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Detecting the faint emission of a secondary source in the proximity of the much brighter one has been the
most severe obstacle for using direct imaging in searching for exoplanets. Using quantum state
discrimination and quantum imaging techniques, we show that one can significantly reduce the probability
of error for detecting the presence of a weak secondary source, especially when the two sources have small
angular separations. If the weak source has intensity ϵ ≪ 1 relative to the bright source, we find that the
error exponent can be improved by a factor of 1=ϵ. We also find linear-optical measurements that are
optimal in this regime. Our result serves as a complementary method in the toolbox of optical imaging, with
applications ranging from astronomy to microscopy.
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Hypothesis testing is a fundamental task in statistical
inference and has been a crucial element in the develop-
ment of information sciences. The simplest setting involves
a binary decision in which the goal is to distinguish
between two mutually exclusive hypotheses, H0 (the null)
andH1. For example, an astronomer in search of exoplanets
collects data from a portion of the sky and has to decide
whether there is (H1) or there is not (H0) a planet orbiting
around a star. With limited data, this decision is subject to
errors. As exoplanets are rare, the experimenters’ goal is to
minimize the probability of a false negative (type II error).
Yet, they may be willing to accept false positives (type I
error) as long as they come with a probability below a
certain threshold.
In quantum information theory, the two hypotheses are

represented by a pair of quantum states ρ0, ρ1. Given n
copies of the state, we denote as αn the probability of a type
I error, and βn is the probability of a type II error. According
to the quantum Stein lemma [1,2], if we require αn ∈ ð0; δÞ,
with δ < 1, then the probability of a type II error is given
by [3,4]

βn ¼ expf−½nDðρ0jjρ1Þ þ
ffiffiffiffiffiffi
nb

p
Φ−1ðδÞ þOðln nÞ�g; ð1Þ

where the term linear in n is given by the Umegaki quantum
relative entropy [5]:

Dðρ0kρ1Þ ¼ Tr½ρ0ðln ρ0 − ln ρ1Þ�: ð2Þ

Here we focus on the asymptotic regime of n ≫ 1, where
the dominant term is the relative entropy.
Returning to the problem of exoplanet detection,

different experimental methodologies have been deve-
loped [6–8], including Doppler measurements, transit
observation, gravitational microlensing, as well as direct

imaging. The different techniques are complementary: for
example, Doppler and transit techniques preferentially
detect planets that orbit closer to their stars and are larger
in mass or size while microlensing and direct imaging
(traditionally) are more sensitive to planets in further
orbits [7,8].
Direct imaging (DI), being the most conceptually

straightforward, is a powerful complementary technique
to the others, especially when the planet is relatively far
from the star [7,8]: a telescope is used to create a focused
image of the star system, and the intensity profile is
analyzed to determine whether a planet is present
(Fig. 1). However, because of diffraction, the image of a
pointlike object is not a point but will have a finite spread.
Because of this blurring as well as the emission of
exoplanets being weak compared to the bright object,
detecting this emission in the proximity of the much

FIG. 1. An optical imaging system (modeled as a thin lens) is
used to discern between two hypotheses. Hypothesis H0 is that
only one source is present of intensity N. Hypothesis H1 is that
two sources are present, with total intensity N and relative
intensity ϵ=ð1 − ϵÞ ≪ 1. The field focused on the image screen
can be measured by DI, or by applying an interferometric
measurement, for example, SPADE [9] or SLIVER [10,11].
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brighter stellar source presents the most severe practical
obstacle to direct detection [7,8].
In this Letter, we use techniques from quantum imaging

to boost the efficiency of exoplanet detection as a comple-
ment to DI. First, we use a fully quantum formalism to
determine the ultimate limit of quantum imaging, as
expressed by the quantum relative entropy. Then, we show
that this ultimate limit can be achieved by a relatively
simple, linear optical measurement, consisting of SPAtial
DE-multiplexing (SPADE) or Super-Localization via
Image-inVERsion interferometry (SLIVER). These mea-
surements are already known to be optimal for other
problems in quantum imaging [9–14].
We assume that N photons per detection window are

collected and measured [Of course, one can also consider a
model in which H1 has a total mean photon number
Nð1þ ϵÞ, and photon number information is indeed used
for the transit method [6]. Here we choose to preserve the
total photon number because the mean photon number of
the sources may not be known exactly.] These photons are
either emitted by a star (H0) or by a star-planet system (H1).
In the latter case a small fraction ϵ ≪ 1 of the light is
scattered from the planet at an angle s ≪ 1. Within this
model, we show that the error exponent for quantum
imaging is proportional to ϵ, whereas in DI it scales as
ϵ2. This suggests a quadratic improvement of quantum over
classical imaging.
Diffraction-limited direct imaging.—In conventional im-

aging, a converging optical system is used to create a
focused image of an object. In the far-field and paraxial
regime, the imaging system is characterized by the
(normalized) point-spread function (PSF) ψðx − x0Þ, cen-
tered at x0, where x is the angular coordinate on the
screen. For simplicity, we assume a one-dimensional
scalar field and unit angular magnification [15]. We
quantify the spread of the PSF using the parameter
σ≔ ð1=2Þ½−R

ψðxÞψ 00ðxÞdx�−1=2. As discussed in Ref. [16],
σ measures the uncertainty in localizing the emitter.
For example, for the PSF ψðxÞ ¼ ðaπÞ−1=2 sin ðaxÞ=x,
σ ¼ ffiffiffi

3
p

=ð2aÞ, and for a Gaussian PSF, ψðxÞ¼ð2πσ2Þ−1=4×
expð−x2=4σ2Þ, σ corresponds to the standard deviation.
Consider the null hypothesis where there is no planet

orbiting the star. The intensity profile on the image screen is
given by the square of the PSF, p0ðxÞ ¼ jψðx − x0Þj2,
centered about the position, x0, of the star. On the other
hand, if a planet is present, the intensity profile is

p1ðxÞ ¼ ð1 − ϵÞjψðx − x0Þj2 þ ϵjψðx − x0 − sÞj2; ð3Þ

where ϵ ≪ 1 is the relative intensity of the light scattered by
the exoplanet, and s is its angular separation from the star.
We assume that the two sources are incoherent.
In the limit of weak signals, p0ðxÞ and p1ðxÞ are the

probabilities of detecting a photon at position x on the
image screen. Exoplanet detection with DI is hence

equivalent to the problem of discriminating between
the probability distributions p0 and p1. On detecting n
photons, by requiring that the probability of a false positive
αn ∈ ð0; δÞwith δ < 1, the probability βn of a false negative
decreases exponentially with n, where the asymptotic
exponent is given by the classical version of Eq. (2)
[17], where

Dðp0kp1Þ ¼
Z

dxp0ðxÞ½lnp0ðxÞ − lnp1ðxÞ� ð4Þ

is the classical relative entropy.
The above error exponent can be computed given a

specific form of the PSF. To make this more concrete, we
assume a Gaussian PSF, which yields

Dðp0kp1Þ ¼ −
Z

dxjψðxÞj2 ln
�
1 − ϵþ ϵe

2xs−s2

2σ2

�
: ð5Þ

In the limit that ϵ ≪ 1, and for s≲ σ,

Dðp0jjp1Þ ≈ ðes2

σ2 − 1Þ ϵ
2

2
þOðϵ3Þ: ð6Þ

The largest term in Eq. (6) is quadratic in both ϵ and s=σ.
This formally expresses the challenges of using DI for
exoplanet detection in a scenario in which the planet is
much dimmer and is very close to the star.
Quantum-limited exoplanet detection.—It is known that

quantum imaging beats DI for the problem of estimating
the transverse separation between two faint sources [9].
Here we show that quantum-limited imaging also yields a
quadratic improvement in the exponent of the type II error.
We will first consider a model in which at most one
photon arrives at a time; then in the “Thermal light” section,
we describe the star-planet system as sources of thermal
light. We denote as aðxÞ, aðxÞ† the continuous set of
annihilation and creation operators associated to a
photon detected at the angle x on the image plane.
Therefore, the state of a photon emitted by the star is
jψx0i ¼

R
dxψðx − x0ÞaðxÞ†j0i, where j0i is the vacuum

state. Similarly, the state of photon scattered by the planet is
jψx0þsi ¼

R
dxψðx − x0 − sÞaðxÞ†j0i, and the two hypoth-

eses are associated with the density matrices

ρ0 ¼ jψx0ihψx0 j; ð7Þ

ρ1 ¼ ð1 − ϵÞjψx0ihψx0 j þ ϵjψx0þsihψx0þsj: ð8Þ

From the above, we obtain the quantum relative entropy,
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Dðρ0kρ1Þ¼−
½1−u−2ϵð1−ω2Þ�2

ð1−u−2ϵÞ2þ4ϵð1−u−ϵÞω2
ln

�
1−u
2

�

−
½1þu−2ϵð1−ω2Þ�2

ð1þu−2ϵÞ2þ4ϵð1þu−ϵÞω2
ln

�
1þu
2

�
;

ð9Þ

where we have defined ω ¼ hψx0 jψx0þsi, and u ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 4ϵð1 − ϵÞð1 − ω2Þ

p
. By expanding this expression

around ϵ ¼ 0 we obtain

Dðρ0kρ1Þ ¼ ð1 − ω2ÞϵþOðϵ2Þ; ð10Þ

i.e., a quadratic improvement over DI. For a Gaussian
PSF, ω2 ¼ exp ð−s2=4σ2Þ.
Figure 2 plots Eqs. (5) and (9) vs ϵ (top) and s=σ

(bottom). Both quantities approach the same limit when
s=σ ≫ 1, implying that DI is optimal for wide separations.
Although both quantities become zero as s → 0, they do
with a different scaling. This means that DI becomes
increasingly erroneous for close separations, whereas the
optimal quantum strategy remains useful over a wider
parameter range.
Optimality of interferometric measurements.—Here we

show that interferometric measurements are optimal in the
weak signal limit. Consider a SPADE measurement in
which the field is split into its components along the
Hermite-Gauss spatial modes, ϕqðxÞ [18], followed by
modewise photodetection. This measurement may be

realized with an interferometric setup [12], a hologram
[16], or a multimode waveguide [9]. This latter approach is
shown schematically in Fig. 3. A state of a single photon
in the qth mode reads jϕqi ¼

R
ϕqðxÞaðxÞ†j0i. For a

Gaussian PSF, centered in x ¼ x0, their overlap is

jhϕqjψx0ij2 ¼ e−Q
Qq

q!
; Q ¼ x20

4σ2
: ð11Þ

For our case, we point the optical imaging system toward
the optical center of mass,

x̄ ¼ ð1 − ϵÞx0 þ ϵðx0 þ sÞ: ð12Þ

With respect to x̄, the relative position of the star is ð−ϵsÞ,
and the planet is positioned at ð1 − ϵÞs. Therefore,

jhϕqjψ starij2 ¼
1

q!
e−

ϵ2s2

4σ2

�
ϵs
2σ

�
2q
; ð13Þ

jhϕqjψplanetij2 ¼
1

q!
e−

ð1−ϵÞ2s2
4σ2

�ð1 − ϵÞs
2σ

�
2q
: ð14Þ

From this, we obtain the probability of detecting the photon
in the qth Hermite-Gauss spatial mode:

p1ðqÞ ¼ ð1 − ϵÞjhϕqjψ starij2 þ ϵjhϕqjψplanetij2: ð15Þ

If the planet is absent (H0), the center of mass coincides
with the position of the star, i.e., x̄ ¼ x0, and the probability
is p0ðq ¼ 0Þ ¼ jhϕ0jψ starij2 ¼ 1. The exponent for type II
error is thus obtained from the relative entropy between
these two probability distributions. We have

Dðp0kp1Þ ¼ − lnp1ð0Þ ≈
�
1 − e−

s2

4σ2

�
ϵþOðϵ2Þ; ð16Þ

which is optimal in the limit of small ϵ, as it coincides with
the quantum relative entropy. This result follows directly
from the fact that the Gaussian PSF equals the fundamental
(q ¼ 0) Hermit-Gaussian function. To achieve an optimal
alignment, one can use an iterative technique: once the
centroid of the system is determined with a camera, it is

FIG. 2. Comparison between the quantum relative entropy and
the relative entropy for DI. Top: the two quantities plotted vs ϵ,
for s=σ ¼ 0.05. The log-log scale emphasizes the different
scaling for small ϵ. Bottom: the quantum and classical entropy
plotted vs s=σ for different values of ϵ.

detector

q = 1q = 0 q = 2

FIG. 3. A multimode wave guide can be used as Hermite-Gauss
mode sorter [9]. The optical center of mass of the two sources, x̄,
is aligned with the center of the wave guide.
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aligned with the SPADE device; the position can be
adjusted until the received state maximally couples into
the fundamental mode.
In general, the PSF is not Gaussian and it may not

coincide with the fundamental mode of the basis used for
SPADE. In this more general case, an optimal interfero-
metric measurement is obtained from a parity measure-
ment, i.e., by inversion imaging, also known as SLIVER, as
long as the PSF is even, ψðxÞ ¼ ψð−xÞ. It follows that, if
H0 is true, the probability of measuring even parity is
π0ð0Þ ¼ 1, and the probability of odd parity is π0ð1Þ ¼ 0.
To see what happens when H1 is true, first consider a

single emitter displaced by δx. We can write the displaced
PSF ψðx − δxÞ as a sum of even and odd functions,

ψðx − δxÞ ¼ 1

2
½ψðx − δxÞ þ ψðxþ δxÞ�

þ 1

2
½ψðx − δxÞ − ψðxþ δxÞ�: ð17Þ

A parity measurement then yields an even outcome with
probability πð0Þ ¼ 1

4

R jψðx − δxÞ þ ψðxþ δxÞj2dx. By
expanding around δx ¼ 0 we obtain

πð0Þ ¼ 1þ δx2
Z

ψðxÞψ 00ðxÞdxþOðδx3Þ: ð18Þ

Coming back to hypothesis H1, as the two emitters are
incoherent, the probability of measuring an even parity is,
for small ϵ and s,

π1ð0Þ ≃ ð1 − ϵÞ
�
1 −

ϵ2s2

4σ2

�
þ ϵ

�
1 −

ð1 − ϵÞ2s2
4σ2

�
; ð19Þ

where we have used the fact that σ is defined such
that

R
ψðxÞψ 00ðxÞdx ¼ 1=4σ−2. Finally, the relative entropy

for this parity measurement is Dðπ0kπ1Þ ¼ − ln π1ð0Þ ¼
s2ϵ=4σ2 þOðϵ2Þ, which is optimal for small ϵ and s.
Thermal light.—In reality, the states received are thermal

[19], and the probabilities of getting more than one photon
on the image screen are nonzero. We can describe such a
state of light using theGaussian state formalism [20], and the
problem becomes that of Gaussian hypothesis testing [21].
Consider n bosonic modes with quadrature operators

X̂ ¼ ðq̂1;…; q̂n; p̂1;…p̂nÞ, which satisfy canonical com-
mutation relations. The entries of the covariance matrix
(CM) of a state are given by Vjk ¼ 1

2
Tr½ρfX̂j − hX̂ji;

X̂k − hX̂kig�. The Williamson decomposition of the CM
reads V ¼ U(ð⊕n

j¼1 νjÞ ⊗ 12)UT , where νj ¼ n̄j þ 1=2,
n̄j is the mean photon number of the mode j, and U is a
symplectic matrix [20]. The quantum relative entropy of
two Gaussian states with zero displacement is given by [22]

Dðρ0kρ1Þ ¼ −Sðρ0Þ þ ΣðV0; V1Þ; ð20Þ

where 2ΣðV0; V1Þ ¼ ln½detðV1 þ iΩ=2Þ� þ Tr½V0G1�, and
G1 ¼ 2iΩcoth−1ð2V1iΩÞ. Here S is the von Neumann
entropy, SðρÞ¼P

n
j¼1hðn̄jÞ, with hðyÞ¼ðyþ1Þ lnðyþ1Þ−

y lnðyÞ [20].
The two quasimonochromatic point sources are associ-

ated with the creation and annihilation operators q̂1, p̂1 and
q̂2, p̂2. The imaging system maps the source operators onto
the image-screen operators q̂01, p̂0

1 and q̂02, p̂1
2. In fact,

the image modes are attenuated by a factor η [11],
q̂0j →

ffiffiffi
η

p
q̂j þ

ffiffiffiffiffiffiffiffiffiffiffi
1 − η

p
q̂ej (for j ¼ 1, 2, plus similar rela-

tions for the operators p̂0
1, p̂

0
2), where q̂ej are vacuum mode

operators accounting for loss; η is the loss parameter due to
free-space propagation. The image-plane modes do not
commute due to diffraction; in fact we have ½q̂01; q̂02� ¼R
ψðxÞψðxþ sÞdx ¼ ω. We can define commuting image-

plane quadrature operators by taking their sum and
differences

q̂0� ¼ q̂01 � q̂02ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� ωÞp ; p̂0

� ¼ p̂0
1 � p̂0

2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1� ωÞp : ð21Þ

The CM of these quadratures reads (see Supplemental
Material [23])

V ¼

0
BBBBB@

μþ ν 0 0

ν μþ 0 0

0 0 μ− ν

0 0 ν μ−

1
CCCCCA
; ð22Þ

where μ�¼1
2
(ð1�ωÞNþ1) and ν¼ðN=2Þ

ffiffiffiffiffiffiffiffiffiffiffiffi
1−ω2

p
ð1−2ϵÞ.

We can now substitute Eq. (22) into (20) to compute the
quantum relative entropy, where the hypothesis H0 is
obtained by putting ϵ ¼ 0.
We leave the full expression for Dðρ0kρ1Þ in the

Supplemental Material [36]. In the limit ϵ ≪ 1, we obtain

Dðρ0kρ1Þ ≈ Nð1 − ω2Þϵ; ð23Þ

which is linear in both ϵ and N. This result allows us to
draw a number of conclusions. First, the quantum relative
entropy scales linearly with ϵ even for generic values
of the mean number of thermal photons, and not only for
small N. Second, as expected, the quantum relative entropy
per photon, Dðρ0kρ1Þ=N, approaches that of the single
photon, given by Eq. (2). We observe numerically that
Dðρ0kρ1Þ=N is qualitatively very similar to the single-
photon relative entropy shown in Fig. 2. Furthermore,
it only mildly depends on N, as it does not drop signifi-
cantly by increasing N. The performance of SPADE
for thermal sources is scaled by a factor of 1=ð1þ NÞ
(see Supplemental Material [23]), which remains optimal in
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the limit N ≪ 1, as typical for astronomical observa-
tions [19].
Conclusions.—We have discussed asymmetric hypoth-

esis testing in the context of shot-noise-limited imaging.
The hypothesis under scrutiny was the existence of an
exoplanet orbiting a star, and we aimed to minimize the
probability of a false negative. Compared to direct imaging,
we have shown that interferometric measurements yield a
quadratic improvement in the error exponent. As an
example, the exoplanet LkCa 15 c [24] has angular
separation s ≈ 0.068 arcsec [25], and it was observed with
an instrument with variable baselines ranging from 1.4 to
7.0 m, at wavelengths 2.18 μm and 3.8 μm. When operat-
ing in imaging mode, assuming that the PSF is a two-
dimensional Airy function, this yields s=σ in the range from
0.34 to 2.97. This suggests that our approach could be used
to improve the detection efficiency of DI, or to extend
the range of applications of DI toward smaller angular
separations.
Beyond exoplanet detection, our theory applies to the

detection of the presence of a secondary emitter in other
settings. An example is dimer detection in microscopy [26].
Our results also complement previous works on super-
resolution imaging, whose goal was to estimate a sub-
wavelength separation between two sources (see, e.g.,
Refs. [9,11,27,28]). In fact, before measuring the separa-
tion, one needs to ensure that there are two sources and not
just one. Our work discusses how this can be done
optimally. Furthermore, we remark that interferometric
measurements such as SPADE and SLIVER are optimal
for both detecting the presence of the secondary sources
and for estimating the separation.
Our work paves the way to a number of research

questions, some of which may be addressed by reformu-
lating our theory in the language of Poisson quantum
information [29]. What is the effect of noise, e.g., dark
counts [30–32] and cross-talk [33]? What is the relation
with symmetric hypothesis testing, previously considered
in the imaging optical setup in Ref. [34] (see also [35])?
Furthermore, the optimality of SPADE and SLIVER
suggests that other interferometric measurements may as
well yield an optimal scaling of the error exponent [27].
Finally, we have considered the asymptotic limit of many
detection events, yet we expect that similar results hold for
a finite data sample, a regime that can be explored using
Renyi entropies [36].
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