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Abstract. We present a Lorentz invariant extension of a previous model for
intrinsic decoherence (Milburn 1991 Phys. Rev. A 44 5401). The extension uses
unital semigroup representations of space and time translations rather than the
more usual unitary representation, and does the least violence to physically
important invariance principles. Physical consequences include a modification of
the uncertainty principle and a modification of field dispersion relations, similar
to modifications suggested by quantum gravity and string theory, but without
sacrificing Lorentz invariance. Some observational signatures are discussed.
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1. Introduction

The precision with which intervals of time and length can be measured is limited by intrinsic
quantum uncertainties [1]. The limit on precision is determined by fundamental constraints on
estimating the parameter of an appropriate time or space translation. These limits arise from the
statistical distinguishability of quantum states and reflect the geometry of Hilbert space itself.

In practice, however, precision is limited by interactions between the measured system and
other degrees of freedom (the environment) over which we have little control. Such interactions
add noise to the measurement outcomes, reflecting our lack of knowledge of the precise state
of the environment. Complementary to added noise is decoherence: the process through which
interactions with the environment destroy coherence between superposed quantum states in
some specific basis. Studies of environmentally induced decoherence over the last three decades
have given a reasonably good picture of the process [2]–[4], although detailed comparison to
experiment is relatively recent.

Quantum decoherence can also arise due to classical fluctuations in the parameters which
define the dynamics of the system. In this case, decoherence is found when data from repeated
trials are combined without regard to the fluctuations in the parameters defining the experimental
conditions from trial to trial. For example, in a ‘Ramsey fringe’ experiment [5], the probability
to find a two-level system in a particular state is sampled over many trials in which the time
between state preparation and measurement is supposedly fixed. However, fluctuations in this
time interval will appear as a dephasing of the Rabi oscillations between the two levels involved.
In a more fundamental setting, fluctuations in the space-time metric would correspond to a source
of intrinsic noise, which would necessarily be accompanied by intrinsic decoherence [6].

Decoherence is often invoked to explain the lack of quantum effects in macroscopic systems.
While this is often the case for environment induced decoherence, a number of authors [7]–[12]
have speculated that an intrinsic decoherence may exist to establish classical behaviour at some
level. In this paper, we extend a previous approach based on stochastic time [9]. This provides a
path to a Lorentz invariant field theoretical formulation of a model of intrinsic decoherence.

These heuristic modifications of the Schrödinger equation should more properly be viewed in
a like manner to environmental decoherence, but in which the quantum nature of the environment
is left unspecified. Recently Gambini et al [13] have shown that a recent proposal for quantization
of gravity, based on discrete space-time, is consistent with the model of intrinsic decoherence
discussed in [9]. The extension proposed in this paper likewise has consequences that have
previously been considered in the context of quantum gravity. Intrinsic decoherence due to
spatial displacements leads to a modification of the uncertainty principle which is similar to
that considered in the context of quantum gravity [14]–[16]. When extended to the relativistic
case, in particular the electromagnetic field, we find that the dispersion relation for the free
field must be modified. A similar effect has also been suggested for models of quantum
space-time [17].

Space and time parameterize fundamental symmetry groups. The action of a group element
on a physical state is represented by a unitary operator on Hilbert space. Conventionally,
we consider continuous representations of these symmetries which reflect the strong classical
intuition that space and time are continuous parameters. We can define the unitary representations
through their infinitesimal action. The unitary representation is then defined in terms of a
hermitian operator which is the generator of the group. In the case of time translations, the
generator is the Hamiltonian operator, while in the case of spatial translation the generator is the
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momentum operator. In a relativistic theory, these operators are constructed from the quantum
fields that define the physical systems under investigation.

In non-relativistic quantum mechanics, spatial and temporal translations are represented by
the one-parameter unitary transformations,

ρ(X) = e−iXp̂/h̄ρ0eiXp̂/h̄, (1)

ρ(t) = e−itĤ/h̄ρ0eitĤ/h̄, (2)

or in differential form,

dρ(X)

dX
= − i

h̄
[p̂, ρ(X)], (3)

dρ(t)

dt
= − i

h̄
[Ĥ, ρ(t)]. (4)

The representation of the group of spatial and temporal translations in terms of the unitary
operators generated by energy and momentum of course leads directly to the conservation of
energy and momentum. How can we modify these rules causing the least violence to energy
and momentum conservation? To answer this, we need to consider in a little more detail
the kinds of experiments that enable us to estimate space and time translations. The high
precision measurement of space and time intervals are in fact determinations of the statistical
distinguishably of quantum states through repeated preparation and measurement.

2. Estimating space-time translations

To make a quantum clock, we must superpose at least two distinct energy eigenstates. Indeed this
is exactly how time is currently measured with atomic clocks [18]. Let the system be prepared,
at time t = 0, in the state

|ψ〉 = 1√
2
(|E1〉 + |E2〉), (5)

where |Ei〉 are energy eigenstates. The variance of the energy in this state is 〈�Ĥ2〉0 = �2
E/4

with �E = E2 − E1.
After a time t, in accordance with unitary temporal displacement, the state becomes

|ψ〉 = 1√
2
(e−iω1t|E1〉 + e−iω2t|E2〉), (6)

where ωi = Ei/h̄.
The next step is to measure some quantity represented by an operator that does not commute

with the Hamiltonian. The simplest choice is the projection operator P̂+ = |+〉〈+| on to the state

New Journal of Physics 8 (2006) 96 (http://www.njp.org/)

http://www.njp.org/


4 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

|+〉 = 1√
2
(|E1〉 + |E2〉). There are two possible values, x = 0, 1 for the measurement result, with

probability distribution

p1(t) = 1 − p0(t) = cos2

(
�Et

2̄h

)
. (7)

There are two ways, this system may be used as a clock. Both cases require us to sample
the probability distribution in equation (7) and thus both require that we prepare a large number
of identical systems in the manner just described and measure the quantity P̂+ on each of them.

The first and most direct method is simply to measure the quantity P̂+ to sample the
probability px(t) and thus infer t. Of course this inference must come with some error which
can easily be determined. The second way is to note that the parameter �E/h̄ is a frequency. We
can tune an external signal, such as a laser, to this frequency and then use the sampling of the
ensemble of systems to keep the signal frequency locked on a particular value using feedback
control.

It is a simple matter to estimate the uncertainty with which we can infer the parameter t.
It suffices to measure the quantity P̂+ = |+〉〈+| on the state given in equation (6). The average
value of this quantity is the probability p1(t). The uncertainty in this measurement is

�p1 =
√

p1(1 − p1). (8)

The uncertainty in the inference of the time parameter t, is then given by [19]

δt =
∣∣∣∣dp1(t)

dt

∣∣∣∣
−1

�p1. (9)

Thus we find the well-known result

δt = h̄

|�E| (10)

Noting that the variance of the energy for the fiducial state is 〈�Ĥ2〉0 = �2
E/4, we see that the

quality of the inference varies as the inverse of the energy uncertainty. This is the standard result
for a parameter based uncertainty principle [1].

To summarize, time measurement in a quantum world requires us to sample a probability
distribution by making measurements on an ensemble of identically prepared systems. A single
system or a single measurement would not do.

In complete analogy with the estimation of time intervals, we can make a ‘quantum ruler’
for the estimation of spatial intervals by using a superposition of momentum eigenstates of equal
and opposite momentum for a free particle,

|ψ〉 = 1√
2
(|p1〉 + |p2〉). (11)

This leads to a standing wave for the position probability amplitude. The state is an energy
eigenstate of a free particle, and the resulting standing wave will not change in time. However

New Journal of Physics 8 (2006) 96 (http://www.njp.org/)

http://www.njp.org/


5 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

the state is not an eigenstate of momentum; the momentum uncertainty is given by 〈p̂2〉0 = �2
p/4

where �p = p2 − p1.
In writing this state with the particular choice of relative phase between the two components,

we are assuming that the origin is located at an antinode of the standing wave. If we translate the
ruler to a new position, labelled X, the state changes in accordance with the unitary representation
of spatial translations as

|ψ(X)〉 = e−ik1X|p1〉 + e−ik2X|p2〉, (12)

where k = p/h̄. In analogy with the time example of the previous section, we choose to measure
the operator conjugate to momentum, i.e. we measure position. The probability distribution to
get a particular result, x, is then

P(x) ∝ cos2

(
�p(X − x)

2h̄

)
. (13)

To estimate the translation parameter, we need to sample this distribution. Of course, the
determination of X will be accompanied by some necessary error of a quantum origin. This is
roughly the distance between two successive minima of the probability density, P(x). In this
case, one easily sees that this is a consequence of the Heisenberg uncertainty principle resulting
from the initial momentum uncertainty of the state in equation (14) [1]. The uncertainty in the
inferred value of X is given by

δX � h̄

|�p| . (14)

In these two examples, we see that a determination of temporal duration and space translation
require to sample a probability distribution. This leads to the well known intrinsic quantum
uncertainty limits for time and position parameter estimation [1]. The process of preparing
the ensemble (either by trying to prepare a large number of identical systems, or a process of
preparation and re-preparation of a single system) is in practice subject to additional sources of
error. Furthermore, the measurements are not always perfect and noise may be added from trial
to trial. For this reason, the actual state used to describe an ensemble may not necessarily be
simply a product of identical pure states, but may rather be a density operator reflecting some
additional degree of averaging over unknown sources of noise and error. The fact that space and
time parameters must be inferred by sampling a probability distribution over an ensemble is an
important insight and suggests a path for developing a theory of intrinsic decoherence.

3. Intrinsic decoherence

We now modify the unitary representation of space and time translation by using semigroup
representations. We first recall that, in estimating a parameter, multiple trials must be performed
and in practice it may not be possible to ensure that each trial is identical. Suppose now that in
principle it is impossible for each trial to be identical, for some fundamental reason. In that case
parameter estimation would necessarily be based on a mixed state rather than a pure state. To be
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more specific we suppose that for each unitary representation of the parameter transformation
there is a minimum Hilbert space rotation angle, ε and further that the number of such rotations,
from one trial to the next, can fluctuate. Let pn(θ, ε) be the probability that there are n such phase
shifts for a change in the macroscopic parameter from 0 to θ. We obtain different models for
each choice of the probability function pn(θ, ε). Thus the state ρ(θ) may be written

ρε(θ) =
∞∑

n=0

pn(θ, ε)e
−inεĝ/h̄ρ(0)einεĝ/h̄, (15)

where ĝ → p̂ for spatial translations and ε → µ with units of length, while ĝ → Ĥ for temporal
translations, and ε → ν with units of time. These assumptions are equivalent to assuming that
space and time are discrete with fundamental scales determined by ν, µ. A recent formulation
of quantum gravity, using a relational approach, by Gambini et al [13] gave a very similar result
to that in equation (15).

We also require that, in some limit, the standard unitary representation is obtained. To this
end we require

lim
ε→0

ρε(θ) = ρ(θ) = e−iĝθ/h̄ρ(0)eiĝθ/h̄. (16)

This condition imposes a restriction on the permissible forms of pn(θ, ε).
It is easiest to define the semigroup in terms of its infinitesimal generator. There is a great deal

of freedom in how we do this corresponding to different choices for the probability distribution
for the number of phase shifts. However, we stipulate that it must respect the conservation of
energy and momentum. We will use the differential form of the parameter transformation

dρ(θ)

dθ
= D[Ĝ]ρ(θ), (17)

where θ is the parameter, D[Ĝ] is the generator of a completely positive semigroup map defined
by D[Ĝ]ρ = ĜρĜ† − 1

2 [Ĝ†Ĝρ + ρĜ†Ĝ]. We require that for spatial translations, with generator
Ŝ, D[Ŝ]p̂ = 0, while for temporal translations, with generator T̂ , D[T̂ ]Ĥ = 0. This ensures that
momentum and energy are conserved in the semigroup transformation. As a specific example,
we will take each generator to be a unitary operator of the form;

Ĝ = ε−1/2e−iĝε/h̄, (18)

which we shall refer to as the unital case. Substituting equation (18) into equation (17) indicates
that

dpn(θ, ε)

dθ
= 1

ε
(pn−1(θ, ε) − pn(θ, ε)), (19)

dp0(θ, ε)

dθ
= −1

ε
p0(θ, ε). (20)

New Journal of Physics 8 (2006) 96 (http://www.njp.org/)

http://www.njp.org/


7 Institute of Physics �DEUTSCHE PHYSIKALISCHE GESELLSCHAFT

The solution is

pn(θ, ε) = (θ/ε)n

n!
e−θ/ε. (21)

For obvious reasons we call this the Poisson choice. In the limit that ε → 0, we recover the
standard Schrödinger representation from equation (17),

dρ(θ)

dθ
= − i

h̄
[ĝ, ρ(θ)]. (22)

The condition in equation (16) is thus satisfied. We anticipate that ν, µ ultimately take their
values from a future quantum theory of space-time, so here we simply equate them to the Planck
time and Planck length, respectively, in which case cν = µ. We now consider the experimental
consequences of this modification of the Schrödinger rules.

We begin with temporal translations. The differential change in a state due to a temporal
translation, t, is given by [9]

dρ(t)

dt
= 1

ν

[
e−iνĤ/h̄ρ(t)eiνĤ/h̄ − ρ(t)

]
, (23)

where ν is a fundamental constant with units of time (in terms of reference [9] γ = 1/ν). The
physical consequences of this equation have been explored in [9] and subsequent papers [20].
Firstly, the standard limit (equation (10)) for the uncertainty in the estimate of a time parameter
is changed to include an additional noise source. Secondly, and most relevant for this paper, the
dynamics implied by equation (23) lead to the decay of coherence in the energy basis.

We will use the example discussed in section 10. The time parameter uncertainty bound
can be conveniently written in terms of the average value of the Hermitian operator X̂ =
|E1〉〈E2| + |E2〉〈E1| as

√
1 − 〈X̂(t)〉2

∣∣∣∣∣
d〈X̂(t)〉

dt

∣∣∣∣∣
−1

. (24)

The equation of motion for 〈X̂(t)〉 can then be found using equation (23). The solution is [9]

〈X̂(t)〉 = �
{

exp
[
− t

ν
(1 − e−iνω)

]}
, (25)

where ω = �E/h̄. The resulting bound on δt is complicated, but can be simplified by the case
νω � 1, for which we can approximate

〈X̂(t)〉 ≈ e−νω2t/2 cos(ωt). (26)

We expect that the best accuracy for the estimate of time will occur when 〈X̂(t)〉 = 0, as at
that point this moment has maximum slope. This corresponds to the condition cos(ωt) = 0. At
those times we find

δt ≈ 1

�E

eνω2t/2. (27)
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For short times, �t � 1 this agrees with the standard time parameter uncertainty bound for this
system. However, for long times we see that there is an exponential degradation of the accuracy.
This result suggests that clocks ‘age’, that is to say long-lived atomic clocks gradually lose
stability. This is what one would expect for a clock transition with an intrinsic dephasing rate
of δω = νω2/2 [21].

The consequences for estimating a temporal translation are important as they indicate a
fundamental limitation on the accuracy of clocks. This is an aspect that has been considered in
some detail by Egusquiza and Garay [22], from a very different starting point.

Now consider the case of spatial translations. Suppose we take as the fiducial state
a system in a pure, minimum uncertainty, state, |ψ0〉 with a Gaussian position probability
density;

P0(x) = |〈ψ0|x〉|2 = (2πσ)−1/2e−x2/2σ, (28)

where

σ = 〈�x̂2〉0 = h̄2

2〈�p̂2〉0
, (29)

where 〈�Â2〉0 is the variance of the operator Â in the fiducial state. Under the conventional
Schrödinger rule for displacements this fiducial density conditioned on a displacement, X,
becomes

P(c)(x|X) = (2πσ)−1/2e−(x−X)2/2σ. (30)

We can see that the uncertainty, δX with which we can infer the parameter, X is δX � √
σ/2 or

in other words δX2〈�p̂2〉0 �h̄2/4, which is the standard result for a parameter-based uncertainty
principle for position [1].

In the modified Schrödinger rule, this uncertainty principle is modified as the width of the
position distribution is no longer independent of the displacement but increases linearly with
displacement. The change in the state due to the displacement is given by,

dρ(X)

dX
= 1

µ

(
e−iµp̂/h̄ρ(X)eiµp̂/h̄ − 1

)
. (31)

This equation appears to bear a superficial relation to the recent proposal of Shalyt-Margolin and
Suarez [23].

To see how the uncertainty principle is changed, we use equation (31) to find an equation
for rate of change of the mean position and variance with displacement. It is easy to see that

d〈x̂〉
dX

= 1,
d〈x̂2〉
dX

= 2〈x̂〉 + µ.

Thus for the chosen fiducial state,

〈�x̂2〉X = 〈�x̂2〉0 + µX. (32)
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The uncertainty with which we can estimate the parameter now becomes,

δX2 � 〈�x̂2〉0 + Xµ, (33)

which implies the uncertainty principle

δX2〈�p̂2〉0 � h̄2

4
+ Xµ〈�p̂2〉0. (34)

This kind of modified uncertainty principle has been suggested in the context of quantum gravity
and string theory [15].We see here that it arises as a natural consequence of an intrinsic uncertainty
of spatial translations.

We turn from intrinsic noise to the complementary process of intrinsic decoherence. In
quantum mechanics noise is necessarily accompanied by decoherence. Thus, any model that
introduces an intrinsic uncertainty due to space-time fluctuations must necessarily introduce
intrinsic decoherence. In the case of temporal translations, the decoherence occurs in the energy
basis as is easily seen by computing the change in the off-diagonal elements of the state in the
energy basis. From equation (23) we see that

dρi,j(t)

dt
= 1

ν

(
e−iν(Ei−Ej)/h̄ − 1

)
ρi,j(t), (35)

where ρi,j(t) = 〈Ei|ρ(t)|Ej〉 with |Ei〉 an energy eigenstate. This equation was discussed
extensively in [9]. To see the effect of intrinsic decoherence we expand the right-hand side
to first order in ν,

dρi,j(t)

dt
= −i

(Ei − Ej)

h̄
ρi,j(t) − ν(Ei − Ej)

2

2̄h2 ρi,j(t). (36)

The last term induces a decay of off-diagonal matrix elements in the energy basis at a rate that
increases quadratically with distance away from the diagonal.

In the case of spatial translations, we find a similar equation that causes a decay with respect
to the translation parameter of off-diagonal matrix elements in the momentum basis,

dρk,k′(t)

dX
= 1

µ

(
e−iµ(k−k′) − 1

)
ρk,k′(t), (37)

where ρk,k′(t) = 〈h̄k|ρ(t)|h̄k′〉 with |h̄k〉 a momentum eigenstate. Expansion to first order in µ

gives a decay of coherence in the momentum basis as the translation parameter increases.

4. Lorentz invariant formulation

In order to generalize these ideas to include Lorentz invariance, we must move to a field
theory formulation. Space and time translations are determined by specifying the sources and
detectors for the field. We are at liberty to choose any field at all, although in practice the
electromagnetic field is the easiest to use. The source determines the fiducial state of the quantum
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field. Measurements reduce to particle detectors and space and time translation parameters are
inferred by the statistics of detection events at such detectors. The relevant unitary translation
generators are still position and momentum generators, but now constructed in the usual way
from whatever quantum field we wish to use. As in the non-relativistic case, spatial translations
require a fiducial state with an indefinite momentum while time translations require a fiducial
state with and indefinite energy.

We will first discuss how space-time translations are determined in the standard formulation
of quantum field theory. Estimation of a space-time translation in quantum parameter estimation
theory was considered by Braunstein et al [1] and we now summarize that treatment. The
generator for space-time translation is the energy-momentum 4-vector

P̂ = P̂αeα = P̂0e0 + �̂P = P̂0e0 + P̂ jej. (38)

The space-time translation we seek to estimate can be written as

X = Sn = Snαeα, (39)

with

n = n0e0 + �n, (40)

is a space-like or time-like unit 4-vector specifying the direction of the space-time translation
and S is the invariant interval that parameterizes the translation. The rotation of the fiducial state
|ψ0〉 in Hilbert space is then

|ψS〉 = eiSn·P̂/h̄|ψ0〉, (41)

with

n · P̂ = ηαβn
αP̂β = nαP̂α = −n0P̂0 + �n · �̂P. (42)

The Minkowski metric is ηαβ = diag(−1, +1, +1, +1) ( we use units such that c = 1). The three-

dimensional dot product is written as �n · �̂P = njP̂j. Braunstein et al [1] show that the parameter-
based uncertainty principle for estimating the space-time translation parameter, S is

〈(δS)2〉S〈(n · �P̂〉 = 〈(δS )2nαnβ〈�P̂α�P̂β〉 � h̄2

4N
, (43)

for N trials. When n is time like this is a time-energy uncertainty relation for the observer whose
4-velocity is n, and when n is space-like, this is a position-momentum uncertainty relation for
an observer whose 4-velocity is orthogonal to n.

What fiducial states are appropriate for estimating a space-time translation? We will discuss
the case of space and time translations separately to parallel the discussion in the non-relativistic
case. For specificity, we will assume that we are using the electromagnetic field. It should be
noted that this is a special case, but will suffice to illustrate the principles of the more general
situation. The energy momentum 4-vector can be written most easily if we decompose the field
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into plane wave modes,

P̂ =
∑
�k,σ

h̄kâ
†
�k,σâ�k,σ, (44)

where k = ωe0 + �k = ωe0 + kjej is a null wave 4-vector with ω = |�k| = k and the sum is
over all wave 3-vectors �k and polarization σ. The generator for space-time translations is thus
determined by the number operator for the field modes which is the generator for phase shifts
in the field. Thus, determining a space-time translation via the electromagnetic field reduces to
phase parameter estimation. Optimal phase estimation is not a straightforward measurement,
particularly in the multimode case [24]. However, it will suffice for our purposes to give a
simple example based on photon counting. (Ultimately all field measurements reduce to counting
field quanta.)

Let us consider just two modes, with wave 4-vectors k1 and k2, with the same polarization.
We will designate a Fock state for the mode ki as |n〉i. Suppose we have a source that produces
the single photon state |1〉1 ⊗ |0〉2, i.e. one photon in mode k1 and the vacuum in mode k2. The
first step is to find a unitary transformation, U to give

U|1〉1 ⊗ |0〉2 = 1
2(|1〉1 ⊗ |0〉2 + |0〉1 ⊗ |1〉2). (45)

If the modes have the same frequency, ω1 = ω2, this can be performed with a simple linear
optical device known as a beam splitter, but if the modes also have different frequencies we need
the nonlinear optical device known as a frequency converter. The state is now subjected to the
unitary space-time translation in equation (41), followed by U†. The final state is

|ψS〉 = eiSδ+/2 (cos(Sδ−/2)|0〉1 ⊗ |1〉2 + i sin(Sδ−/2)|1〉1 ⊗ |0〉2) , (46)

where

δ± = n · (k1 − k2). (47)

A simple measurement can now be made of the photon number difference between the two
modes, with results ±1 occurring with probabilities

P(+1) = 1 − P(−1) = sin2(Sδ−/2). (48)

Sampling this distribution enables an inference of the space-time translation parameter S. Of
course such a measurement is not optimal. Using many photon states and a different kind of
output measurement, it is possible to do much better [25].

If we seek only a space translation (i.e. a ruler) then we can choose the modes to have the
same frequency, but wave vectors in different directions. Such a state clearly has an indefinite
3-momentum as we found for the non-relativistic case. If we seek a time translation (i.e. a clock)
we must choose the wave vectors to have a different frequency, that is to say a different energy
as in the non-relativistic case.

It is now straightforward to define an intrinsic decoherence model that is Lorentz invariant.
The change in the state of a quantum field as a function of the displacement interval is

dρ(S)

dS
= 1

ν

(
eiνn·P̂/h̄ρ(S)e−iνn·P̂/h̄ − ρ(S )

)
. (49)
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Equivalently

ρ(S) =
∞∑

m=0

(S/ν)m

m!
e−S/νeimνn·P̂/h̄ρoe−imνn·P̂/h̄. (50)

As the generator of space-time translations is already explicitly Lorentz invariant, these equations
are Lorentz invariant. In fact Sn · P̂ is nothing more than the action associated with the space-
time interval. The central assumption for this relativistic model of intrinsic decoherence is that
the action along some worldline can vary from trial to trial in an experimental determination of
a space-time translation (this observation suggests an equivalent formulation in terms of path
integrals). The state ρ is a many-particle field state and would typically be specified in the Fock
basis for some mode decomposition. The specific form the intrinsic decoherence takes depends
on the field under discussion through the energy momentum 4-vector. We now consider some
consequences of this equation for the case of the electromagnetic field.

The most obvious modification is to the experimentally observed dispersion relation. The
dispersion relation must be determined by making phase-dependent measurements on the field
amplitude at different space-time points. We have postulated that such repeated measurements
are described by a density operator ρ(S) rather than a pure state, and we have given a rule for
how to translate this state to describe measurements made at different space-time positions.
In order to measure a field amplitude that is nonzero, we must specify a fiducial field state that
has a nonzero amplitude. We will take this to be a coherent state [21].

In the standard theory of the electromagnetic field, we specify the electric field at position
�x by the operator

Ê(�x) =
∑

k

(uk(�x)ak + uk(�x)∗a†
k), (51)

where ak, a
†
k are boson annihilation and creation operators, while uk(�x) are a set of orthonormal

mode functions and choose the state of the field on the space-like hypersurface t = 0 to be a
coherent state such that

tr[akρ] = αk. (52)

This is a semiclassical state for which the field amplitude on t = 0 is given by

E(�x) =
∑

k

(uk(�x)αk + uk(�x)∗α∗
k). (53)

We now translate the field along the time-like direction nα = (1, 0, 0, 0), so that the field
amplitude becomes

E(�x, t) = tr[Ê(�x)ρ(t)]. (54)

Using equation (50) for this space-time path we have that

ρ(t) =
∞∑

n=0

(t/ν)

n!
e−t/νe−inν

∑
k ka

†
kakρ(0)einν

∑
k ka

†
kak . (55)
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The field amplitude at t 
= 0 is then determined by

tr [akρ(t)] =
∞∑

n=0

(t/ν)

n!
e−t/νtr

[
ake−inν

∑
j ja

†
jajρ(0)einν

∑
j ja

†
jaj

]
(56)

=
∞∑

n=0

(t/ν)

n!
e−t/νtr

[
ρ(0)einν

∑
j ja

†
jajake−inν

∑
j ja

†
jaj

]
(57)

= αk exp
[ t

ν
(e−iνk − 1)

]
. (58)

Thus

αk(t) = αke−iω(k)te−γ(k)t (59)

where the observed frequency of this mode amplitude is

ω(k) = sin(νk)

ν
, (60)

and the amplitude decays due to intrinsic decoherence at the rate

γ(k) = 1

ν
(1 − cos(νk)). (61)

This result is similar in form to what happens to a coherent state propagating in a Kerr medium
(one with an intensity-dependent refractive index) [26]. As ν → 0, we recover the standard
dispersion relation with a small modification

ω(k) = k

(
1 − ν2k2

6
+ · · ·

)
. (62)

We are not restricted to preparation of coherent states to test this effect. A similar result
is found when we consider single photon states, such as might be emitted in γ-ray bursts from
cosmological distances [27]. A single photon state defined on the hypersurface at t = 0 is [28]

|1〉β =
∑

k

βka
†
k|0〉. (63)

The probability to detect a single photon per unit time, at space-time point (�x, t) is then
proportional to

n(�x, t) = tr(Ê(+)(�x)Ê(−)(�x)ρ(t)), (64)

where the positive frequency components of the field are defined by

Ê(−)(�x) =
∑

k

uk(�x)ak. (65)
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Using equation (55) we find that

n(�x, t) =
∑
k1,k2

u∗
k1
(�x)uk2(�x)β∗

k1
βk2 exp

[
− t

ν

(
1 − eiν(k1−k2)

)]
. (66)

This is very different from the conventional result that can be found by setting ν → 0,

ncon(�x, t) =
∣∣∣∣∣
∑

k

uk(�x)βke−ikt

∣∣∣∣∣
2

, (67)

note that the phase-shift term in equation (66) is similar to various quantum gravity predictions
which suggest that the effect is as if the photon was propagating through a medium with a
nonlinear refractive index. It is somewhat surprising that such a simple model as that presented
here leads to modified dispersion relations similar to a number of models for quantum gravity
[27], [29]–[31] with a very different starting point. However, the presence of the decay term,
reflecting intrinsic decoherence, is not present in all of these theories.

5. Discussion and conclusion

We have proposed a model of intrinsic decoherence that is explicitly Lorentz invariant in so
far as the generator of the unital semigroup representation is Lorentz invariant. Energy and
momentum remain conserved quantities. The resulting theory makes specific predictions on the
ultimate accuracy of spatial and temporal translations. In the case of the electromagnetic field the
theory also predicts that an experimental determination of the dispersion relation will reveal a
departure from the classical result. Similar results have been shown to occur in quantum gravity
theories that explicitly violate Lorentz invariance. Unlike some other approaches, our theory does
not use modified commutation relations for the generators of space-time translations [15, 32].
The violation of Lorentz invariance is only apparent due to an intrinsic uncertainty in
space-time translations over multiple trials. This is similar to the quantum gravity models of
Gambini et al [13].

How well do current experiments exclude such a theory? In the case of temporal translations,
we need to consider the state-of-the-art for atomic clocks. The key issue here is the instability
of a clock defined as a measure of the variation in the size of the intervals between clock ticks
[36]. In the case of an atomic clock the instability is determined by the ratio of the line-width of
the transition δω to the frequency of the transition ω,

σ = δω

ω
. (68)

For the very best atomic Cs fountains, this stability is σ < 4 × 10−16. In section 3, we saw that
the intrinsic decoherence model, in the limit ν�E � 1, is equivalent to an atomic transition
with intrinsic dephasing line-width of δω = νω2/2. For the very best Cs atomic clocks (with
ω = 9.192 GHz), ν < 10−25 s in order to have escaped detection. As progress continues towards
optical frequency standards based on cold neutral atom traps, we can expect fractional frequency
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instabilities at or below 10−17 [33], which at optical frequencies of ω ≈ 1015 would give a
constraint

ν < 10−32 s. (69)

However, the ultimate constraint might come from attempts to build a quantum computer using
trapped ions. Already there have been suggestions on how to use quantum logic techniques from
this field for precision spectroscopy [34]. There would be some irony in building a quantum
computer to test quantum mechanics to destruction.

We now turn to the possible experimental tests based on deviations from the linear dispersion
relation for the electromagnetic field. Various quantum gravity theories also predict a modified
dispersion relation for the electromagnetic field and there is already some debate in the literature
on possible experimental tests [35]. Here, we are primarily concerned with photons. Amelino-
Camelia et al [27] has suggested that it should be possible to observe such effects from γ-ray
bursts emitted from sources at cosmological distances.

We can assess this proposal using the single photon detection probability in equation (66).
This result tells us the probability to detect a single photon at time t and point �x, given that we
have prepared a ‘global’ single photon state on the space-like hypersurface at t0. The detector of
course is on the same space-like hypersurface. In γ-emission the detector is some distance from
the source and it would be more appropriate to use a spherical wave mode decomposition to
describe a point source. However, the additional spatial translation and more complicated mode
functions do not change the fundamental result. We set �x = 0 for simplicity and given a plane
wave mode function decomposition for the field, the detection probability is then given by

n(t) = γ

∫ ∞

−∞
dk1 dk2 β∗

k1
βk2 exp

[
− t

ν
(1 − eiν(k1−k2))

]
, (70)

where γ is a geometric factor and we have taken a continuum approximation. This may be
written as

n(t) = γ

∞∑
n=0

Pn(t/ν)|β(nν)|2, (71)

where β(t) is the Fourier transform of the amplitude function βk,

β(t) =
∫ ∞

−∞
dk e−iktβk (72)

and

Pn(t/ν) = (t/ν)n

n!
e−t/ν, (73)

is a Poisson probability distribution with mean t/ν. The conventional result, equation (67) is
then seen to arise in the limit ν → 0, for which the Poisson distribution is very sharply peaked
at n = t/ν. The expression for n(t) in equation (71) then has an obvious interpretation. The
function |β(t/ν)|2 is the conventional transform limited expression to count a photon after a time
nν. We can then regard Pn(t/ν) as the conditional probability to count a photon at time t, given
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a n (unobserved) Hilbert space phase shifts. The net effect is to broaden the observed temporal
width of the photon over what it would be for a transform-limited pulse. This means that, in many
trials with identically prepared photo-emission events ( that is to say, the same βk), some photons
will arrive sooner than expected in conventional quantum optics (and some will arrive later).
This assumes of course that the temporal width of |β(t)|2 is smaller than the width of the Poisson
distribution, Pn(t/ν), which is given by σ = √

t/ν. If some reasonable assumptions can be made
about the form of βk from the likely emission processes, this might enable an experimental test
of the theory. The key signature is to show that the effect becomes more significant the greater is
the transit time of the photon. Unfortunately, there are many reasons why a single photon pulse
will suffer phase diffusion and deviate from transform-limited behaviour. This simply reflects the
fact that to verify any mechanism for intrinsic decoherence, we must first eliminate or control for
all the many sources of extrinsic decoherence that abound in this world. Maybe for sufficiently
high-energy photons, this will be possible.
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