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We demonstrate a quantum key distribution implementation over deployed dark telecom fibers with polarisation-
entangled photons generated at the O-band. One of the photons in the pairs are propagated through 10 km of deployed
fiber while the others are detected locally. Polarisation drifts experienced by the photons propagating through the fibers
are compensated with liquid crystal variable retarders. This ensures continuous and stable QKD operation with an
average QBER of 6.4% and a final key rate of 109 bits/s.

I. INTRODUCTION

Quantum Key Distribution (QKD) enables two users to
share a common encryption key that is secret to any third
parties. Early QKD protocols such as BB841 were "prepare-
and-measure" schemes, with practical derivatives such as
SARG042 and decoy states3. This was complemented by
the invention of entanglement-based protocols such as E914

and BBM925, with quantitative extensions through device-
independent QKD6. Both types of QKD protocols have been
proven theoretically secure and have been studied extensively
over the decades7–10.

For prepare-and-measure protocols, a trusted random
number generator is required to provide randomness in
the state preparation process. This is not required for
entanglement-based QKD protocols, where randomness of
the key originates from the measurement process itself.
Entanglement-based QKD also does not rely on a true single
photon source or a decoy state mechanism to mitigate a
photon number splitting attack, and has fewer possible side
channels than typical prepare-send scenarios. As such,
entanglement based QKD is less vulnerable to attacks in
practical implementations11.

Both freespace and optical fibre links have been used as
the transmission channel for distributing entangled photon
pairs12. Due to low optical attenuation in the atmosphere, the
channel loss over freespace links can be as low as 0.07 dB/km
at high altitudes13. For protocols using polarisation
entanglement, the state of the photons is well preserved during
freespace transmission. Early implementations of freespace
QKD used optical telescopes to send and receive photons over
a range14–16, reaching over hundred of kilometers13. Further
more, this range can be extended to thousands of kilometers
by utilizing satellites as intermediate nodes17.

Optical fiber links, on the other hand, are suitable
when a line-of-sight is not available. Fiber-based QKD
generally operates over shorter range (<100 km) due to
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optical attenuation of light in the fiber. This is, however,
enough to cover metropolitan areas where a fiber network is
available18–21.

The available telecom single mode fiber conforms to the
ITU G.652 standard22. To maximize range, fiber-based QKD
systems can use entangled photons generated at telecom
C-band (1530-1565 nm) where fiber absorption is at its
minimum (0.2 dB/km)21,23–25. The O-band in (1260-1360 nm)
is another choice of wavelength, with an absorption loss of
about 0.32 dB/km. The total loss over fiber transmission in a
realistic link is always higher due to the presence of splicing
and patching points.

The presence of dispersion effects is another possible
limiting factor to the performance of entanglement-based
QKD over fiber. Entangled photon pairs are usually generated
via a Spontaneous Parametric Down Conversion (SPDC)
process, which leads to photons of relatively large bandwidth
when performed in nonlinear optical crystals, compared to
photons generated with lasers. Such wideband photons
experience then significant chromatic dispersion in the fiber
(∼ 18 ps/nm/km at 1550 nm)26. This increases the uncertainty
in timing correlation between the entangled photons, leading
to a lower signal to noise ratio, eventually reducing the final
key rate. The effect of chromatic dispersion can be migitated
by using dispersion-shifted fiber23, or by using entangled
photons at telecom O-band operating on either side of the
zero-dispersion wavelength of the fiber27.

For QKD protocols using polarisation encoding, an optical
fibre cannot be simply regarded as a pure loss channel. When
propagating through the fibre, an arbitrary rotation is applied
to the polarization state of photons and causes basis mismatch.
In addition, fiber Polarisation Mode Dispersion (PMD) can
cause degradation of polarisation entanglement for broadband
photons28–30. Both effects increase the Quantum Bit Error
Rate (QBER), reducing the rate of key generation. While
the polarisation rotation can be compensated31, the presence
of polarisation mode dispersion has led to a preference of
time-bin encoding over polarisation encoding in fiber-based
QKD implementations29,32,33. However in recent years,
manufacturers are able to make single mode telecom fibers
with much lower PMD value (≤ 0.04ps/

√
km)26,34, which
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FIG. 1. (a) Spectrum of the Typr-0 SPDC photons. The orange
trace shows the full spectrum of the SPDC photons and the black
trace indicates the 50 nm bandwidth defined by the bandpass filter
applied. Signal (blue) and idler (red) photons are separated using
a wavelength division demultiplexer. (b) Polarization correlation in
both H/V and D/A bases measured at the entanglement source. The
coincidence rate is measured with two polarizers applied to the
signal and idler photons. The polarizer on signal’s side is kept at
different settings (H, V, D, A) while the other polarizer on idler’s
side is scanned over 360 degrees.

makes polarisation encoding possible even for relatively
broadband entangled photons.

In this work we report an entanglement-based QKD system
implemented over a 10 km deployed fibre in a metropolitan
area. The setup uses the BBM92 protocol5, with polarization
entangled photon pairs generated at telecom O-band to
minimize the effect of chromatic dispersion. The polarisation
rotation due to the fiber is compensated using liquid crystal
variable retarders (LCVRs) after which the polarisation state
is stable during several hours of continuous QKD operation.

II. IMPLEMENTATION

The entangled photon pairs are generated via type-0
SPDC inside a periodically-poled potassium titanyl phosphate
(PPKTP) crystal, shown in Fig. 2 (a). The crystal is pumped
by a grating stabilized laser diode at 658 nm, emitting photon
pairs that are degenerate at 1316 nm. The bandwidth of the
downconverted photons is approximately 70 nm without
any spectral filtering, and is limited to about 50nm with
a bandpass filter placed at the output. As shown in Fig. 1
(a), a wavelength division demultiplexer with an edge at
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FIG. 2. (a) Experimental schematic of the entanglement source.
The pump photons are split to two paths and undergo type-0 SPDC
inside the PPKTP crystal. The polarization state in the lower path
is rotated 90 degrees by a half-wave plate. The two paths are then
recombined to create an entangled state 1√

2
(|HH〉+ei∆φ(λ )|VV 〉).

The wavelength dependence of the phase difference ∆φ(λ ) is
minimized by inserting a piece of yttrium vanadate (YVO4)
crystal at the recombined path, resulting a final |Φ+〉 output
state35. (b) QKD setup over 10 km deployed fiber link. The fiber
loops back to the lab to simplify the experimental procedure. The
Alice and Bob nodes are run on independent clocks. Alice’s analyzer
is connected to the entanglement source via the 10 km deployed fiber
while Bob’s setup is locally connected using a short patch cord. The
two hosting PCs are connected to the same local area network in
order to exchange timestamp data for coincidence identification.

approximately 1316 nm is used to separate the signal and
idler photons, resulting in a bandwidth of 20 nm and 24 nm
respectively. The imbalance between the signal and idler
bandwidth is due to a slight mismatch between the central
wavelength of the SPDC photons and the bandpass filter.
The entanglement state is prepared by placing the PPKTP
crystal inside a linear beam-displacement interferometer35.
The photon pairs are prepared in a state:

|Φ+〉= 1√
2
(|HAHB〉+ |VAVB〉)

with polarisation visibility over 98% in both horizontal/vertial
(H/V) and diagonal/anti-diagonal (D/A) bases (Fig. 1 (b)).
With pump power of 2.4 mW, we observed a local pair rate
of 4300 s−1.

The setup of the QKD system is shown in Fig. 2 (b). The
entangled photon pairs are distributed to two nodes, Alice and
Bob, with a polarisation analyzer placed on each side. The
signal photons are transmitted through a 10 km telecom
fiber that connects the source to Alice’s analyer while
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FIG. 3. (a) Optical time-domain reflectometer trace of the deployed
fibre, identifying a high reflection loss point about 5 km away from
both end points. Two more points with high reflection/absorption
loss are also identified about 100 meters from the end points, which
is due to a 100 meter patching cable between the deployed fiber
and the laboratory setup. (b) Long-term polarization stability of
the fiber is characterized by sending polarized laser light across
the fiber and measuring the stokes parameters of the output
state. With the underground deployed fiber, the polarization
state drifts slowly on a time scale of days.

Bob’s setup is connected locally via a short patchcord
carrying the idler photons.

The 10 km telecom fiber is deployed underground
by Singapore Telecommunications Limited in a loop
configuration with both ends located at Center for
Quantum Technologies, National University of Singapore.
Measurement using an optical time-domain reflectometer
(OTDR) shows a total fiber length of 10.4 km with about
-7 dB channel loss (Fig. 3). The optical absorption of the
fiber contributes only about -4 dB to the total channel loss,
with another -3 dB loss due to reflections at patching points
and losses at splicing points. The total PMD of the fiber
link is about 0.1 ps measured with a commercial analyzer,
which is smaller than the coherence time of the signal and
idler photons (∼0.23 ps for 25 nm bandwidth at 1310 nm).

Polarization change due to fiber is compensated by
placing a set of 4 LCVRs before Bob’s analyzer to
enable an arbitrary rotation of the polarization state.
This compensation only needs to be applied to one of the
photons from each pair to restore the initial |Φ+〉 state
after fiber propagation36. In some implementations with
optical fibers on the surface31, polarisation compensation
needs to be constantly performed due to the rapid change of
the polarization change, which severely limits the operation
continuouity of QKD.

The polarization stability of 10 km deployed fibre in our

setup was characterized by sending in light with well-defined
polarization state across the fiber and monitoring the change
in polarization with a polarimeter37. We find that the
output polarization drift was slow, with a typical 24 h period
associated with day-night temperature change. Once the
polarization rotation is compensated, the fiber allows several
hours of stable QKD operation even without running any
active compensation scheme.

Upon receiving the photons, Alice and Bob follow the
BBM92 protocol by measuring polarizations in one of the two
bases: H/V and D/A5. The random detection basis choice is
made by a non-polarizing beam splitter in each setup which
transmits and reflects photons with equal probability38. Four
commercial Indium Gallium Arsenide Avalanche Photodiodes
(InGaAs APDs) are used in each analyzer setup for single
photon detection. The APDs diodes are cooled down to
below -40 ◦C and are operated in freerunning mode with
a nominal detection efficiency around 10% and an average
dark count rate of about 12000 s−1. On each side, detected
photons are timetagged to a resolution of 125 ps with a 4-
channel timestamping device locked to a rubidium frequency
standard39.

Recorded timestamp traces are continuously exchanged
through a network connection between two hosting lab
computers. To enable coincidence identification, the clocks
on both sides are synchronized in advance by exploiting the
intrinsic timing correlations of the SPDC photons40. The
uncertainty in the coincidence time difference is about 1.9 ns
(FWHM) due to fiber chromatic dispersion, detector timing
jitter and other noise in the system27. For coincidence
identification, a coincidence window of 0.5 ns was chosen to
optimize the coincidence/accidental ratio without losing too
many coincidence events.

Raw key data are generated after coincidence identification
and key sifting following a typical BBM92 protocol. Error
correction are then performed on each block of raw
key data accumulated over 25 seconds39 using a modified
CASCADE/BICONF algorithm41, following largely42. An
estimated QBER is also obtained during error correction and
is used to determine the amount of secure key bits to be
extracted from the raw key bits. Privacy amplification is then
performed on both sides for obtaining the final secure keys43.

We estimate a total system loss of -33dB in our entire QKD
system, with -7dB contributed by the total channel loss of
the deployed fiber, -6dB from the optical coupling loss in the
polarisation compensation and analyzer setup, and another -
20 dB solely due to the detection efficiency of the InGaAs
APDs on both sides. Therefore, detector efficiency is the
dominant contribution to the overall system loss in our setup.

III. PERFORMANCE

With the 10 km deployed fiber connected and the source
pump power kept at 2.4 mW, the rate of detected single
photons is about 40 000 s−1 on Alice’s analyzer, and
242 000 s−1 at Bob’s side, respectively. We observe a
coincidence rate of 670 s−1 and an accidental coincidence
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FIG. 4. QBER (top) and finaly key rate (bottom) logged over
5.7 hours of continuous operation. Error correction and privacy
amplification are performed over blocks of raw key bits integrated
over 25 seconds. Data collection stopped after 5.7 hours due to a
detector failure.

rate of 19 s−1. After an initial fiber compensation, the QKD
setup operated continuously over 5.7 hours until one of the
detectors ceased operation due to a temperature overrun. The
average sifted key rate after basis reconciliation is 340 s−1

with an average estimated QBER of 6.3%. About 1.4% of the
error bits are contributed by the accidental coincidences
and only 0.4% are due to state preparation from the
entanglement source. The remaining 4.5% in QBER is
caused by imperfections in polarization optics and fiber
compensation, as well as possible depolarization in the
fiber link28. The final key rate after error correction and
privacy amplification is about 109 bits/second (Fig. 4).

Our final key rate is comparable to other reported
entanglement-based implementations at telecom C-band21, or
at wavelengths detectable by Silicon APDs44. Secure transfer
of messages with this key rate is practical using one-time
pad encryption for low bandwidth communications such as
command & control of industrial systems. Alternatively, the
key can be utilized in fast encryption schemes using e.g.
AES-256, with a much more frequent re-keying compared to
conventional methods20. The key rate in our demonstration is
mainly limited by the low detection efficiency (∼10%) and
high dark count rate (∼ 104 s−1) of the InGaAs APDs in
the setup. Significant increase in key rate is expected when
replacing them with superconducting nanowire detectors
(∼80% detection efficiency)45. As practical advantage of
photons at O-band, QKD can operate along the normal
internet traffic with all channels in C-band concurrently over
the same fiber link46

IV. CONCLUSION

We have demonstrated a stable entanglement-based
quantum key distribution system operating over a deployed
telecom fiber of 10 km distance following the BBM92
protocol. Polarization-entangled photon pairs in the telecom

O-band minimize the effect of chromatic dispersion. The
polarisation change in the fiber due to fiber geometry and
birefrincence is compensated with liquid crystal variable
retarders, enabling stable transmission of photon polarisation
states. We operated the systems continuously for 5.7 hours
with an average QBER of 6.4% and a final key rate of
109 bits/s. The key rate performance is mainly limited by the
detection efficiencies and high dark count rate of the InGaAs
photodetectors.
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