# parameters: gamma0 = 1/26.2e-9 gammap = 1/13.5e-9 lambda = 0.03 #---- exp_rise(x) = x<0 ? exp(gammap/2*x) : 0 exp_decay(x) = x<0 ? 0: exp(-gammap/2*x) # solutions of diff eq for excited state population P_e(t) p_decay(x) = x<0 ? 0 : 4*lambda*gamma0*gammap / (gammap-gamma0)**2 * ( exp(-gamma0/2*x) - exp(-gammap/2*x) )**2 p_rise(x) = x<0 ? 4*lambda*gamma0*gammap / (gammap+gamma0)**2 *exp(gammap*x) : 4*lambda*gamma0*gammap / (gammap+gamma0)**2 *exp(-gamma0*x) # difference in transmission diff_decay(x) = 2*sqrt( lambda*gamma0*gammap*p_decay(x))*exp_decay(x) - lambda*gamma0*p_decay(x) diff_rise(x) = 2*sqrt( lambda*gamma0*gammap*p_rise(x))*exp_rise(x) - lambda*gamma0*p_rise(x) set xrange [-150:150] set xlabel 'time (ns)' #plot p_decay(x*1e-9),p_rise(x*1e-9) #plot exp_decay(x*1e-9),exp_rise(x*1e-9) plot diff_decay(x*1e-9),diff_rise(x*1e-9)