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The resolution of optical imaging devices is ultimately limited by the diffraction of light. To circumvent
this limit, modern superresolution microscopy techniques employ active interaction with the object by
exploiting its optical nonlinearities, nonclassical properties of the illumination beam, or near field probing.
Thus, they are not applicable whenever such interaction is not possible, for example, in astronomy or
noninvasive biological imaging. Far field, linear optical superresolution techniques based on passive
analysis of light coming from the object would cover these gaps. In this Letter, we present the first proof-of-
principle demonstration of such a technique for 2D imaging. It works by accessing information about
spatial correlations of the image optical field and, hence, about the object itself via measuring projections
onto Hermite-Gaussian transverse spatial modes. With a basis of 21 spatial modes in both transverse
dimensions, we perform two-dimensional imaging with twofold resolution enhancement beyond the

diffraction limit.
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The quest for improving resolution in optical imaging
has always stumbled upon a seemingly unbreakable wall:
the diffraction limit. The light field from the object, as it
propagates through the imaging system, experiences dif-
fraction, which gives rise to the smearing of the image. The
diffraction limit is usually defined in terms of the heuristic
Rayleigh criterion 8 = 1.221/D, where 6 is the resolvable
angular separation, 4 is the wavelength of light, and D is the
diameter of the objective lens’ aperture [1,2]. It bounds the
resolution of optical microscopes to around 200 nm.

The diffraction limit is valid when objects are illumi-
nated by classical light, the image is acquired in the far
field, and the involved imaging processes are linear [3,4]. In
the last decades we have witnessed an explosion of the so-
called superresolution techniques, which could surpass the
diffraction limit by breaking at least one of the aforemen-
tioned assumptions. By using, e.g., nonlinear excitation of
fluorophores [5,6], utilizing their distinguishability in time
[7,8], or near field probing of evanescent waves [9], they
were able to get around the diffraction barrier and bring
optical microscopy to the nanoscale.

Each of these methods, however, requires direct inter-
action with the sample and/or certain nonlinear properties
thereof and hence comes with a host of limitations, in
addition to significant cost and complexity. In certain cases,
such as astronomical imaging or microscopy of certain
sensitive samples [10], the active nature of the interaction
with the object precludes the application of existing super-
resolution techniques altogether.

A recent breakthrough [11], however, has shown that
superresolution can be achieved in the far field, with linear
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optics, and for standard illumination. It hinges on the
discovery that the optical field’s spatial correlations, which
are ignored in conventional direct intensity measurements,
contain additional information about the object. That
information can be accessed by coherently processing
the image field just before its detection and therefore does
not require any active manipulation of the sample.

One way to carry out this coherent processing is spatial-
mode sorting or demultiplexing [11] of the image field, i.e.,
decomposing it into a basis of spatial modes, e.g., the
Hermite-Gaussian (HG) basis [11,12], and measuring the
magnitude of each component. The shape of the object is
then reconstructed from these measurements. Our approach
is, therefore, reminiscent of the so-called single-pixel
imaging [13,14], which utilizes spatial-mode decomposi-
tion where array detectors are unavailable because of
wavelength restrictions or rapid acquisition requirements.

Intuitively, our approach helps achieving superresolution
by leveraging the fine spatial structure of these modes:
since the size of their features scales with the inverse square
root of the mode order, measuring the image field’s
projections into higher-order modes accesses increasingly
finer details of the spatial distribution of the field corre-
lations and, therefore, the subwavelength information
they carry.

The original theoretical idea [11], as well as all existing
experimental work [15-20] focus on estimating just one or
several parameters of the object, such as the separation
between two point sources. Here we report the first
experimental demonstration of this approach in application
to full two-dimensional imaging. Our work is based on the

© 2021 American Physical Society


https://orcid.org/0000-0002-3531-0987
https://orcid.org/0000-0002-7225-5964
https://orcid.org/0000-0003-3165-6654
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevLett.127.253602&domain=pdf&date_stamp=2021-12-15
https://doi.org/10.1103/PhysRevLett.127.253602
https://doi.org/10.1103/PhysRevLett.127.253602
https://doi.org/10.1103/PhysRevLett.127.253602
https://doi.org/10.1103/PhysRevLett.127.253602

PHYSICAL REVIEW LETTERS 127, 253602 (2021)

method proposed theoretically by Yang et al. [15] and
dubbed Hermite-Gaussian microscopy (HGM). Tsang has
shown the advantage of this approach in comparison with
direct imaging in terms of quantum Fisher-information
formalism [21,22]. In practice, we are able to resolve the
objects’ details at one-half of the diffraction limit imposed
by the optical system.

Implementing HGM experimentally faces a number of
challenges. First, the image reconstruction method of
Ref. [15] assumes an ideal optical system with no aberra-
tions and a perfectly Gaussian point spread function.
Second, it requires precise measurement of the spatial
mode in the HG basis, which must be perfectly matched to
the image field. This requirement is further complicated by
the signal magnitudes associated with higher- and lower-
order modes differing by several orders of magnitude.
Third, the method of Ref. [15] breaks down in the presence
of noise; particularly, it is vulnerable to the shot noise
inherent to the quantum nature of light (see Supplemental
Material [23]).

We overcome these challenges as follows. Instead of
implementing direct HG mode demultiplexing of the image
field, we perform sequential heterodyne detection of that
field with different HG beams as local oscillators (LOs).
The heterodyne detector is sensitive only to the component
of the field that matches the LO mode, effectively selecting
the necessary field projections. Since it is technically easier
to prepare HG modes [27,28] than sort them [29-31], this
approach significantly simplifies the experiment. We
acquire heterodyne photocurrents for HG,, , with m and
n ranging from O to 20.

We overcome the imperfections of the imaging system
and the systematic errors by using machine learning, rather
than a rigid theoretical model, to calibrate our measure-
ments. We train a neural network (NN) to reconstruct a
superresolved image from the measurement data by pre-
senting it with these data for a variety of known objects.
This training enables the NN to reconstruct an unknown
object from a set of measurements acquired with the
same setup.

This proof-of-principle experiment is implemented in a
simplified setting with coherently illuminated samples and
an imaging system with a low numerical aperture. A
schematic of the setup is presented in Fig. 1. A continuous
laser beam at 785 nm is initially split into the signal and LO
paths. At the signal path, the beam is frequency shifted by
92.05 MHz via an acousto-optic modulator before illumi-
nating a binary amplitude mask (the object to image)
displayed via a digital micromirror device (DMD). The
objects are generated inside a 210 x 210 pixel area, with a
pixel pitch of 7.56 ym. To impose the diffraction limit, the
light reflected from the DMD is imaged by an objective
lens placed at a distance of 245.5 cm and with a numerical
aperture (NA) reduced to 7.1 x 107 by an iris of 3.5 mm
diameter placed in front of it. The corresponding
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FIG. 1. Schematic of the experiment. The object is a 210 x
210 pixel bitmap displayed on the DMD; the spatial modes of the
local oscillator are prepared using a liquid-crystal SLM.

(theoretical) coherent light Rayleigh limit 1.641/2NA is
now 906 ym (120 DMD pixels) and, for comparison, the
classical incoherent light limit 1.224/2NA is 674 ym (89
DMD pixels). In the LO path, the laser beam is shaped into
a HG,, , mode by a liquid-crystal spatial light modulator
(SLM). Using the scheme of Ref. [32], which allows
independent phase and amplitude modulation of the beam,
plus a previously developed procedure [27] to compensate
for the SLM’s imperfections, we are able to generate high-
quality HG modes up to the 20th order in both directions.
Finally, the signal and LO paths are recombined for hetero-
dyne detection. The produced photocurrents are demodu-
lated; their phases and amplitudes are recorded [23].

The signal-to-noise ratio of the acquired signal was
limited by technical noise and amounted, dependent on the
object, to 25-35 dB for lowest-order modes and 0—10 dB
for highest-order modes. This ratio was typically poorer for
odd modes because most objects had a dominant symmetric
component, which gave rise to higher signal in even modes
[Fig. 2(b)].

The complex photocurrent values associated with the
441 LO modes constitute the experimental data for the
image reconstruction. Note that both the amplitudes and
phases are needed for the imaging process: without the
phases, we are unable to reconstruct the antisymmetric
features of the images [15].

The HGM image reconstruction as described in Ref. [15]
relies on precise knowledge of the point spread function
and is supremely sensitive to even the slightest experi-
mental imperfections. The sources of errors can be mani-
fold: imperfect HG modes, phase aberrations in both
beams’ paths, the intrinsic curvature of the DMD surface,
hardness and asymmetry of the aperture, and the misalign-
ment between the HG modes and the signal beam,
among others. To overcome these issues, we calibrate
our imaging system using a supervised feed forward
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FIG. 2. Sketch of the data acquisition and processing pipeline. We image via HGM a sample (a) and acquire its complex photocurrents
(b), which are then fed to the NN (c) (the inset shows the learning curve, i.e., the training and cross-validation mean squared error (MSE)
loss versus the training epoch). The NN is trained to predict the idealized HGM reconstruction of the sample image (d). (e)—(g) The
reconstruction of a sample from the test set.

NN [33], schematized in Fig. 2. The input of the network is
441 real and imaginary components of the heterodyne
output photocurrents; the output is a 50 x 50 bitmap
containing the image. The NN architecture is shown in
Fig. 2 and contains two hidden layers with 6000 units each.

In order to train the NN, we use the DMD to produce 26
501 training samples consisting of random bitmaps as well
as simple geometric shapes [23]. These are divided into the
training and cross-validation dataset in the 90:10 propor-
tion. The elements of the training set are sequentially
displayed on the DMD, and the corresponding set of
complex-valued photocurrents is acquired for each of them.

For the corresponding set of training labels, we do not
use the “ground truth" objects (as done, e.g., in Ref. [34]);
instead, we simulate the images that would be recon-
structed from the training set with the ideal HGM [15,35].
With this approach, we train the NN to approximate the
underlying HGM model and filter out the experimental
noise and not to guess the sample features beyond the
resolution capabilities of the optics. We found that using the
ground truth objects (or even a slightly smoothed version
thereof) as labels leads to overfitting issues that actually
degrade the imaging quality for the test set.

After training, we evaluate the NN performance on
previously unseen samples: the logo and coat of arms of
Oxford University [Figs. 3(a) and 3(b)], pairs of lines of
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varied separation [Figs. 4(a) and 4(b)] and alphabet
characters [Supplemental Material [23], Figs. 7(a) and
7(b)]. The logo and coat of arms have been split into,
respectively, 30 and 120 smaller square rasters of size
210 x 210 DMD pixels (shown by the grid in Fig. 3), each
displayed on the DMD and fed to the NN in sequence. This
procedure is equivalent to the transverse scanning of the
object with the stride of 210 x 7.56 = 1588 um.

(a) (b) (c)

Source HGM Direct imaging

UNIVERSITY OF

OXFORD-m

FIG. 3. (a) Original, (b) HGM-reconstructed, and (c) camera
images of the Oxford logo and coat-of-arms test sets. The grid
shows the division of the images into square subimages that are
fed to HGM sequentially.
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FIG. 4. Qualitative assessment of the resolution improvements
of HGM. (a) Lines pairs of increasing spacing, (b) their
reconstruction via HGM using 21 x 21 modes, and (c) camera
images. (d) Rayleigh criterion for experimental (red squares) and
simulated (blue connected dots) HGM vs number of used modes,
normalized to the value for simulated direct imaging (DI),
together with the experimental direct imaging (continuous black
line).

In order to compare our performance with traditional
direct imaging methods, we perform direct intensity mea-
surements with a camera placed at the image plane of the
objective lens [Figs. 3(c) and 4(c); Supplemental Material
[23], Fig. 7(c)]. For the logos, the transverse scan has also
been simulated as described above, albeit with a smaller
stride (10 DMD pixels) because direct imaging was more
sensitive to aberrations. Qualitatively, we can see that the
HGM reconstructions are much sharper than direct images
and allow us to see fine details and features that otherwise
could not be distinguished. HGM is also superior to camera
images postprocessed with deconvolution algorithms (see
Supplemental Material [23]).

In Fig. 4, we quantitatively benchmark the resolution
gain by imaging pairs of parallel lines. Examples are shown
in Figs. 4(a)-4(c), whereas Fig. 4(d) plots the HGM
resolution as a function of the number of HG modes used
in both dimensions. To quantify the resolution, the classic
Rayleigh criterion is used, i.e., that two sources are
considered resolved when the intensity at their midpoint
is at most 75% of the maximum intensity. We find that
HGM with up to the HG,(, 5 mode can resolve two sources
at approximately one-half of the diffraction limit. In other
words, the HGM resolution is comparable to the direct
imaging performed using a lens that is twice as wide.

We can also see from Fig. 4(d) that our experimental
results on the resolution are close to the simulations. The
HGM resolution is expected to scale approximately as the
inverse square root of the number of modes in each
dimension. Hence, the theoretically achievable resolution
enhancement is significantly higher than that shown here.
In practice, an important limitation is associated with
generating high-order modes, which is increasingly chal-
lenging to do with high fidelity due to the limited SLM
resolution.

Superresolution is known to be dramatically degraded by
noise [36,37]. The ultimate resolution limit arises from the

shot noise, which affects the signal from all modes, but
especially high-order HG modes, whose magnitudes rap-
idly fall with the mode number [38,39]. This is not a
limiting factor in our experiment, as the number of photons
in each measurement is on a scale of 10'°, corresponding
to the signal-to-shot-noise ratio of 50 dB. However, we
simulated the shot noise effect in the Supplemental Material
[23] and found that, in the presence of that noise, HGM
consistently produces higher-quality reconstruction than
direct imaging, yielding reasonable reconstruction quality
with as few as 10 photons per image section.

We now briefly discuss the perspectives of adapting our
method for practical imaging, e.g., in microscopy or
astronomy. One important difference is that the light
sources in practical settings are typically incoherent. In
this case, the phases of the heterodyne detector photo-
currents are random, but their amplitudes are sufficient to
reconstruct the component of the image that is symmetric
with respect to the reflection about the horizontal and
vertical coordinate axes [15]. The antisymmetric compo-
nents can then be reconstructed by using superpositions of
HG modes as the LO [21] or obviated by shifting the object
to a single quadrant of the reference frame [15].

A further limitation of heterodyne detection is the
detectable bandwidth, which is bounded by the detector
electronics. For practical imaging of broadband objects,
one of the spatial-mode demultiplexing methods [20,29—
31,37] must instead be used.

For the NN training in a microscopic setting, one could
rely on off-the-shelf calibration slides and microplates for
optical microscopes [40]. A calibration slide of a few tens
of micrometer size, containing several thousand training
objects of size 0.5-1 ym, can be fabricated with a reso-
lution of a few tens of nanometers by way of lithography or
laser writing. This slide can be scanned in front of the
microscope objective in various orientations to increase the
straining set size. If the variety and amount of the training
data are still not sufficient, one could implement data
augmentation techniques [41], adapting them to the
HGM NN.

HGM is a vastly simpler and cheaper alternative to many
existing superresolution methods. Furthermore, its passive
nature permits universal application in a wide variety of
imaging scenarios, including those not accessible by
existing schemes. HGM can be combined with other
imaging techniques to further increase the resolution
[42]. This could open up a whole new direction in both
the academic and industrial sides of optical imaging.

“These authors contributed equally to this work.
TAleX.Lvovsky@physics.ox.ac.uk

[1] L. Rayleigh, XXXI. Investigations in optics, with special
reference to the spectroscope, The London, Edinburgh, and
Dublin Philos. Mag. J. Sci. 8, 261 (1879).

253602-4


https://doi.org/10.1080/14786447908639684
https://doi.org/10.1080/14786447908639684

PHYSICAL REVIEW LETTERS 127, 253602 (2021)

[2] G. de Villiers and E. R. Pike, The Limits of Resolution Series
in Optics and Optoelectronics (CRC Press, Boca Raton, FL,
2016).

[3] L. Mandel and E. Wolf, Optical Coherence and Quantum
Optics (Cambridge University Press, Cambridge, England,
1995).

[4] J. Goodman, Introduction to Fourier Optics (Roberts & Co,
Englewood, CO, 2005).

[5] S.W. Hell and J. Wichmann, Breaking the diffraction
resolution limit by stimulated emission: Stimulated-
emission-depletion fluorescence microscopy, Opt. Lett.
19, 780 (1994).

[6] S. W. Hell, Far-field optical nanoscopy, Science 316, 1153
(2007).

[71 M.J. Rust, M. Bates, and X. Zhuang, Sub-diffraction-limit
imaging by stochastic optical reconstruction microscopy
(STORM), Nat. Methods 3, 793 (2006).

[8] R.M. Dickson, A.B. Cubitt, R.Y. Tsien, and W.E.
Moerner, On/off blinking and switching behaviour of single
molecules of green fluorescent protein, Nature (London)
388, 355 (1997).

[9] U. Drig, D. W. Pohl, and F. Rohner, Near-field optical-
scanning microscopy, J. Appl. Phys. 59, 3318 (1986).

[10] M. Tsang, Resolving starlight: A quantum perspective,
Contemp. Phys. 60, 279 (2019).

[11] M. Tsang, R. Nair, and X.-M. Lu, Quantum Theory of
Superresolution for Two Incoherent Optical Point Sources,
Phys. Rev. X 6, 031033 (2016).

[12] J. Rehacek, M. Padr, B. Stoklasa, Z. Hradil, and L.L.
Sanchez-Soto, Optimal measurements for resolution beyond
the Rayleigh limit, Opt. Lett. 42, 231 (2017).

[13] M. F. Duarte, M. A. Davenport, D. Takhar, J. N. Laska, T.
Sun, K. F. Kelly, and R. G. Baraniuk, Single-pixel imaging
via compressive sampling, IEEE Signal Process. Mag. 25,
83 (2008).

[14] M. P. Edgar, G. M. Gibson, and M. J. Padgett, Principles and
prospects for single-pixel imaging, Nat. Photonics 13, 13
(2019).

[15] F. Yang, A. Tashchilina, E. S. Moiseev, C. Simon, and A. 1.
Lvovsky, Far-field linear optical superresolution via hetero-
dyne detection in a higher-order local oscillator mode,
Optica 3, 1148 (2016).

[16] Z.S. Tang, K. Durak, and A. Ling, Fault-tolerant and finite-
error localization for point emitters within the diffraction
limit, Opt. Express 24, 22004 (2016).

[17] M. Padr, B. Stoklasa, Z. Hradil, L. L. Sanchez-Soto, and J.
Rehacek, Achieving the ultimate optical resolution, Optica
3, 1144 (2016).

[18] W.-K. Tham, H. Ferretti, and A. M. Steinberg, Beating
Rayleigh’s Curse by Imaging Using Phase Information,
Phys. Rev. Lett. 118, 070801 (2017).

[19] M. Parniak, S. Borowka, K. Boroszko, W. Wasilewski, K.
Banaszek, and R. Demkowicz-Dobrzaniski, Beating the
Rayleigh Limit Using Two-Photon Interference, Phys.
Rev. Lett. 121, 250503 (2018).

[20] P. Boucher, C. Fabre, G. Labroille, and N. Treps,
Spatial optical mode demultiplexing as a practical tool
for optimal transverse distance estimation, Optica 7, 1621
(2020).

[21] M. Tsang, Subdiffraction incoherent optical imaging via
spatial-mode demultiplexing, New J. Phys. 19, 023054
(2017).

[22] M. Tsang, Quantum limit to subdiffraction incoherent
optical imaging, Phys. Rev. A 99, 012305 (2019).

[23] See Supplemental Material at http://link.aps.org/supplemental/
10.1103/PhysRevLett.127.253602 for details of the experi-
ment and shot noise analysis, which includes Refs. [24-26].

[24] R. Kumar, E. Barrios, A. MacRae, E. Cairns, E. Huntington,
and A. Lvovsky, Versatile wideband balanced detector for
quantum optical homodyne tomography, Opt. Commun.
285, 5259 (2012).

[25] A. Masalov, A. Kuzhamuratov, and A. Lvovsky, Noise
spectra in balanced optical detectors based on transimpe-
dance amplifiers, Rev. Sci. Instrum. 88, 113109 (2017).

[26] B. Zhang, J. Zerubia, and J.-C. Olivo-Marin, Gaussian
approximations of fluorescence microscope point-spread
function models, Appl. Opt. 46, 1819 (2007).

[27] A. A. Pushkina, J.I. Costa-Filho, G. Maltese, and A.lL
Lvovsky, Comprehensive model and performance optimi-
zation of phase-only spatial light modulators, Meas. Sci.
Technol. 31, 125202 (2020).

[28] A. Forbes, A. Dudley, and M. McLaren, Creation and
detection of optical modes with spatial light modulators,
Adv. Opt. Photonics 8, 200 (2016).

[29] Y. Zhou, J. Zhao, Z. Shi, S. M. H. Rafsanjani, M. Mirhosseini,
Z. Zhu, A.E. Willner, and R. W. Boyd, Hermite-Gaussian
mode sorter, Opt. Lett. 43, 5263 (2018).

[30] M. Hiekkamdki, S. Prabhakar, and R. Fickler, Near-perfect
measuring of full-field transverse-spatial-modes of light,
Opt. Express 27, 31456 (2019).

[31] N. K. Fontaine, R. Ryf, H. Chen, D. T. Neilson, K. Kim, and J.
Carpenter, Scalable mode sorter supporting 210 Hermite-
Gaussian modes, in Optical Fiber Communication Con-
ference Postdeadline Papers (Optical Society of America,
San Diego, 2018), p. Th4B 4.

[32] E. Bolduc, N. Bent, E. Santamato, E. Karimi, and R. W.
Boyd, Exact solution to simultaneous intensity and phase
encryption with a single phase-only hologram, Opt. Lett. 38,
3546 (2013).

[33] A.M. Palmieri, E. Kovlakov, F. Bianchi, D. Yudin, S.
Straupe, J. D. Biamonte, and S. Kulik, Experimental neural
network enhanced quantum tomography, npj Quantum Inf.
6, 20 (2020).

[34] W. Ouyang, A. Aristov, M. Lelek, X. Hao, and C. Zimmer,
Deep learning massively accelerates super-resolution locali-
zation microscopy, Nat. Biotechnol. 36, 460 (2018).

[35] G. Maltese, J.I. Costa-Filho, A. Pushkina, P. Patel, and A.
Lvovsky, Hermite-Gaussian Microscopy (GitHub, San
Francisco, 2021), https://github.com/giomalt/HGM.

[36] C. Oh, S. Zhou, Y. Wong, and L. Jiang, Quantum Limits of
Superresolution in a Noisy Environment, Phys. Rev. Lett.
126, 120502 (2021).

[37] G. Sorelli, M. Gessner, M. Walschaers, and N. Treps,
Optimal Observables and Estimators for Practical
Superresolution imaging, Phys. Rev. Lett. 127, 123604
(2021).

[38] F. Yang, R. Nair, M. Tsang, C. Simon, and A.I. Lvovsky,
Fisher information for far-field linear optical superresolution

253602-5


https://doi.org/10.1364/OL.19.000780
https://doi.org/10.1364/OL.19.000780
https://doi.org/10.1126/science.1137395
https://doi.org/10.1126/science.1137395
https://doi.org/10.1038/nmeth929
https://doi.org/10.1038/41048
https://doi.org/10.1038/41048
https://doi.org/10.1063/1.336848
https://doi.org/10.1080/00107514.2020.1736375
https://doi.org/10.1103/PhysRevX.6.031033
https://doi.org/10.1364/OL.42.000231
https://doi.org/10.1109/MSP.2007.914730
https://doi.org/10.1109/MSP.2007.914730
https://doi.org/10.1038/s41566-018-0300-7
https://doi.org/10.1038/s41566-018-0300-7
https://doi.org/10.1364/OPTICA.3.001148
https://doi.org/10.1364/OE.24.022004
https://doi.org/10.1364/OPTICA.3.001144
https://doi.org/10.1364/OPTICA.3.001144
https://doi.org/10.1103/PhysRevLett.118.070801
https://doi.org/10.1103/PhysRevLett.121.250503
https://doi.org/10.1103/PhysRevLett.121.250503
https://doi.org/10.1364/OPTICA.404746
https://doi.org/10.1364/OPTICA.404746
https://doi.org/10.1088/1367-2630/aa60ee
https://doi.org/10.1088/1367-2630/aa60ee
https://doi.org/10.1103/PhysRevA.99.012305
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.253602
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.253602
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.253602
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.253602
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.253602
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.253602
http://link.aps.org/supplemental/10.1103/PhysRevLett.127.253602
https://doi.org/10.1016/j.optcom.2012.07.103
https://doi.org/10.1016/j.optcom.2012.07.103
https://doi.org/10.1063/1.5004561
https://doi.org/10.1364/AO.46.001819
https://doi.org/10.1088/1361-6501/aba56b
https://doi.org/10.1088/1361-6501/aba56b
https://doi.org/10.1364/AOP.8.000200
https://doi.org/10.1364/OL.43.005263
https://doi.org/10.1364/OE.27.031456
https://doi.org/10.1364/OL.38.003546
https://doi.org/10.1364/OL.38.003546
https://doi.org/10.1038/s41534-020-0248-6
https://doi.org/10.1038/s41534-020-0248-6
https://doi.org/10.1038/nbt.4106
https://github.com/giomalt/HGM
https://github.com/giomalt/HGM
https://doi.org/10.1103/PhysRevLett.126.120502
https://doi.org/10.1103/PhysRevLett.126.120502
https://doi.org/10.1103/PhysRevLett.127.123604
https://doi.org/10.1103/PhysRevLett.127.123604

PHYSICAL REVIEW LETTERS 127, 253602 (2021)

via homodyne or heterodyne detection in a higher-order local [41] C. Shorten and T.M. Khoshgoftaar, A survey on image

oscillator mode, Phys. Rev. A 96, 063829 (2017). data augmentation for deep learning, J. Big Data 6, 1
[39] C. Lupo, Subwavelength quantum imaging with noisy (2019).

detectors, Phys. Rev. A 101, 022323 (2020). [42] K.K.M. Bearne, Y. Zhou, B. Braverman, J. Yang,
[40] A.D. Corbett, M. Shaw, A. Yacoot, A. Jefferson, L. S.A. Wadood, A.N. Jordan, A.N. Vamivakas, Z. Shi,

Schermelleh, T. Wilson, M. Booth, and P. S. Salter, Micro- and R.W. Boyd, Confocal super-resolution microscopy

scope calibration using laser written fluorescence, Opt. based on a spatial mode sorter, Opt. Express 29, 11784

Express 26, 21887 (2018). (2021).

253602-6


https://doi.org/10.1103/PhysRevA.96.063829
https://doi.org/10.1103/PhysRevA.101.022323
https://doi.org/10.1364/OE.26.021887
https://doi.org/10.1364/OE.26.021887
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1186/s40537-019-0197-0
https://doi.org/10.1364/OE.419493
https://doi.org/10.1364/OE.419493

