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 ABSTRACT 
 

 This article presents a novel type of very long baseline astronomical 

interferometer that uses the fluctuations, as a function of time, of the intensity measured 

by a quadratic detector, which is a common type of astronomical detector. The theory on 

which the technique is based is validated by laboratory experiments. Its outstanding 

principal advantages comes from the fact that the angular structure of an astronomical 

object is simply determined from the visibility of the minima of the spectrum of the 

intensity fluctuations measured by the detector, as a function of the frequency of the 

fluctuations, while keeping the spacing between mirrors constant.  This would allow a 

simple setup capable of high angular resolutions because it could use an extremely large 

baseline. Another major interest is that it allows for a more efficient use of telescope time 

because observations at a single baseline are sufficient, while amplitude and intensity 

interferometers need several observations at different baselines. The fact that one does 

not have to move the telescopes would also allow detecting faster time variations because 

having to move the telescopes sets a lower limit to the time variations that can be 

detected.  The technique uses wave interaction effects and thus has some characteristics 

in common with intensity interferometry.  A disadvantage of the technique, like in 

intensity interferometry, is that it needs strong sources if observing at high frequencies 

(e.g. the visible). This is a minor disadvantage in the radio region. At high frequencies, 

this disadvantage is mitigated by the fact that, like in intensity interferometry, the 

requirements of the optical quality of the mirrors used are far less severe than in 

amplitude interferometry so that poor quality large reflectors (e.g. Cherenkov telescopes) 

can be used in the optical region.   
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1.  INTRODUCTION   

 

 Most interferometry used in astronomy is based on techniques that use first order 

correlations.  We will refer to it as amplitude interferometry. Hanbury Brown and Twiss 

(Hanbury Brown 1968) introduced intensity interferometry, a technique based on second 

order correlations.  

 While amplitude and intensity interferometry are described in textbooks (e.g. 

Klein & Furtak 1986), it is less known that interfering beams that have large optical path 

differences, and therefore give an interferometric signal  unobservable with amplitude  

and intensity interferometers, give a recombined beam possessing a spectral distribution 

modulated by periodic minima and maxima. Spectral modulation occurs for optical path 

differences far larger than the coherence length of the interfering beams. This surprising 

statement is supported by experiments and theoretical analyses. Alford and Gold (1958) 

used a visible light source and found a periodic modulation of the spectrum of current 

fluctuations measured with a photomultiplier for an optical path difference of about 30 

meters, far exceeding the coherence length of the source (an electric spark). Mandel 

(1962) gives a full theoretical justification, while Givens (1961) gives a less rigorous but 

easier to follow physical explanation. While Alford and Gold (1958) used pulsed 

sources, Givens (1961) predicted that the spectral modulation should also be present for 

interfering beams from continuous sources. This was experimentally confirmed by 

Basano & Ottonello (2000).  

In this article, I propose a novel type of astronomical interferometer that measures 

the visibility of the periodic modulation of the spectrum of the fluctuations of the output 

current (intensity) of a quadratic detector that measures the combined beams from 

separate telescopes. I also propose to use numerical analyses of separate digital 

recording of the output signals from distant telescopes: This should allow extremely 

large baselines. Note that a quadratic detector is a detector that measures the time 

average of the square of the electric field. It is therefore a very common type of 

astronomical detector (e.g. a photomultiplier). The theoretical foundations of the 

interferometric technique are contained in Borra (2008) and are experimentally 

confirmed by Borra (2011).  Note that Borra (2008) models a gravitational lens by a 

Young interferometer (a standard model for gravitational lenses), therefore his 

theoretical analysis is obviously valid in the context of astronomical interferometry.  

Like with intensity interferometry, the theoretical basis of the technique may be 

difficult to understand for people unfamiliar with statistical optics.  The simple model of 

a disk having a constant angular intensity distribution observed by the interferometer 

discussed in section 2 below gives an intuitive understanding.  

 

 2. THE INTERFEROMETER  

 

This section presents the interferometer and discusses techniques that can be used to 

obtain the spectrum of the intensity fluctuations. 

 The physical basis of the interferometer can be found in Borra (2008) who 

discusses an observational technique to obtain time delays in gravitational lenses.  Borra 

(2008) models gravitational lenses with a Young interferometer, which is a standard 
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model for gravitational lenses: Consequently his theoretical analysis also applies to 

astronomical interferometers. Figure 1 in Borra (2008) shows the Young interferometer 

model, where the impact parameter a is equivalent to the separation between the slits of 

a Young interferometer. The recombined beams are observed by a telescope and 

measured by a quadratic detector, which is a detector that measures the time average of 

the electric field.  The output of the quadratic detector is the intensity as a function of 

time I(t).This type of detector is routinely used in astronomical telescopes. For example, 

photomultipliers or  CCD detectors are quadratic detectors. Finally a wave analyzer 

obtains the frequency spectrum  I(’) of the output current I(t) measured by quadratic 

detector.  The beat frequency ’ is the frequency of the spectrum of the fluctuations of 

the output current of the quadratic detector, is produced by waves in the spectrum of the 

source beating among themselves,  and is a much lower frequency than the frequency of 

observation  in the frequency spectrum of the source. The visibility of the spectral 

modulation of   I(’) depends on the angular intensity distribution of the source i() and, 

consequently, can be used to find it

 In an amplitude interferometer the normalized correlation function quantifies the 

visibility of the intensity fringes. The visibility of the spectral modulation  I(’)  is  also 

quantified by an analogous  normalized correlation function  that can also be written  as 

the product () of the two terms commonly called spatial and temporal coherence 

functions.  Like in amplitude interferometry, the spatial coherence function is given 

by the Fourier transform of the normalized angular intensity distribution of the source 

i()  and must be evaluated at a specific frequency. However, in our case we have two 

different frequencies:  the frequency of the spectrum measured by the detector (e.g. 

10
14

 Hz)  and ’, the beat frequency of the spectrum of the current fluctuations of the 

output current of the detector (e.g. 10
10

 Hz). In amplitude interferometry the spatial 

coherence function is evaluated at the frequency measured by the detector.  Borra (1997) 

made this assumption when first suggesting the technique. However Borra (2008) 

reexamined the problem from first principles, starting from the superposition of 

electromagnetic waves, and demonstrated that, in our case, must be evaluated at the 

’ frequency. Borra (2011) carried out experiments that validate the theory in Borra 

(2008).  

The theoretical analysis in Borra (2008) may be difficult to understand for people 

unfamiliar with statistical optics. The discussion leading to equation 16 in Borra (2008), 

summarized below, gives an intuitive feeling for the basis of the technique.  Borra (2008) 

used a simple source which is a disk having angular diameter , and a uniform angular 

intensity distribution ( i() = 1.0 ), observed by a Young interferometer having a slit 

separation a. Borra(2008) shows that, for this simple model,  the visibility of the spectral 

modulation at the beat frequency  ’ is given by  a Bessel function having a maximum at 

’ = 0 and its first zero given by the equation

    ’a/2c =1.22  ,                  (1) 

where c is the speed of light. Therefore the spectral modulation of the output current has 

a maximum (highest visibility) at ’=0   while the visibility disappears for values of  

aand ’ given by Equation (1). Equation (1) illustrates how the interferometer works. 
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Because the beat frequency ’ and the slit separation a have the same effect, it shows that 

changing frequency ’ is equivalent to changing spacing a between the mirrors of an 

interferometer (like in amplitude or intensity interferometry); therefore, we can measure 

the angular diameter   of the disk by increasing ’ until the visibility of the spectral 

modulation I(’)  of the output current disappears, while keeping a constant. It is very 

easy to vary ’, since I(’) is directly obtained from the output current I(t) of the 

quadratic detector. Figure 2 in Borra (2008) shows the decrease of the visibility as a 

function of ’ for the uniform disk model. The angular diameter  is obtained from the 

value of ’ at which the visibility V = 0 (which is 1.22 for the uniform disk model) using 

Equation (1) above. For more complex cases, the angular intensity distribution can be 

obtained from the Fourier transform of the spatial coherence function (a,’) which is 

obtained from the ’ dependence  of the visibility  function (Borra 2008). 

This only gives a summary of the theoretical basis of the technique. To fully 

understand the technique one must read Borra (2008) that gives a complete theoretical 

justification based on wave-interactions. While a wave interaction theory, which is based 

on Maxwell equations, is fully justified, one must also take into account the fact that an 

electromagnetic wave has a granularity that comes from the quantization in photons. 

This adds photon noise to the signal. This issue is discussed in Borra (2008) and in 

section 3 that discusses application to Astronomical telescopes. 

 In the original experiment (Alford & Gold 1958) the spectral modulation was 

measured electronically with a short-wave receiver, while Basano & Ottonello (2000) 

used a wave analyzer and one could obviously use similar techniques. Modern 

technology however allows a more practical way to obtain the beat-spectrum that consists 

in first digitizing the output current I(t) of the quadratic detector that measures the 

intensity signal from the interferometer and then performing with software the 

autocorrelation  

 

   ( ') ( ) ( ')I I I t t I t dt F t





      .    (2) 

  

The Wiener-Klintchine theorem then shows that the power spectrum can be obtained by 

taking the Fourier transform of the autocorrelation given by Equation (2). This procedure 

was used by Borra (2011) to obtain the power spectrum in the experiments that confirm 

the theoretical work in Borra (2008). Figure 3 in Borra (2011) shows what we mean by 

spectral modulation I(’). The spectral modulation shown for a single optical path 

difference (OPD) (e.g. 3.12 –m) in Figure 3 in Borra (2011) is the kind of modulation one 

would see from a point-like source. While the spectral modulation shown for the sum of 

two OPDs is the kind of modulation one would see from a 2 point-like source, like a 

binary star. Note that the visibility of the spectral modulation does not vary noticeably 

with frequency in Figure 3 in Borra (2011) because the power spectrum displayed is at 

very low ’/(2 frequencies. The contrast would gradually decrease at much larger 

’/(2 frequencies. 

 In the discussions so far, we have only considered the case where the 

optical beams from two separate telescopes are physically combined to optically 

interfere.  I propose another interesting possibility that comes from separately digitally 
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recording the output intensities I1(t) and I2(t) from the quadratic detectors  at two distant 

telescopes and then sending the data to a central location where they are numerically 

added, giving I(t) = I1(t) + I2(t)  , then performing the autocorrelation of I(t) (Equation 2) 

and finally taking the Fourier transform of the autocorrelation. This procedure is justified 

below.  

 According to the Wiener-Klintchine theorem the power spectrum is 

obtained by taking the Fourier transform of the autocorrelation of a signal. In the 

autocorrelation of a time-dependent signal I(t), all the information is obviously contained 

in the time dependence of I(t). In particular the cosine spectral modulation  generated by 

a point-like source (see equation 10 in Borra 2008), which is fundamental to us, comes 

from the fact that I(t) contains twin identical intensity fluctuations separated by a constant 

time  given by the optical path difference of the interferometer.  In the Alford &Gold 

(1958) experiment the signal comes from distinct pulses and the cosine modulation in the 

spectrum comes from the fact that the detector detects two identical intensity pulses 

separated by a time interval . However, in the case of two continuous beams that are not 

pulsed and are superposed in an interferometer, the information is contained in intensity 

fluctuations due to wave interactions. The electric field E(t) and the intensity output of 

the quadratic detector I(t) fluctuate in time because of the superposition of 

electromagnetic waves that have different frequencies and varying phases. Klein & 

Furtak (1986) gives a convenient brief description of this effect. In an interferometer that 

uses a continuous source, the cosine modulation therefore comes from the fact that the 

interferometer splits the original intensity fluctuations in the input beam into twin 

identical fluctuations separated by . The discussion in the introduction in Basano 

&Ottonello  (2000), who  repeated the Alford&Gold (1958) experiment  using a 

continuous source, gives a heuristic justification for this procedure. As shown in the 

figure 2 in Borra (2011), that used a continuous source,  the auto-correlation of the output 

current I(t) of a quadratic detector that measures the combined beams of two 

interferometers  gives two identical peaked functions separated by twice the optical path 

difference (OPD) and  another one at an OPD.  The relevant information is contained 

in the twin peaks with an OPD >0. Careful however that the figure 2 in Borra (2011), as 

mentioned in the figure caption, actually shows three separate autocorrelations identified 

by different colors.    

 Consider now that for a point-like astronomical source two separate 

telescopes will detect the same intensity fluctuations at two different times separated by 

 

     = B.s/c,     (3) 

 

 

where B is the baseline vector (B is the distance between the telescopes and is therefore 

akin to a in Equation (1), s the unit vector in the direction of the source and c is the speed 

of light.  If we numerically add the intensities  I1(t) from a telescope and I2(t), from a 

second telescope,  the same twin fluctuations separated by B will be contained in I1(t )+ 

I2(t) as in the case where the optical beams are optically co-added in an interferometer. 

Using the digital output I(t) of  optically combined interfering beams in Equation (2) is 

analogous to using the sum I1(t)+ I2(t)  of the separately digitized I1(t ) and  I2(t)  because  

the twin fluctuations separated by B , that carry the relevant information used in 
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Equation (2) and its Fourier transform,  have the same shapes and separations B  in both 

cases. This discussion is experimentally confirmed by Borra (2011) and clearly shown in 

his figures 2 and 3 (see caption of his figure 2).  

  As an important remark: Note that the Alford and Gold experiment did 

not use a classical interferometric set-up. The E1(t) and E2(t) signals were not coherent in 

the classical sense since, while  they originated from the same spark, they were seen from 

two different mirrors that viewed the spark from different directions.  For all practical 

purposes the E1(t) and E2(t) came from two separate sources. All of the relevant 

information was contained in the intensity signal shapes and the time delay  .  

 Another advantage of using the autocorrelation and the Fourier transform 

is that it is easy to filter out high frequency noise. This is done by restricting the limits of 

integration in the Fourier transform, a standard procedure in signal analysis.  

 

  

 

 3. APPLICATION TO ASTRONOMICAL TELESCOPES  

 

A detailed discussion of applications to astronomical telescopes is beyond the scope of 

this article because it would have to dwell into technical details that differ greatly among 

telescopes that work at different frequencies of observation. Furthermore, technological 

advances over the next decades will certainly change the situation. We will instead limit 

ourselves to consider the advantages and disadvantages of the technique to astronomical 

applications in general and then consider, briefly, the application to two particular 

frequency regions: The optical and the radio regions. 

 

a) Advantages  

 

Its outstanding advantage is that it is far simpler than amplitude interferometry, as 

well as intensity interferometry, because the angular  intensity distribution of a source is 

determined by measuring  how the visibility of the spectral minima of the spectrum of 

intensity time fluctuations, measured with a quadratic detector, varies as a function of the 

beat-frequency ’. This is easy to do with software that first computes the autocorrelation 

of the intensity signal as a function of time and then computes the Fourier transform of 

the autocorrelation (see section 2). In amplitude and intensity interferometers, the angular 

intensity distribution of a source is obtained by changing the separation between 

individual mirrors (or using different telescopes at different locations). It obviously is far 

easier to change beat-frequency ’ with software that uses the technique based on the 

numerical autocorrelation of the intensity signal suggested in section 2, which uses the 

Fourier transform of the autocorrelation given by Equation (2),  than physically move 

telescopes to change the baseline.   

Note that, while changing the beat frequency is equivalent to changing the 

observational wavelength in an amplitude interferometer, there is a huge difference 

between the effectiveness of changing the beat frequency versus changing the 

observational wavelength. The observational wavelength can only be changed between 

the limits imposed by the detector (e.g. between 350 nm and 1000 nm for an optical 

telescope). This only allows a very small range of changes.  On the other hand, in our 



 8 

case, the beat frequency can be changed to arbitrary low frequencies, well outside the 

bandpass of observation. For example, an optical telescope observing in the 350 to 1000 

nm (35 to 100 THZ) region could easily get beat frequencies below 1 MHz.  This can 

readily be seen in Borra (2011), where the detector observes at 1550 nm (65 THz) with a 

bandpass of 50 nm and power spectra are obtained at frequencies of a few hundred MHz.  

One could also find the angular intensity distribution of a source without using 

Fourier transforms by carrying out numerical modeling of the cross-correlation signal. 

This would particularly be interesting for sources that have simple angular intensity 

distributions, like binary stars or the cores of many active nuclei of galaxies, quasars and 

BL Lac objects. 

The technique should allow much higher angular resolutions than amplitude 

interferometry because, as discussed in section 2, the technique of separately digitally 

recording the output intensity signals at two distant telescopes and then sending the data 

to a central location where they are numerically added and then finally taking the Fourier 

transform of the autocorrelation would allow extremely large baselines. It could give 

extremely high angular resolutions, because a space interferometer could easily be used.  

Another major advantage of the technique is that it allows for a more efficient use 

of telescope time because observations at a single baseline are sufficient since scanning is 

done by software. With standard interferometers one must change baseline and get many 

separate observations. 

Having to move the telescopes sets a lower limit to the time variations that can be 

detected, since one obviously cannot detect variations below the  time taken to move the 

telescopes. The fact that one does not have to move the telescopes, would therefore allow 

us to detect faster time variations.  

Like with an intensity interferometer one can use inexpensive primary mirrors 

having surface qualities lower than those needed for amplitude interferometry. For the 

same reasons, the requirements for the alignment precision of all of the auxiliary optics 

are also less stringent than in amplitude interferometry. Consequently one could build 

dedicated inexpensive interferometers. The last paragraph in sub-section 3c that follows 

elaborates on this.   

 

b) Disadvantages 

 

 Like for intensity interferometry, we consider wave interaction effects, hence one 

can obtain estimates of the signal to noise ratio by applying similar considerations. 

Photon shot-noise dominates when the counting rate is substantially below one count per 

coherence time interval 2/.  Like in intensity interferometry, it is therefore far easier 

to work in the radio region than in the optical since is larger and the coherence 

times smaller in the optical. This issue is discussed at length in Borra (2008) and Borra 

(1997). This is the worst inconvenience of the technique in the optical-infrared region 

but a minor inconvenience in the radio region. 

However, this limit is less severe than the hot bright star limit that applies to 

intensity interferometry (Hanbury Brown 1968).  This can be understood from coherence 

theory, as discussed in p. 24 of Hanbury Brown (1968). In an intensity interferometer, 

when a star is unresolved, the signal-to-noise ratio increases with flux and therefore the 

area of the mirrors. However, as the diameters of the mirrors increase they become 
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comparable with the baseline necessary to resolve the star, thereby reducing the 

coherence of the light at the detector and therefore (0). Unfortunately, as the area 

increases, the increase in signal-to-noise ratio due to the increase in the total flux is 

counter-balanced by the loss in  due to the decrease in coherence at the detector. 

Hanbury Brown  (1968) calculates the maximum signal-to-noise ratio which can be 

obtained with two circular reflectors of unlimited size, on the assumption that the two 

mirrors are as close together as possible. The results, plotted in his figure  6, show that 

the maximum possible signal-to-noise ratio obtained with infinitely large reflectors is 

limited and varies  with surface temperature making it difficult to observe objects having 

surface temperatures <4000° K.  The new technique does not suffer from this problem for 

the fundamental reason that while the (0) that applies to intensity interferometry depends 

on the frequency of observation , and is therefore set by the detector, in our case (0) 

varies with the beat-frequency ’. While  remains constant as diameters and separation 

increase in intensity interferometry, in our case we are free to choose ’ and (0) to suit 

our purpose. We can therefore work at arbitrarily lower ’ (and therefore higher (0)) 

with arbitrarily large mirrors.   

The limit is mitigated by the fact that, like in intensity interferometry (Hanbury 

Brown 1968) the requirements of the optical quality of the mirrors used are vastly more 

relaxed than for conventional interferometry so that poor quality but large reflectors can 

be used in the optical region. 

The disadvantage is also mitigated when one compares the present technique to 

amplitude interferometry in the optical region, because one needs a small bandpass in 

amplitude interferometry, while this limit does not apply to our technique, as discussed in 

Borra (2008). Furthermore, for amplitude interferometry in the optical region, a 

significant fraction of the light is lost in multiple reflections and refractions in auxiliary 

optics. In the technique discussed in section 2 that uses separately digitally recorded 

output intensity signals from two distant telescopes, there are no auxiliary optics. 

Note also that one could simultaneously observe in several different bandpasses, like 

in intensity interferometry, to minimize the problem. This comes about because , unlike 

in amplitude interferometry, the signal to noise ratio in wave interactions is independent 

of the bandpass (Hanbury Brown 1968) so that simultaneously observing in separate 

different small bandpasses increases the signal-to-noise ratio. 

A second major disadvantage comes from the fact that one measures at a lower 

frequency than the frequency of observation, one therefore needs a higher separation 

between telescopes to obtain the same angular resolution. Consequently, the telescopes 

must be connected over larger separations. This issue is discussed below for optical and 

radio-telescopes.  

 

c) Infrared-Optical telescopes 

 

Let us consider an interferometer that uses telescopes observing in the 1500 nanometer 

(200 THz) spectral region. The high beat-frequency limit is set by the speed limit 

(bandwidth) of the photodetector and electronics. Fortunately, there currently is massive 

effort to increase this speed limit because of important applications in 

telecommunications with fiber optics.  A recent review of the technology is given by 

Beling & Campbell (2009). At the time the article was written, signals could be easily 
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detected with a 0.2 THz bandwidth, with some signal detected at frequency as high as 0.4 

THz. We can therefore assume that frequencies of the order of several THz should be 

measurable with future improvements. 

 For discussion purposes let us assume a detector having 0.5 THz 

frequency bandwidth. Using the Nyquist criterion we see that it could detect fluctuations 

at a frequency of 0.2 THz.  Therefore an intensity fluctuation interferometer, observing at 

v =  =  200 THz . would need a baseline 1000 times larger to attain a resolution, at a 

beat-frequency v’ = '   = 0.2 THz , equal to the resolution obtained at  = 200 THz 

with an amplitude interferometer . Consequently, to obtain a resolution comparable to the 

resolution attainable with an amplitude interferometer that uses two telescopes separated 

by 100 meters, comparable to the largest separation of existing optical interferometers, 

we would need two telescopes separated by 100 km. A 1000 km separation would give a 

factor of ten higher angular resolutions than presently achievable with existing optical 

interferometers.  Telescopes separated by the Earth radius would have a resolution 65 

times larger. Space interferometers would have even larger resolutions. Presumably, 

technological improvements in the bandwidth will allow much greater resolutions (and 

smaller baselines) in the future. 

 The quantity of data generated will however be very large and may cause 

problems since a properly sampled 0.2 THz bandwidth would generate of the order of 

600 Gbits per second. This is a huge number but not discouragingly so. To appreciate 

this, consider the 2010 report in Photonics Spectra (Hogan 2011):  Corning now 

commercially produces fiber optics capable of transporting 100 Gbs and 400 Gbs. It 

would not be a problem for a space interferometer that could send the data with light 

beams.  One could also digitize the data, store it on an appropriate medium and transport 

it to a data center for later autocorrelation (see section 2).  

 When the 100 km distance required in fluctuation interferometry is compared to 

the 100-m distance required in optical amplitude interferometry for the same angular 

resolution, this may appear discouraging at first; however it is not, because of the other 

advantages that the technique brings in the optical-infrared region. For example, one 

could use a dedicated interferometer that uses inexpensive large Cherenkov telescopes. 

Dravins et al.  (2012) discuss the science that can be done with an intensity interferometer 

that uses the Cherenkov Telescope Array. Lebohec & Holder  (2006)  estimates of the 

limiting magnitudes achievable with intensity interferometers and Cherenkov telescopes 

that also apply to the proposed interferometer. Table 1 in Lebohec & Holder  (2006) 

shows that limiting magnitudes as faint as V = 7.8 can be reached with present 

Cherenkov telescopes and magnitudes as faint as V = 9.0 with the Next-Generation 

Cherenkov telescopes. Note that the end of the conclusion in Mandel (1962) clearly states 

that the signal to noise ratio in both intensity interferometers and the Alford and Gold 

effect, on which this interferometer is based (see section 2 above), is quantified by the 

degeneracy parameter. The degeneracy parameter quantifies the effect of photon shot 

noise in wave interaction physics, which applies to the proposed interferometer but most 

astronomers are unfamiliar with it. Borra (2008) gives a convenient brief summary of the 

quantification of the signal to noise ratio in terms of the degeneracy parameter. 

 The largest Cherenkov telescope (MAGIC) currently in operation has a 

17-m diameter primary. Obviously having a dedicated interferometer with such large 

primary mirrors would have considerable interest. Another advantage is that one could 
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get far more telescope time than what is available with the current amplitude 

interferometers, which are used with telescopes where the time is shared with other 

instruments. Consider also the time saving that occurs because a single observation at the 

single baseline is sufficient; while several observations with several separations are 

needed with amplitude interferometry.(see subsection 3a above). Finally future 

technological improvements in the bandwidth should allow to decrease the distance ratio.  

 One may worry about seeing effects in the optical region. Seeing effects 

are important in amplitude interferometry but not in our case. This can be understood by 

considering the discussion in Borra (2008) that shows that the relevant frequency is not 

the frequency of observation but the much lower beat-frequency. Note also that seeing 

effects are not important in intensity interferometry. 

 

 

d) Radio-Telescopes  

 

  Let us now consider a radio telescope operating in the 0.1 cm to 10 cm 

(300 GHz to 3 GHz) spectral regions.  Detectors capable of comparable bandwidths are 

commercially available. For example, the Pacific Millimeter Co makes detectors having 

330 GHz bandwidth. Consequently one could operate with baselines that give angular 

resolutions comparable to those currently obtained with existing interferometers. 

 The proposed technique would particularly be useful if used with current 

VLBI networks and interferometers located in space. Consider that current VLBI 

techniques digitize the output electric field signal E(t) from individual telescopes, 

digitally records it and then send it to a data processing correlator where the correlation is 

performed. The same data could be used to obtain the time-averaged intensity signal I(t) 

from two telescopes needed for our purpose  

 

  2

1 2( ) [ ( ) ( )]I t E t E t     ,  (4) 

 

where E1(t)  and E2(t)   are the electric fields measured at the separate telescopes and the 

brackets signify a time average. The intensity signal from Equation (4) would then have 

to be auto-correlated (Equation 2) and the Fourier transform obtained. Note in particular 

that this could be done with data obtained for other interferometric measures with current 

interferometers, including existing data. No new data would be needed. An interest of 

using the existing data is that one could detect time variations below the limit which was 

set by the time needed to move the telescopes, as discussed in subsection 3a. 

With present radio telescopes, the principal advantage of the technique, as 

discussed in subsection 3a above, is that a single observation at a single baseline is 

sufficient since scanning is done by software, while with standard interferometers one 

must change baseline and get many separate observations. This makes a more efficient 

use of telescope time. 

 

4. CONCLUSION 

 

This article discusses a novel type of astronomical interferometer that uses 

measurements of the output intensity of a square-law detector (e.g. a photomultiplier) and 
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has advantages over amplitude and intensity interferometers. An interesting suggestion is 

made in section 2: to separately record the intensity as a function of time at two different 

telescopes, then later numerically add them, and finally perform the autocorrelation of the 

added signals.  This would allow having extremely large baselines and therefore 

extremely high angular resolutions. 

The technique may be difficult to intuitively understand. However the discussion 

in section 2 leading to Equation (1) gives the basis for such an intuitive understanding. It 

considers, a simple source which is a circular disk having a uniform intensity distribution. 

Because the beat frequency ’ and the separation a between the slits of a Young 

interferometer have the same effect, Equation (1) shows that changing frequency ’ is 

equivalent to changing the spacing a  between the mirrors of an interferometer, as is done  

in amplitude interferometry.  Consequently, we can measure the diameter of the disk by 

increasing ’ until the spectral modulation at the beat frequency ’ disappears while 

keeping a constant.  

Simplicity is its outstanding advantage since the angular intensity distribution of 

an object is determined by measuring how the visibility of the spectral minima varies as a 

function of the beat-frequency ’ measured in the output current.  This is easily done by 

first numerically performing the autocorrelation of the intensity measurements as a 

function of time and then taking the Fourier transform of the autocorrelation.  In 

amplitude interferometers, the angular intensity distribution is determined by changing 

the separation between individual mirrors. As discussed in section 2, it is obviously far 

easier to change beat-frequency with software than physically move telescopes.  This 

brings the major advantage of a more efficient use of telescope time because a single 

observation at a single baseline is sufficient, while amplitude interferometers need several 

observations at different baselines.  Because one does not have to move the telescopes, 

the technique would also allow detecting faster time variations than classical 

interferometry. 

Its major inconvenience in the optical region is that it needs very strong sources 

because it uses, like intensity interferometry, a wave-interaction effect. This is not a 

serious disadvantage in the radio region. This disadvantage is mitigated by the fact that, 

like in intensity interferometry, one could use inexpensive primary mirrors having surface 

qualities much lower than those needed for amplitude interferometry. Presently it could 

be useful in the optical region by applying it to observations with Cherenkov telescopes. 

This brings another major advantage in the optical-infrared region for one could use 

dedicated interferometers that use very large (tens of meters diameters) inexpensive 

telescopes. 

In the radio region its present interest comes from the fact that it could improve the 

efficiency of existing telescopes because one could use measurements at a single 

baseline, while amplitude interferometry requires measurements at several different 

baselines. 

     Regarding the angular resolution that can be obtained with the technique; it cannot 

give a better resolution than amplitude interferometry at the same baseline separation of 

the telescopes. To the contrary, the resolution can only be worse since one measure at a 

lower beat frequency than the frequency of observation. However, in practice, it has an 

angular resolution advantage that comes from the fact that one could get data at 
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considerably larger baselines than in amplitude interferometry. Therefore the baseline 

advantage would allow obtaining better angular resolution. 
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