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Clock synchronization is necessary for com-
munication and distributed computing tasks.
Previous schemes based on photon timing cor-
relations use pulsed light or photon pairs for
their strong timing correlations. In this work, we
demonstrate successful synchronization of quartz
clocks using weakly time-correlated photons of
180 ns coherence time from a pseudothermal
bunched light source. A synchronization timing
jitter of 10 ns is achieved over symmetric -102 dB
optical loss channels between two parties, over
a span of 25 hours. We also derive a model to
accurately estimate the coherence peak searching
success probabilities.

I. INTRODUCTION

Clock synchronization is used in everyday tasks such
as navigation and distributed computing. This is com-
monly implemented using the Network Time Protocol or
global navigation satellite system (e.g. GPS) time syn-
chronization, achieving precision of milliseconds or tens
of nanoseconds respectively [1, 2]. Quantum communi-
cation protocols also require clock synchronization, but
on the order of nano- to pico-seconds, and is typically
achieved either using pulsed laser light [3] or with classi-
cal signals [4, 5].

Modern systems can use the resources typically in
the protocol itself to perform the clock synchronization,
such as photon pairs from spontaneous parametric down-
conversion (SPDC) [6]. This is possible with the use of
frequency standards such as Rubidium (Rb) clocks which
provide a long term frequency stability of <1 ppb/day. In
comparison, crystal oscillators without temperature sta-
bilization have frequency stability of only 100 ppb/day.

To remove the dependency on Rb frequency standards,
it was proposed to find and track the timing difference
between photon pairs due to their strong timing correla-
tion on the order of picoseconds [7, 8], by identifying an
initial coincidence peak with low timing resolution then
iteratively apply frequency corrections to improve reso-
lution. Weak coherent photon pulses were also proposed
for clock frequency transfer [9]. In both cases, the cross-
correlation peak is very strong, i.e. g(2)(τ = 0) ≫ 2, with
resolution generally limited only by the timing jitter of
the generation and detection optics.

Another source of timing correlated light are thermal

photons which has been used in application such as ghost
imaging [10] and range finding [11]. These timing correla-
tions arise from temporal photon bunching, also known
as the Hanbury-Brown-Twiss effect [12]. In particular,
the use of thermal light opens up the potential for dis-
tributed clock synchronization due to photon bunching
being preserved across arbitrary partitioning.
However, unlike photon pairs, identification of this

peak is more challenging due to the low signal (i.e.
g(2)(τ) ≤ 2) exacerbated by background fluctuations.
There is an earlier proposal that suggests the use of ther-
mal light for clock synchronization, relying on the use
of low efficiency two-photon absorption in single photon
detectors to resolve the bunching characteristic [13, 14];
such a scheme has yet to be demonstrated.
Here, we demonstrate clock synchronization using one

such weak timing correlation light source, i.e. light from
pseudothermal source with a g(2)(τ) = 1.44 and coher-
ence time τc = 180(6) ns, over a -102 dB transmission
channel with an accuracy of 10 ns, and continuously track
the frequency drift over a period of 25 hours to demon-
strate its stability. Our scheme only requires single pho-
ton detection and crystal oscillators as reference clocks.
We additionally derive the probability of achieving clock
synchronization over transmission channels, which is ap-
plicable across different time-correlated photon sources,
including SPDC pair sources and thermal sources.

II. CLOCK SYNCHRONIZATION WITH
BUNCHED LIGHT

Timing synchronization was achieved using bunched
light between two remote parties over symmetrical loss
channels, each with -102 dB average transmission, for
more than 25 hours using only simple crystal oscillators,
see Fig. 1.
The source of bunched light is a pseudothermal

source [15], established using a 780 nm laser sent into
an unbalanced Mach-Zehnder interferometer with opti-
cal delay longer than the laser coherence time τc; phase
fluctuations in the laser manifests the bunching effect,
see Appendix A for a detailed explanation. This results
in an intensity correlation that can be measured through
the second-order coherence function g(2)(τ), given by

g(2)(τ) = 1 +
1

2
exp

(
−2|τ |

τc

)
(1)
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FIG. 1. Top left: Simplified experimental setup for clock synchronization. Bunched (pseudothermal) light is sent to two
different parties through separate -102 dB channels, before detection by Silicon avalanche photodetectors (Si APDs) and
timestamping by time taggers running on independent quartz clocks. Singles count rate s1 and s2 of approximately 200 kcounts/s
are recorded on each side. BS: beamsplitter; dB: attenuators.
Bottom left: Plot of g(2)(τ) of the pseudothermal light source, with the curve fit in grey corresponding to g(2)(0) = 1.44(1)
peak and coherence time τc = 180(6) ns. Error bars correspond to Poissonian errors from counting statistics.
Right: Long-term trace of frequency offset, timing offset, and event rates during a 25 hour clock synchronization run between
independent time taggers running on separate quartz clocks, after an initial frequency correction of 4.0 ppm. Correlation peak
tracking is performed using a 256 ns coincidence window. The sharp spike and dip in event rates are attributed to laser mode
hopping.

due to the Lorentzian spectral profile of the laser, where
the coherence time τc is inversely proportional to the fre-
quency spectral width of the source ∆f [16]. The bright-
ness of the source is 1.55(2) mW, with a measured coher-
ence peak of g(2)(τ = 0) = 1.44(1) and coherence time of
τc = 180(6) ns.

The light from the source is shared between n =
2 parties with optical fiber channel tranmissions of
−101.9(4) dB and −102.2(4) dB using optical attenu-
ators. Photon arrival events are detected using Sili-
con avalanche photodetectors (APDs) on each side, with
count rates of 192 kcounts/s and 182 kcounts/s without
correcting for dark counts and afterpulsing.

The detection events are read by independent time tag-
gers disciplined by different free-running 10 MHz quartz
clocks. The generated timestamps are then exchanged
for coincidence peak finding and tracking in real-time.
The peak tracking program continuously serves a timing
offset between each party by pairing photon detection
events between both parties within a 256 ns coincidence
window, over the span of the 25 hour measurement. The
average coincidence rate of 8, 500 events/s is consistently
higher than the accidental count rate of 7, 000 events/s,
indicative of successful frequency tracking.

Due to the presence of clock frequency drift, typically
from temperature fluctuations and electronic noise, the
frequency offset between the clocks changes over time as
well. We are able to reconstruct this offset, by monitor-
ing the drift in served timings using individual samples
spanning 10.74 s, with a resolution of 0.537 s, shown in
Fig. 1.

The actual frequency offset was obtained via a het-
erodyne measurement using identical copies of the clock
signals with integration time of 10 s, shown in Fig. 2. A
maximum instantaneous frequency difference of 35.4 ppb,
corresponding to an average drift of 3.3 ppb/s, was ob-
served.

We estimate the error in the reconstructed signal by
performing linear interpolation on the measurement and
subsequent differencing. The reconstructed frequency
offset is found to be in good agreement with the mea-
sured frequency offset, with a root-mean-squared error
of 3.2 ppb averaged over the 25 hour span.
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FIG. 2. A concurrent measurement of the actual frequency
offset between the two external 10 MHz clocks, as well as
the corresponding error in the reconstructed frequency offset.
The accuracy of the frequency servoed by the peak tracking
algorithm is 3.2 ppb on average.

III. PEAK SEARCHING

Clock synchronization can be decomposed into two
parts: first identifying the initial clock frequency and
time difference between two parties, then tracking of
said peak to monitor the timing drift. The former is
performed by distributing photons with time-correlated
statistics to each party, and finding the coincidence peak
using cross-correlation to identify the time delay.

Efficient peak identification relies on the circular con-
volution theorem to compute the cross-correlation be-
tween two sets of detection timestamps a[k] and b[k],

g(2)(τ) ∼ (a ⋆ b)[k] = F−1
{
F{a} · F{b}

}
[k], (2)

under the discretization τ = kδt with k ∈ Z and time res-
olution δt, using the Fourier Transform F and its inverse
(see Appendix B). The success of peak identification is
constrained by the singles rate and the rate of true coin-
cidences, and additionally requires the choice of optimal
parameters for the Fast Fourier Transform (FFT) pa-
rameters for computing the time delay: specifically, the
number of time bins N = 2q (q ∈ Z+), and initial bin
width δt.

We model the peak finding probability — in both cases,
with and without a reliable frequency reference between
both parties — and perform an exhaustive parameter
scan to identify appropriate FFT parameters in Fig. 3.
Our model provides better estimations of the peak find-
ing probability compared to previous works, by avoiding
the normal approximation to the noise in the FFT (see
Appendix C).

FIG. 3. Simulated probabilities to find the correct peak
position by solving the required true coincidence equation
found in Eqn. 5, given the singles detection rate s1 = s2 =
100 kcounts/s, coincidence rate c = 650 counts/s, bin overlap
ν = 0.5, and frequency offset error of up to ∆u = 100 ppb.
These parameters correspond to the setup in Fig. 1 with an
additional 3 dB attenuation per channel, and shows good
agreement with measurements.

A. No frequency offset

The minimum acquisition time required for the cross-
correlation is T = Nδt to obtain a flat cross-correlation
noise floor. This noise floor arises from accidental co-
incidences — attributed to noise sources, such as dark
counts, and coincidences between uncorrelated detection
events — with an expected value of Ca = (s1s2δt)T ,
where s1 and s2 are the detection event rates on each
channel. The detection events are well-approximated by
a Poisson distribution after binning [17], so the acciden-
tal coincidences in each time bin also follows a Poisson
distribution, i.e. Xk∈{1,...,N} ∼ Poisson(λ = Ca).
The maximum observed value across all time bins

X(N) ≡ max{Xk} is therefore given by the max-order
Poisson distribution (derived in Appendix D) whose
probability distribution is

fX(N)
(x) = [FX(k|λ)]N − [FX(k|λ)− fX(k|λ)]N

where fX and FX respectively correspond to the prob-
ability mass and cumulative distribution functions of a
single bin.

The coincidence rate above background accidentals in
a single time bin (denoted ce) required to be identified
as the highest peak in the cross-correlation is thus

ce >
1

T

(
X(N) −X

)
. (3)

The coincidence rate per time bin can be maximized
by setting the timing resolution δt to be of the same scale
as the coherence time τc, so that most of the coincidence
events fall within the same time bin, i.e. δt ∼ τc. Some
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of these events may fall into an adjacent time bin instead
due to off-centered bins (since the exact time offset is not
known a priori): this introduces a smudge factor into
Eqn. 3 representing the degree of bin overlap ν ∈ [0.5, 1],
yielding

ce >
1

νT

(
X(N) −X

)
. (4)

B. Variable frequency offset

In the case of two separate clocks with slightly different
clock frequencies, the timing delay between photon ar-
rivals between each party can drift by ∆τdrift ≈ T∆u(t)
due to the non-zero clock-frequency offset ∆u(t) after
some elapsed time T . Under a sufficiently small T , the
frequency offset can be approximated as a constant, i.e.
∆u(t) = ∆u.

In order to maximize the number of coincidences in a
single time bin, the time bin should ideally be as wide
as the timing drift, i.e. δt > ∆τdrift, or in other words,
N < 1/∆u. We model this as an additional smudge fac-
tor µ ≡ max {1, N∆u}, and together with Eqn. 4 yields
the minimum required true coincidence rate for successful
peak finding given by

ce >
1

µνT

(
X(N) −X

)
. (5)

The surface of this equation is plotted in Fig. 3, by per-
forming Monte Carlo simulations for a specific set of pa-
rameters and across different N and δt.

The reduction in coincidence counts due to the pres-
ence of frequency offset can be mitigated either by choos-
ing a smaller N , or by performing a frequency precom-
pensation [8] on the set of timestamps {ti} to reduce the
apparent ∆u between the two clocks and allow for larger
N values. The compensation is given by the mapping

ti → ∆ti(1 + ∆u) + ti−1 = ti +∆ti∆u, (6)

where ∆ti ≡ ti − ti−1 is the separation between consecu-
tive timestamps.

In practice, while the frequency offset between quartz
clocks can be high (∼ 10 ppm), the short-term stability
of the clocks themselves are much higher (< 10 ppb/s),
so after an initial precompensation reference, a small
frequency precompensation step size of 100 ppb is suf-
ficient to identify most peaks within 3 peak searching
attempts [18].

Once a initial peak has been found, the frequency
and timing resolution can be further improved by re-
peating the respective corrections with progressively
smaller time bins, until the desired resolution has been
reached [7]. Our optimized implementations of peak find-
ing in Python, and frequency compensation in C, are
available under GPL license in GitHub [19].

FIG. 4. Characterization of peak tracking accuracy under a
constant frequency offset ∆u = 10 ppb, with a time constant
β = 50 ms chosen for the exponential moving average filter
used in the experiment.
Top: Measurement of reported timing offsets (blue) against
the actual offset (black) over a period of 30 seconds. The inset
highlights a ∼ 30 ns timing error over a 0.5-second window,
which suggests that a histogram fit does not improve accu-
racy.
Bottom: Measurements of average offset error and jitter
across different time constants β, over a measurement pe-
riod of 10 minutes. Timing jitter is equivalent to the root-
mean-squared error, and corresponds to 10 ns with β = 50 ms
(marked in grey dashed line). Peak tracking fails with time
constants less than 5 ms.

IV. PEAK TRACKING

The use of quartz crystal oscillators as frequency refer-
ences result in changes in frequency offset over time, due
to their long-term ∆u(t) stability of up to 100 ppb/day.
This causes a drift in the correlation peak position over
time which needs to be tracked.
Tracking can be performed by looking for coincidences

within a sufficiently wide coincidence window, such that
drifts in the peak are captured. However, when using
bunched light for peak tracking, coincidences events are
effectively dominated by background accidentals due to
the low g(2)(τ) of the light source. Directly returning
each time difference τi found will result in the peak being
quickly lost.
We apply a smoothing operation using an exponen-

tial moving average filter, to introduce damping against
events far from the current estimated peak position. This
effectively minimizes noise fluctuations and allows for the
peak to be tracked.
In order to quantify the accuracy of the peak tracking,

we supply a constant 10 ppb frequency offset between the
two timestamps using a function generator and derive the
true timing offset. Using a time constant β = 50 ms for
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the moving average filter, a timing jitter of 10 ns can
be obtained, as shown in Fig. 4, which is an order of
magnitude better than the τc = 180(6) ns coherence time
of the source. The jitter was tested to remain the same
even under larger frequency offsets of 50 ppb as well.

A tracking lag is also present and can be seen in Fig. 4,
where the measurement best-fit line is slightly displaced
from the true timing offset. This is attributed to the
frequency offset being non-zero and constant, and mani-
fests as a mean timing error of around 6 ns at β = 50 ms.
While this lag scales proportionally to the frequency off-
set, this lag is expected to not contribute significantly
due to the random fluctuations of the frequency offset
about its mean, in the case of free-running clocks.

We also make a small note regarding the use of tim-
ing offset histograms to improve timing resolution. For
photon pair and pulsed sources, higher timing resolution
can be achieved by collecting a histogram within a small
timing window and extracting the peak from a normal
distribution curve fit, due to the narrow peak coherence
signature of τc ≪ 1 ns. However, for the bunched source
with a significantly noisier coherence peak signature, this
technique does not improve the timing jitter, as can be
seen in the served timing offset in the inset of Fig. 4 being
consistently far from the mean.

Active frequency compensation is also performed on-
line to keep the frequency offset small, to avoid peak
tracking loss since the correlation peak is less likely to
drift out of the coincidence window. We do this by esti-
mating the frequency offset ∆u from the rate of change
in timing drift (see Appendix E), then performing tim-
ing compensation for each timestamp using the estimated
frequency offset, identical to that of Eqn. 6.

V. CONCLUSION

We demonstrated successful clock synchronization be-
tween two parties over a symmetrical -102 dB transmis-
sion channel, using a pseudothermal bunched light source
of coherence time τc = 180(6) ns. Peak tracking was
performed online over a span of 25 hours with active fre-
quency compensation and an exponential moving average
filter of time constant β = 50 ns, achieving an overall
timing jitter of 10 ns.

Previous papers on clock synchronization performed
using photon pair sources rely on a peak significance
metric for peak finding [7, 8], used as a threshold for

quantifying the probability of the cross-correlation peak
being attributed to noise. While it remains a useful
metric for estimating peak location, this underestimates
the peak finding probabilities under low signal conditions
with small time bins. We develop a model that accounts
for the Poisson nature of the coincidences, and calculate
instead the true probability of the cross-correlation peak
being the signal, as well as derive optimal FFT param-
eters for a given true coincidence and singles rate. This
remains applicable even when using any other sources of
timing correlations, including photon pairs and thermal
light.
The clock synchronization scheme in this work can be

directly applied to protocols that use the photon bunch-
ing as a resource, or indirectly by compensating the re-
ported timings with the measured timing and frequency
offsets. Direct frequency compensation can also be per-
formed by actively correcting the quartz oscillator fre-
quencies, e.g. by means of a voltage error signal, so that
the clock signals themselves can be utilized as part of a
clock distribution network.
We can also take advantage of the fact that the second-

order coherence is preserved across arbitrary partitioning
of the light, to distribute the signal amongst multiple
parties in a star topology. Since splitting light into two
separate channels incurs an additional insertion loss of
3 dB per channel, clock distribution to 2n parties can be
achieved with only −3n dB of additional loss per chan-
nel, e.g. a 128-party setup with this source incurs about
−80 dB.
This work paves the way towards clock synchronization

using telecommunication O-band and C-band bunched
light, which will be able to propagate with minimal chro-
matic dispersion over longer distances, e.g. 500 km of
G.652 telecommunication fiber with 0.2 dB/km optical
loss at 1550 nm. This additionally opens up the possi-
bility of using erbium-doped fiber amplifiers to amplify
the correlation signal. While timing offset changes as a
result of thermal expansion in optical fibers will need to
be addressed, this effect is fundamentally indistinguish-
able from a clock frequency drift in this scheme and can
hence be compensated for in the same manner.
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Appendix A: Pseudothermal source and experimental setup
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FIG. 5. Detailed experimental setup using a pseudothermal bunched light source. BS: 50:50 beamsplitter; dB: attenuator;
HWP: half-wave plate; QWP: quarter-wave plate; APD: avalanche photodiode.

1. Optical setup

The primary source used in the frequency tracking measurement is a pseudo-thermal light source, where light from a
laser running above the lasing threshold is split into two separate paths, one of which is delayed beyond the coherence
time of the laser. If the two paths are perfectly indistinguishable (i.e. in polarization, spatial mode, and brightness),
they act as independent light emitters and exhibit bunching effects.

From the Wiener-Khintchine theorem [20], the Lorentzian spectral profile from a coherent laser light source corre-
sponds to a g(1) with a Laplacian timing profile of the form,

g(1)(τ) :=
⟨E∗(t)E(t+ τ)⟩
⟨E∗(t)E(t)⟩

= exp

(
−|τ |

τc

)

as a function of coherence time τc.
Thermal light can be modelled as a large collection of independent emitters of light [16]. In the case of ν emitters,

we have

⟨E∗(t)E(t+ τ)⟩ = ν⟨E∗
i (t)Ei(t+ τ)⟩

⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩
= ν⟨E∗

i (t)E
∗
i (t+ τ)Ei(t+ τ)Ei(t)⟩

+ ν(ν − 1) [⟨E∗
i (t)Ei(t)⟩+ |⟨E∗

i (t)Ei(t+ τ)⟩|]

and we can recover the Siegert relation [21] and determine the g(2) of the light source

g(2)(τ) :=
⟨E∗(t)E∗(t+ τ)E(t+ τ)E(t)⟩

⟨E∗(t)E(t)⟩2

= 1 +
ν − 1

ν

∣∣∣g(1)(τ)∣∣∣2
= 1 +

1

2
exp

(
−2|τ |

τc

)
, ν = 2

which saturates at a value of g(2)(τ = 0) = 1.5.
Our experimental setup, per Fig. 5, uses light from a distributed-feedback (DFB) laser diode of wavelength 780 nm,

coupled into 780-HP fiber to project into a single optical mode. The coherence length of the laser is approximately
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200 m; a delay fiber of length 400 m was used in the delay arm, corresponding to a 2 µs delay. Polarization rotation
in the delay arm is compensated using a free-space link with a HWP and QWP, while attenuation is achieved
by slight decoupling of the collection mode, before recombination using a fused-coupler beamsplitter (BS). The
g(2)(τ = 0) = 1.44 ± 0.03 achieved in the setup is attributed to the fact that the laser is not fully coherent [22] and
other experimental imperfections.

A second BS is used to further split the light into two symmetrical channels for downstream detection using
fiber-pigtailed active-quenched Si avalanche photodiodes (Excelitas SPCM-800-10-FC). Attenuation in each channel
is achieved by cascading fiber beamsplitters as well as fiber decoupling at the mating sleeves, and is measured to be
relatively stable over multiple days. Fiber spools for delay was not used to avoid potential complications from timing
delays attributed to fiber length changes.

Time tagging is subsequently performed by timestamp devices (S-Fifteen Instruments TDC2) with 4 ps nominal
timing resolution and 20 ps 1-σ timing jitter. The clock to each timestamp device is supplied by external 10 MHz
clock distribution boards without any onboard temperature stabilization.

2. Software setup

The timestamps are fed via a USB 2.0 uplink to two separate computers, which supplements coarse timing accuracy
using the Network Time Protocol (NTP) on the order of milliseconds. The two computers rely on different master
NTP servers for timing synchronization to emulate more realistic network conditions. Peak finding and tracking is
subsequently performed to obtain a time difference with nanosecond resolution. The bidirectional communication for
coincidence peak agreement is performed over direct TCP/IP sockets, using qcrypto with the fpfind [19] add-on
for inline software-based active frequency compensation. Each pairwise event corresponds to a timing difference with
nanosecond resolution.

The software responsible for peak tracking in qcrypto is costream, which was supplied with the parameters -w
1024 -u 1024 -Q 50000 -a 4096 that accounted for the relatively broad coincidence peak. costream performs a
two-pointer search for pairwise coincidence events, within a coincidence tracking window of width 256 ns to account
for frequency drifts.

3. Concurrent frequency measurement

The actual frequency offset between the two clocks were measured concurrently with the clock synchronization
experiment by mixing separate copies of the 10 MHz signals and passing through a low pass filter with 4 GHz cut-off
frequency. This mixed signal was sampled by an oscilloscope at a rate of 2.5 ksamples/s over 10 s, before performing
a 214-bin FFT (nominal resolution of ∼0.15 Hz) with a Hann window.
The frequency offset error is then calculated by measuring the difference between the servoed frequency offset (from

the frequency estimation step in the clock synchronization) and the measured frequency offset with linear interpolation.
The histogram of offset errors is fitted using a Gaussian probability density function, obtaining a standard deviation
of 3.2 ppb.
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Appendix B: Using FFT for cross-correlation

Identification of the timing delay between two parties involves histogramming of the time difference between all
timestamps measured by both parties, and then identifying the cluster of time difference. After binning in the
histogram, this appears as a peak in the histogram. For a set of m and n timestamps,

(f ⋆ g)[n] =
∑
m

f [m]g[n+m] (B1)

This has a time complexity of O(mn).
A more computationally efficient method to calculate the time lag relies on the circular convolution theorem to

compute the discrete cross-correlation using the Fourier Transform, i.e.

(f ⋆ g)[n] = F−1
{
F{f} · F{g}

}
[n] (B2)

In discrete space, the discrete Fourier Transform can be efficiently implemented as a Fast Fourier Transform (FFT),
which determines the final time complexity of the cross-correlation of O(n log n). This is more efficient for larger
number of elements n, at the expense of O(n) memory.
We note that the histogramming method works well when the number of elements to be computed is small, by

constaining the search to a limited coincidence window such that m is as small as possible.
We additionally note that algorithms faster than O(n log n) time complexity are also possible [23, 24], but require

additional encoding of time-synchronization strings within the light pulses.
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Appendix C: Peak finding probabilities using Poisson statistics vs Gaussian assumption

FIG. 6. Left: Probabilities to find the correct peak position by solving Eqn. 4, given the singles detection rate s1 = s2 =
100 kcounts/s, coincidence rate c = 650 counts/s, and bin overlap of ν = 0.5. Since there is no frequency offset, the peak
finding probabilities reaches 100% with increasing number of FFT bins.
Right: Probabilities to find the correct peak position using the normal approximation for Xi in Eqn. 4, with the same
parameters. These

The corresponding probabilities for Poisson model and the corresponding Gaussian approximation model are pre-
sented in Fig. 6. We find that the previous models assuming Gaussian-distributed bin values incorrectly predict the
success probability of peak finding: in particular, it generally underestimates the probability for low time bin widths,
and overestimates for small number of FFT bins.

FFT can be efficiently implemented if the number of bins N are either in powers of 2, or has factorizations with
small primes. Here we use N = 2q, q ∈ Z+ for its logarithmic scale.
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Appendix D: Derivation of max-order distribution

Given that the FFT is performed with N bins, the accidental coincidences in each of these bins follow the Poisson
distribution with mean λ. The maximum value across all these bins increases with an increasing number of bins. The
distribution of the max-order statistic (i.e. the maximum of all bins) with respect to the number of coincidences k
and number of bins N of mean value λ is denoted f(N)(k|λ).

Since each bin is assumed to be independent and identically distributed, the corresponding max-order cumulative
distribution function (CDF) can be expressed as the product of the CDF of individual bins,

F(N)(k|λ) = F (k|λ)× . . . × F (k|λ)︸ ︷︷ ︸
N times

= [F (k|λ)]N .

We therefore express the max-order probability mass function (PMF) in terms of the Poisson PMF and CDF of a
single bin,

f(N)(k|λ) = F(N)(k|λ)− F(N)(k − 1|λ)

= [F (k|λ)]N − [F (k − 1|λ)]N

= [F (k|λ)]N − [F (k|λ)− f(k|λ)]N .

Notably, this form is tenable for direct computation without additional simplification, even though computing the
difference of nth-powers generally causes catastrophic cancellation due to floating-point rounding errors. The max-
order Poisson PMF distribution width heuristically scales roughly with

√
λ, which requires the PMF to be accurate to

at least 1/
√
λ, e.g. λ ≤ 104 needs at least ∼ 10−2 accuracy. Since F (k|λ) ∈ [0, 1] and the fact that exponentiation can

be easily applied for large N using numerical techniques (such as exponentiation-by-squaring), the rounding errors
can be minimized to near the floating-point precision, e.g. ∼ 10−16 for 64-bit floats.
For larger λ > 104 (i.e. high accidental coincidence rates per time bin), the normal approximation for each bin

remains appropriate,

f(k) ∼ Poisson(k|λ) ≈ N (x = k|µ = λ, σ =
√
λ),

and the corresponding max-order probability distribution function (PDF) follows a more tractable form for numerical
computation,

f(N)(x|µ, σ) =
d

dx
F(N)(x|µ, σ)

=
d

dx
[F (x|µ, σ)]N

= Nf(x|µ, σ) [F (x|µ, σ)]N−1
.

This in fact corresponds to the first order term for the discrete case after a binomial expansion, noting that f(k|λ) ≤
F (k|λ), with

f(N)(k|λ) = [F (k|λ)]N − [F (k|λ)− f(k|λ)]N

= [F (k|λ)]N −
[
[F (k|λ)]N −Nf(k|λ) [F (k|λ)]N−1

+ . . .
]

= Nf(k|λ) [F (k|λ)]N−1 −O
(
f2FN−2

)
.

We additionally derive, under the statistical significance framework [7] of normalizing the bin distributions (into the
standard normal distribution), the associated peak finding probability which can be directly computed as an integral,
given the desired statistical significance threshold Sth. This is given by

Prob [peak > Sth] =

∫ ∞

0

dz

∫ ∞

−∞
dx Nf(x)F (x)N−1 · ϕ(x− z − Sth).
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Appendix E: Peak tracking derivation

We perform active frequency compensation by estimating the clock frequency offset from the set of timestamps.
The timing difference τi := ti − t′i, between a timestamp pair {ti, t′i} from both parties, is continuously served by
searching for photon pair detection events within a prescribed coincidence tracking window.

The frequency offset ∆u is given by the ratio between measured elapsed time ∆ti := ti − ti−1 with respect to some
reference elapsed time, in this case the elapsed time measured by the other peer ∆t′i,

∆ti
∆t′i

= 1 +∆u

Rewriting in terms of the measured successive timing difference, we can estimate the frequency offset by measuring
the rate of change in the timing difference, i.e.,

∆ui =
τi − τi−1

∆t′i

Active frequency compensation is therefore achieved by performing a timing correction for each timestamp ti using
the estimated frequency offset,

ti → ∆ti(1 + ∆u) + ti−1 = ti +∆ti∆u (E1)

where the overall frequency offset ∆u accumulated is also given by ∆u =
∏i

0 (1 + ∆ui)− 1.
The peak tracking is intrinsically noisy due to the signal being dominated by accidental coincidences. We use an

exponential moving average filter given by,

τ ′i = ατi + (1− α)τi−1, τ ′0 = τ0,

which behaves like a low pass filter to smooth the signal.
Given a unit step impulse, the time it takes to reach 1− 1/e of the signal is associated with a time constant β,

α = 1− exp

(
−∆t

β

)
≈ ∆t

β
, β ≫ ∆t

after Taylor expansion of the exponential, where ∆t is the average separation time between consecutive timestamp
events. The singles rate s in our experiment is 200 kcounts/s, so ∆t = 1/s = 5 µs. We set the time constant β = 50 ms.
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Appendix F: Longer time scale measurement

FIG. 7. Tracking measurement over 50 hours, similar to that of Fig. 1.

Fig. 7 shows a longer experimental measurement spanning over 50 hours, with a similar drift behaviour observed
in the reconstructed frequency offset. The frequency offsets were not measured concurrently, so no tracking accuracy
estimation is available for this dataset.

Measurement was performed using a different pair of Si APDs instead (Micro Photon Devices SPAD), which had an
order of magnitude lower system efficiency and resulted in a lower −90 dB attenuation channel possible at the same
detection rate parameters. The measurement was also performed using suboptimal parameters to the peak tracking
software costream that dropped off too many coincidences. The timestamps were onboard quartz clocks, so due to
the heating of the clocks, the frequency offset between the two generally remained the same, and showed nearly an
order of magnitude better frequency stability.

The measured frequency difference is low on the order of 10 ppb due to the fact that the two timestamps shared
the same air conditioned environment, but this technique will still work for frequency drifts larger than 100 ppb.
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