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We present a method to estimate the time scale of quantum jumps from the time correlation of
photon pairs generated from a cascade decay in an atomic system, and realize it experimentally in
a cold cloud of 87Rb. Taking into account the photodetector response, we find an upper bound for
the duration of a quantum jump of 21± 11 ps.

Introduction – The concept of quantum jumps is traced
back to Bohr and the old quantum theory [1]. This
theory found its bases on Planck’s hypothesis of energy
quanta and lead to successful explanations of the pho-
toelectric effect, discrete atomic spectra, and distribu-
tion of a blackbody in thermal equilibrium. While it de-
scribed the discrete states of systems accurately, the the-
ory raised questions regarding the transition periods—or
quantum jumps—between states. The periods occurred
at random times and, by considering intermediate states
forbidden, they had to be instantaneous. The general in-
adequacy of the old quantum theory appeared to be fixed
by wave mechanics [2]; yet, for quantum systems under
observation, it has not been possible to depart completely
from the quantum jump concept [3].

The idea for early observations of quantum jumps
was seeded on Dehmelt’s electron shelving proposal [4],
where the fluorescence of a driven two-state system is
abruptly interrupted as the system transitions to a third,
metastable, state. This scheme has been implemented
for single trapped ions [5–7] and neutral atoms [8]. Re-
cent quantum jump experiments involve nuclear spins [9],
cavity–[10] and circuit [11, 12] quantum electrodynamics
architectures. In all these demonstrations, the evolution
of the monitored variable has the form of a telegraphic
signal [13] presenting on and off times whose duration can
be described quantitatively through a study of the wait-
ing time-distribution [14] and applying photodetection
theory [15, 16]. Since the probability for a system to be
found in a particular state is conditioned to a given mea-
surement record, the inferred transition times reflect the
way the system is monitored [17, 18]. Apart from studies
based on the photoelectric effect [19, 20], the time struc-
ture of the rise and descend transitions has been rarely
explored at the limits of contemporary experimental ca-
pabilities [12].

In this work we focus on quantum jumps associated
to spontaneous transitions involving discrete states. We
consider an alternative configuration for the observation
of quantum jumps in atomic systems: a monitored cas-
cade three-level system [16, 21]. Contrary to the shelv-
ing configuration, where the transition to the metastable

state is inferred from the absence of a fluorescent sig-
nal, i.e., a null measurement [22, 23], state information
in a cascade system is acquired through the detection
of correlated photon pairs with a well-defined time or-
dering. This, coupled with the fact that phase match-
ing conditions allow for photon coincidences to be accu-
rately measured, makes the cascade configuration ideal
to experimentally investigate the discontinuous changes
in atomic states.

We observe the quantum jumps in the second order
time correlation function of the fluorescence generated
by a cascade-based four-wave mixing (FWM) in a cold
ensemble of 87Rb, and model the experiment as a cas-
cade three-level system via the adiabatic elimination of
one of the intermediate states. To improve the timing
precision for observing any possible jump dynamics, we
take into account the measured impulse response of the
single photon detectors for estimating an upper bound
on the duration of the quantum jump from the measured
time correlation.

Theory – Consider a four-level system in the diamond
configuration as depicted in Fig. 1. For 87Rb, the atomic
ground state 5S1/2, level |0〉, is coupled to an excited
state 5D3/2, |2〉, through a two-step excitation and de-
cay process involving the intermediate levels 5P3/2, |1〉,
and 5P1/2, |3〉. The excitation path |0〉 ↔ |1〉 ↔ |2〉 is
coherently driven by a pair of non-resonant lasers, while
coupling to the electromagnetic environment induces the
de-excitation path |2〉 → |3〉 → |0〉 through spontaneous
emission of idler and signal photons. Due to the collec-
tive nature of the process, a phase-matching condition of
the cascade emission allows to efficiently collect the light
used to monitor the atomic state.

We establish a relation between the atomic system and
the measurement apparatus by considering the correla-
tion function related to the joint probability distribution
of detecting a heralding photon in mode s at time t and
a correlated photon in mode i at time t+ ∆t

C(t, t+ ∆t) = 〈â†s(t)â
†
i (t+ ∆t)âi(t+ ∆t)âs(t)〉 , (1)

with the annihilation and creation operators âs,i and â†s,i
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FIG. 1: (Left) Atomic level configuration in a four-wave
mixing experiment. (Right) Time evolution of the population
of level |3〉, conditioned on the detection of a signal photon
according to Eq. (7).

of the s and i modes. For an electromagnetic environ-
ment in the vacuum state, the correlation function C is
proportional to the atomic polarization correlation

P (t, t+ ∆t) = 〈σ̂†23(t)σ̂†30(t+ ∆t)σ̂30(t+ ∆t)σ̂23(t)〉 , (2)

with the lowering operator σ̂ij ≡ |j〉〈i| describing transi-
tions from the atomic level |i〉 to level |j〉 in the Heisen-
berg picture. Using the quantum regression theorem [24]
it is possible to show that

P (t, t+ ∆t) = ρ22(t)ρ′33(t+ ∆t) , (3)

so that atomic density matrix element ρ22(t) represents
the population of state |2〉 at time t, while ρ′33(t + ∆t)
that of state |3〉 at time t + ∆t under the initial condi-
tion ρ′(t) = |3〉〈3|. This result reflects the well-defined
time order that allows the study of quantum jumps in the
four-wave mixing process. A detailed analysis of the ap-
proximation adopted in this derivation, and in the follow-
ing analytical treatment is included in the supplementary
material [25].

It is possible to obtain an analytical expression for
P (t, t+ ∆t); its derivation, however, is greatly simplified
if the intermediate level |1〉 is adiabatically eliminated.
This elimination is valid for far-detuned lasers, which in-
duce rapid oscillations on the probability amplitude to
find the system in the intermediate level and allow us to
consider its zero average value. Under this approxima-
tion, the system maps to an effective three-level cascade
system with an evolution ruled by the master equation:

ρ̇ = (ih̄)−1 [Heff, ρ]+
∑
n,m

γnm
[
2σ̂nmρσ̂†nm − σ̂nnρ− ρσ̂nn

]
,

(4)
with the effective Hamiltonian

Heff = h̄∆eff|2〉〈2|+
∑
i=2,3

Ei|i〉〈i|+
h̄Ωeff

2 (|2〉〈0|+ |0〉〈2|) ,

(5)

and effective detuning and Rabi frequency

∆eff = ∆2 + Ω2
01

4∆1
− Ω2

12
4∆1

and Ωeff = −Ω01Ω12

2∆1
. (6)

In these expressions, Ωij denote the bare Rabi frequencies
for the induced |i〉 ↔ |j〉 transitions, γij the spontaneous
decay rates, and ∆i the detuning between the driving
lasers and the atomic resonances (Ei −Ej)/h̄. The mas-
ter equation evolution is equivalent to a solvable set of al-
gebraic equations obtained using the Laplace transform,
allowing for the calculation of analytical expressions that
describe the evolution of the density matrix. With the
initial condition ρ′33(t0) = 1 where t0 is the time at which
the signal photon is detected, and for the experimental
parameters shown below one finds

ρ′33(t0 + ∆t) = 0 for ∆t < 0 ,

ρ′33(t0 + ∆t) ≈ e−
(
γ30+γ23

2
)

∆t for ∆t > 0 ,
(7)

while ρ22(t) is a continuous function of t. Thus, the
correlation function P (t, t+ ∆t) exhibits a discontinuity
at ∆t = 0 that reflects the breaking of time symmetry in-
duced by the quantum jump associated to the transition
|2〉 → |3〉. For ∆t > 0 the atom can perform a second
jump to the ground state with statistics given by ρ′33 in
Eq. (7).

Signal and idler photons impinge on photon detectors
that, while able to distinguish between either mode, are
unable to determine with certainty the hyperfine level
they were emitted from. This indeterminacy causes that
the atomic state conditioned to the detection of a sig-
nal photon is given by a superposition of the hyperfine
states of level |1〉, i.e., 5P1/2 F = 1 and F = 2 states.
This yields oscillations of ρ′33(t0 + ∆t) for ∆t > 0 with a
frequency determined by the beating frequencies of these
hyperfine levels [26]. These quantum beats can be well
reproduced with our model by numerically solving the
Bloch equations for a density matrix that involves all
hyperfine sublevels of the |i〉, i=0,1,2,3 states. The fre-
quency and amplitude of the quantum beats are highly
sensitive to the polarization, intensity and detuning of
the pump lasers. Details of the calculations will be pro-
vided in a forthcoming publication. Important to notice
here is that the observation of quantum beats provides a
striking evidence of quantum coherence.

Experiment – Figure 2 shows schematically the exper-
imental setup for generating time-ordered photon pairs
by four-wave mixing in a cold ensemble of 87Rb atoms.
Pump beams at 780 nm and 776 nm excite atoms from the
5S1/2, F = 2 ground level to the 5D3/2, F = 3 level via
a two-photon transition. The signal (762 nm) and idler
(795 nm) photons emerge from a cascade decay back to
the ground level through the 5P1/2 level, and are coupled
to single mode fibers. Phase matching between pump
and target modes is ensured with all four modes prop-
agating in the same direction. The two pump modes
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FIG. 2: Schematic of the four-wave mixing experiment.
IF: interference filters to combine pump beams and to sepa-
rate the photons pairs; DS , DI : silicon avalanche photodiodes
(APD).

 0

 10

 20

 30

 0  5  10  15  20  25  30  35  40  45

C
o

in
c
id

e
n

c
e

s
 (

×
1

0
3
)

∆t (ns)

 0

 10

 20

 30

 0  5  10  15  20  25  30  35  40  45

 0

 10

 20

 30

 13  14  15
 0

 10

 20

 30

 13  14  15

FIG. 3: Histogram GFWM(∆t) of detection time differences
for photons pairs generated by four-wave mixing in the cold
cloud of 87Rb. The continuous line shows the result of the best
fit of Eq. (10). Inset: detail of the sharp rise corresponding
to a quantum jump.

are almost collimated and have a Gaussian beam waist
of about 400µm in the atomic cloud. The linearly po-
larized pump mode at 780 nm is red-detuned by 40 MHz
from the 5S1/2, F = 2 to 5P3/2, F = 3 transition and has
an optical power of 0.5 mW. The orthogonally polarized
pump mode at 776 nm shares the same optical mode, has
an optical power of 6.5 mW, and is tuned such that the
two-photon excitation is blue-detuned by 4 MHz from the
difference between the ground state and the 5D3/2, F = 3
level. We record the detection event time differences of
the photon pairs with a digital oscilloscope (sampling
rate 4× 1010 s−1) with an effective time resolution below
10 ps; the single photon avalanche detectors themselves
have a nominal timing jitter around 50 ps FWHM.

Figure 3 shows the histogram GFWM(∆t) of signal
and idler photodetection time differences ∆t into 10 ps
wide bins. The expected exponential decay starts at
∆t0 ≈ 14 ns due to technical delays through fibers and
cables. The decay time constant is shorter than the nat-
ural decay time 1/γ30 ≈ 27 ns and determined by the
number of atoms involved and the detuning of the pump
fields [27, 28]. The oscillations on top of the exponential
decay are due to quantum beats between the transition
of interest and alternative decay paths involving nearby
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FIG. 4: Histogram GD(∆t) of the difference in detection
time for photons pairs generated by spontaneous parametric
down-conversion in a nonlinear optical crystal. The band-
width of the photon pair exceeds 20 nm, corresponding to a
coherence time of about 0.1 ps. Thus, we can take the mea-
sured time correlation as a reasonable approximation for the
impulse response of the two-detector system.

hyperfine levels [26]. The onset of the fluorescence in
the idler mode, reflecting the quantum jump, shows a
rise time much faster than the time scales of the transi-
tions involved, commensurate with the time jitter of the
avalanche photodetectors (see inset of Fig. 3).

To improve the time resolution for observing the quan-
tum jump, we characterize the detector response func-
tion. For this, we direct photon pairs with a large optical
bandwidth generated by spontaneous parametric down-
conversion (SPDC) in a nonlinear optical crystal onto the
two avalanche photodetectors. The SPDC source is based
on β-Barium Borate, cut for non-degenerate type-I phase
matching. Pumped with light at 405 nm, it generates
time-correlated photon pairs at 770 nm and 854 nm [29].
The measured bandwidths (23 nm and 32 nm, respec-
tively) correspond to a coherence time of the down-
converted photon pairs below 0.1 ps, a negligible con-
tribution to GD(∆t) in comparison to the detector re-
sponse time scale. The resulting calibration coincidence
histogram GD(∆t) into 10 ps wide bins is shown in Fig. 4.
Despite the wavelength difference, GD(∆t) does not show
any appreciable asymmetry. From this, we infer that the
timing response of the detectors does not vary signifi-
cantly over this wavelength range, and we thus expect
that the measured behavior is a good approximation of
the detector timing characteristics for photons at 762 nm
and 795 nm.

Result – While the structure of GFWM(∆t) away
from ∆t = 0 is well understood, we have no model for a
possible dynamic of the jump itself. In order to associate
a time scale to the transient behavior, we join the two
parts of Eq. (7) with a smooth heuristic transition

σ(x) = 1
1 + exp (−x) . (8)
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The choice of σ(x) is not inspired by a specific dynamical
model, its only purpose is to establish a time scale for the
transient. This particular form is attractive since it ad-
mits the step function as a limiting scenario. The atomic
state, with the exponential decay with time constant τ
described by Eq. (7), is then enclosed in the monitor
function

y(∆t;α, τ) = σ

(
∆t
α

)
exp

(
−∆t
τ

)
, (9)

where the jump timescale is characterized by α.
By convolving the monitoring function y(∆t) in

Eq. (9) with the normalized measured detector re-
sponse gD(∆t) = GD(∆t)/

∑
GD(∆t), we construct a

model Y for the observed GFWM(∆t) in Fig. 3,

Y (∆t) = A y(∆t−∆t0;α, τ) ∗ gD(∆t) + Y0 (10)

with amplitude A, decay time τ , accidental coincidence
background Y0, time delay ∆t0, and characteristic time α
for the jump. We then use A, Y0, ∆t0, and α as free
parameters to fit Y (∆t) to our measured time difference
distribution. This fit, shown as continuous line in Fig. 3,
results in α = 4.7 ± 2.5 ps corresponding to a 10%–90%
rise time associated with the jump of 21± 11 ps [30].

Conclusion – We establish a bound for the duration of
a quantum jump based on the observed onset of time cor-
relations between photons emitted from an atomic cas-
cade decay in a cold cloud of 87Rb. We find a value that
is about three orders of magnitude shorter than the natu-
ral lifetime of the involved atomic states, and four orders
of magnitude longer than an optical cycle.

In comparison with other techniques [5–12], there
seems to be no fundamental limit to the time resolution
of this method down to the time scale of the photoelec-
tric effect. We believe our measurement is still limited
by the uncertainty in the time response of the avalanche
photodetectors, and potentially far from the timescale of
quantum jumps – should there be one. Adoption of faster
and better characterized detectors, for example from a
recent generation of superconducting nanowires [31], has
the potential to significantly improve the time resolution
of such an experiment, and possibly establish or abandon
a resolvable time scale for quantum jumps.
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