutions:
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SNR.
/282Avji, 1cos(F), ifiT � f (2ir)2 DB f MPaP

a 16 I 1+8 to, otherwise 2 M H
(6.7a-c)

iur2D2(R \28 TIszarI Av=c/R 2
422 H ) (eh12 _ i)

spectr

And note:

P—T /Me+Mslap\%
S yr \J Mp+M U) ( . c)

Where "yr the duration of a year in seconds, M is the mass of the Earth and A U denotes the

astronomical unit.

To illustrate the search space over which one might achieve reasonable levels of SNR we

consider a star with solar parameters;

M = 1.989x1030kg, Rsta,. 6.955x108m, 'ctar 6OOOK (6.8 a,b,c,d)
At a distance ofH = 1 5pc we observe over a broad band centered at near-IR:

Rspectr 1, 2 = 1 pm (6.9 a,b)

And assume telescope ,detector and observation period parameters as:

DT O.5m, fa 0.3, f0 = 0.1, i = 0.8 (6.10 a,b,c,d)

Then, using the above relations, we can map the regions in the plane for which differing values
M® AU

of the measurement baseline, DB gives SNR greater than a set value, say, in this case, SNRÔ � 1 0.

Figure 4 shows the regions for which SNRÔ � 1 0 for six values ofDB .The positions of most of

the solar planets are shown for comparison. It is seen that for a given measurement baseline, the search

region of acceptable SNR is an ellipse-like shape with long axis parallel to M /M 10 a /A U .The

ellipses extend only to some lower bound value of a /A U and the value at which this occurs is

approximately independent of M /M . The reason for this behavior is that at the tips ofthe ellipses, the

quantity F : (2DB assumes always the fixed value that maximizes Fl cos(r') , namely the

positive root of tan a = 1/a , or a = 0.8603 . Thus the location of the tip depends only upon

j262AVfaP;/i + 6 and even for large planetary masses, p has a very weak dependence upon

M /M . Hence the location of the tips of the acceptable SNR regions is characterized by a nearly fixed

value of ar/AU.

It is seen that different ranges of planetary sizes and orbit radii are covered by different values of
the measurement baseline. In particular, planets of the size of Earth, Venus and Mars from a distance of 15

pc could be characterized with SNRa � 10 by the single baseline of DB 200km, as Figure 4 illustrates.
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(1,
U)

Fig. 4: Regions in the M /M® - a /AU plane for which differing values ofthe measurement baseline, DB gives

SNRa �1O.

7. CONCLUSION AND FURTHER WORK

This paper reconsidered the Hanbury Brown-Twiss effect and its application to astrometry in the
service of extrasolar planet detection, particularly terrestrial planets at a range of 1 5 Pc or less. The system
considered comprises several modest-sized telescopes (light collectors) each equipped with photodetection
apparatus and the means to record the photodetector signal time-history. At some convenient location, the
cross-correlations of the individual light collector photodetection histories is computed to yield, in turn, a
collection of values for the magnitudes of the mutual coherence of the target scene at various measurement
baselines. In many instances, this data can be combined with a priori image information to retrieve
coherence phase and thus achieve full image reconstruction. This was illustrated with a relatively complex
imaging example. In a much simpler context, we have shown that with this type of observation system, if
there are known guide stars within the picture frame, the computed coherence magnitudes may be used to
infer the apparent motion of the target star. Provided sufficiently large measurement baselines, the
resolution ofthe target star motion can be very fine.

We first computed the signal-to-noise (SNR) ratio of a single coherence magnitude measurement
and then, using simple models of the telescope array and the target star gravitational perturbation due to a
terrestrial planet, we computed the SNR for determination of the planet orbit parameters, up to the
determinacy afforded by astrometric measurements. We have provided expressions for the region in the
(planetary mass-orbital semi-major axis) plane for which SNR is above a desired value. In particular for a
solar-mass star at 15 pc, the parameters of an Earth, Venus and Mars may be ascertained with SNR> 10
with measurement baselines 200 km or less.

Of course, direct, homodyne, amplitude interferometry provides both magnitude and phase of the
mutual coherence and thus astrometric data in a more direct way. However, the slightest change in the
relative positions of optical elements within an amplitude interferometer can produce path-difference

-1.5 -1 -0.5 0 0.5 1 1.5 2

Semmajor Axis, Iog(a/AU)
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changes of many wavelengths. Atmospheric turbulence can produce even larger fringe variations, which
must be corrected via an extensive adaptive optics system. The demands on path-length control challenge
even space-based systems where turbulence is removed as an obstacle but the nanometer-level control of
path lengths over baselines of the order of hundreds to thousands of kilometers remains a difficult and
expensive undertaking.

The photoelectric correlation technique that this paper discusses provides an alternative method
with a number of advantages. The light collecting telescopes are completely independent, not even the
propagation of collected beams to some central combiner is needed. Only the data on the several
photoelectric signals are brought together. As a consequence, the optical path differences do not have to be
maintained strictly constant and slight optical element motions and atmospheric turbulence have a very
small effect. Thus the observation system considered here could be deployed in space or established at the
Earth's surface. The requirements on the a priori knowledge of the relative positions of the telescopes are
extremely benign, being confmed to a precision equal to some small fraction of the maximum baseline
divided by the square root of the number of pixels that are desired in the final image result. Furthermore,
the light-collecting telescopes need not be of very high optical quality, since their chief function is merely
to direct the light to a photodetector at the focus.

APPENDIX

In calculating the desired statistical characteristics of Cmeas(d), one could follow the procedure in

reference [511 adopted to develop the foregoing formulae in the text. However, since I >> T we resort to

simplifying approximations. Assume that k(t) rises rapidly to a plateau and then falls rapidly to zero at
t=Td, and therefore approximates a rectangular pulse:

Iic, 0 � t � T
k(t)= a

(A.1)
(o, otherwise

Where K is a positive constant denoting the detector peak response. With this form for the detector
response function, it is evident from that J(t) is proportional to the number ofphoton arrivals in [t-T t]:

k (t) = Kflk (t—r,t) (A.2)

This relation considerably simplifies calculation ofthe statistics of Cmeas(d).

Then, to begin with, define the time average measurement of (Jk
)neas

as:

(1k )rneas = ir dt'Jk (t') = —f- I dt'nk (t' — i,t') (A.3)

However, since Ta >> T the above expression can be approximated by:

(k)meaa =f dt'nA(t'—,t') nk(t—Ta+(m—1)Td,t—Ta +mTd) (A.4)

Where M = J lTd and there are approximately M terms whose fluctuations about their mean values are

uncorrelated.

Using the above expressions and approximations, we obtain, for example:
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K K/f

E[(Jk)J=_fdtE[nk(t _i',t)]=_fdt K/I

[((k)J]= E[L dt'flk

T

E[(frnk (t-T +(m-1),t-T +m)Kfl) ]=KE[(flk(t-,t)-fl)]=K7
(A.5.a,b)

The last line follows from ((k — )2 ) Thus, in summary:

(J) K/1+A((J) )k meas k
(A.6.a b)

a[A((Tk)meas)1 K1417(I)/7

Next, considering measured cross-correlations, and employing an approximation consistent with the above:

(A(J)A(J))

(A.7.a,b)
x(Kn(t—T +(m—1)7,t—T +mT)—(J)—A((J2)))

(Kn (t-T +(m-1)i,t-T +mi)-(J))

x(Kn2(t—T +(m—1)i,t—T +mi)—(J2))+ HOT.
From this we see that:

E[(A(J )A(J2 ))mea ] K2E[fl1fl2 p2] K2E[fl2 p2] K2/J

1 1 (A.8.a,b)

a[A((A(J1)A(J2)))]K2_E[((flp)2 )2] =

However, the average number of photon arrivals during the response time of the detector is quite small, i.e.,
p 4( 1 . Hence we retain only the lowest power of p to obtain:

(A ) A ( ))rneas = K2J1 + A ((A (i ) A (2 ))rneas)
(A.9.ab)

Kj/I/M = K2T471(I)/Ta

Now we can give the relative magnitudes of the fluctuations of the various measured quantities considered

above:

a[A((Jk))]/(Jk) T a[A((A(Jk)A(JJ)) )]/(Aj))
(A. 1 O.a,b)
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With these results, we may now evaluate the statistics of the fluctuations in the measured values of the

correlation coefficient, Ce (ci) . In the following, we retain only terms of the first order in the
fluctuations.

C (d)= (4'2) c(d)[l+",
(a:), L (aJAJ)

2

= c(d)[l +3]; a [Z] = 2/Ji(I) i
(A. 1 1 . a-c)

Hence we have:

Jc(d) [i+±z] 7(M)sjgnai (A,12)

Now the signal is of order unity and:

I i+s
a[Ir(r,r2,o)I0]4i I \ (A.13)

'I 817J7
Consequently, the signal-to-noise ratio is approximately:

SNR171 joi(i)i/i+6 , 6--17(I)T (A.14.a,b)

Finally, suppose that the frequency band being collected is reasonably narrow. Then:

Ki) = n Av,p
(A.15.a,b)

np The number of photons per second per hertz collected by the receiver

Moreover, the correlation time of the collected light may be estimated as T 1/A v .Using these relations,

the signal-to-noise ratio becomes:

SNR171 \JSllflpL\ vT /(i + 8), 8 = 17fl (A.1 6.a,b)
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