
Upper bound on the duration of quantum jumps - Supplementary Material
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Both the concept of quantum jumps and context it is presented on has evolved as the understanding of quantum
theory and open systems has increased. Electron shelving experiments in the 1980’s refocused attention on quantum
jumps. In those experiments, it was observed that individual realizations of a given atom-electromagnetic field system
yield random sequences of light and dark intervals in the fluorescence: strongly fluorescent transitions were suddenly
interrupted by the atom being temporarily shelved in a metastable level. Most interest on the interpretation of those
experiments was paid to the duration of the light and dark periods, and to the photon statistics of the emitted light.

In the scheme presented in the main text, the information regarding the time behavior of quantum jumps is obtained
indirectly via time correlation of photodetection events. The photons emerge from an atomic cascade decay having a
well-defined time order with signal photon being generated before the idler photon. The set-up involves two notable
time scales:

(i) those related to the transition from state |2〉 to state |3〉 and of the subsequent transition to the ground state
|0〉 (this corresponds to two successive quantum jumps),

(ii) those related to the delay τ = ti − ts between the emission of the idler photon and the signal photon.

This work reports a measurement of an upper bound to the time scales of the first kind, and focuses on the first
quantum jump associated with the onset of the cascade decay.

A standard quantum optics description, summarized in Eqs. (1-7) in the main text, yields a correlation function
that incorporates the monitored transition —or quantum jump— from state |2〉 to |3〉 via a discontinuous Heaviside
function. A finite time duration of such a quantum jump would be manifest by the replacement of the Heaviside
function by a continuous function. In this Supplemental Material section, details are given about the main steps
involved in the derivation of Eqs. (1-7). This has the purpose of showing that the discontinuity of the photon two
time correlation function predicted by standard quantum optics has a structural origin on the boundary conditions
that specify the density matrices ρ and ρ′. The derivation helps to clarify the role of the different parameters involved
in the experimental set-up ρ, while emphasizing that the quantum jumps analized here are processes of the joined
atom-electromagnetic field system.

Correlation between field and atomic operators

The generation and ensuing detection of idler and signal photons is directly correlated to transitions between
different atomic levels. In order to show this connection explicitly we consider the interaction between atom and the
surrounding electromagnetic environment under the dipole approximation. It is described by the Hamiltonian

H =
∑
n

ωnσ̂nn +
∑
κ,j

ωkâ
†
κ,j âκ,j

+
∑
κ,j

∑
n,m

√
2πωk
V

εj · dnm(eik·xâκ,j + e−ik·xâ†κ,j)
(
σ̂nm + σ̂†nm

)
(1)

where the electromagnetic modes are characterized by their frequency ωκ, polarization εj , and set of dynamical
variables κ (in this case wave vector); they are coupled to the atom through the coupling strengths determined by the
projection of the electric field component along the dipole moment dnm. In the Heisenberg picture, the field modes
satisfy

˙̂aκ,j = −iωκâκ,j − i
√

2πωκ
V

∑
n,m

εj · dnm
(
σ̂nm + σ̂†nm

)
, (2)
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The field operators obtained from this mode decomposition can then be written as a sum of free-field operators

E
(+)
f obtained for zero coupling, and source-field operators E

(+)
s accounting for the radiated field by the atom. The

corresponding mode operators âκ,j reflect such an structure,

âκ,j(t) = e−iωκtâκ,j(t0)

− i
√

2πωκ
V

∑
n,m

εi · dnm
∫ t

t0

dτe−iωκ(t−τ)−ik·x (σ̂nm(τ) + σ̂†nm(τ)
)
. (3)

The explicit effect of the source contributions can be obtained by considering a large environment from which the
sum over modes is changed into an integral which can be solved directly. Using the Born-Markov and rotating wave
approximations it is possible to solve for the resulting spatial and temporal integrals [1, 2]. The result will cause
for field modes centered at the atomic frequency and displaying nonzero projection of the electric field to the dipole
moment to be the only modes populated by the source term.

The correlation function given by Eq. (1) in the main text,

C(t, t+ τ) = 〈â†s(t)â
†
i (t+ τ)âi(t+ τ)âs(t)〉,

is then proportional to atomic polarization correlation

P(t, t+ τ) = 〈σ̂†23(t)σ̂†30(t+ τ)σ̂30(t+ τ)σ̂23(t)〉 (4)

for fields initially in the vacuum state, as a consequence of Eq. (3) and the above mentioned approximations. Thus
establishing the connection between Eq. (1) and (2) in the main text, and a first relation of the transitions to the
photodetectors.

The time evolution of the atomic state, due to the spontaneous character of the transitions of interest, is described
by an atomic density matrix satisfying a Lindblad like equation. Using the quantum regression theorem it is possible
to transform Eq. (4) into

P(t, t+ τ) = ρ22(t)ρ′33(τ) , (5)

where ρ22(t) represents the population of state |2〉 at time t, while ρ′33(τ) gives the population of state |3〉 at time
t + τ for an auxiliary density matrix that resets the origin of time to the value t and satisfies the initial condition
ρ′(τ = 0) = |3〉〈3|. This condition underlines the well-defined time order that allows us to study quantum jumps in
the four-wave mixing process. Notice that P(t, t + τ) also represents, for a single atom, the probability of detecting
the next photon emitted by the system, i.e. the waiting time distribution function.

Due to the relevance of Eq. (5) we review its derivation assuming the existence of a unitary evolution operator Û .
Consider that at the initial time t0 σ̂ij(t0) = |j〉〈i| and the general properties of the trace,

P(t, t+ τ) = 〈σ̂†23(t)σ̂†30(t+ τ)σ̂30(t+ τ)σ̂23(t)〉 (6)

= Tr
[
σ̂†23(t)σ̂†30(t+ τ)σ̂30(t+ τ)σ̂23(t)ρ̂(t0)

]
= Tr

[
Û(t+ τ, t0)σ̂†30(t0)σ̂30(t0)Û−1(t+ τ, t0)

· Û(t, t0)σ̂23(t0)Û−1(t, t0)ρ̂(t0)Û(t, t0)σ†23(t0)Û−1(t, t0)
]

= ρ22(t)Tr
[
Û(t+ τ, t0)σ̂†30(t0)σ30(t0)Û−1(t+ τ, t0)Û(t, t0)|3〉〈3|Û−1(t, t0)

]
= ρ22(t)Tr

[
Û(t+ τ, t)̂|3〉〈3|Û−1(t+ τ, t)|3〉〈3|

]
= ρ22(t)ρ′33(t+ τ) .

Master equations for the diamond level configuration.

We consider a four-level system in the diamond configuration as depicted in Fig. 1 in the main text. Here, the
atomic ground state 5S1/2 is coupled to an excited state 5D3/2 through a two-step excitation (spontaneous decay)
process involving the intermediate 5P3/2 (5P1/2) level. The intra-level coupling is mediated by the electromagnetic
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field, composed of a quantized electromagnetic environment and the classical fields produced by a pair of lasers. In
particular, the non-resonant laser fields drive the 5S1/2 ↔ 5P3/2 and 5P3/2 ↔ 5D3/2 transitions, while coupling to
the vacuum modes induce the 5D3/2 → 5P1/2 → 5S1/2 de-excitation path.

Interaction with the nuclear spin gives rise to hyperfine levels which are selectively populated using driving lasers
with adequate bandwidth and polarization. The relative populations are determined by the field polarization and
atomic selection rules. The Rabi frequencies and decay rates defining each path can be determined using the Wigner-
Eckhard theorem, we consider an unpolarized laser beam in the calculations.

The evolution of the system in the prescribed diamond configuration is ruled by the master equation

ρ̇ = (ih̄)−1 [H, ρ] + Lsponρ (7)

with Hamiltonian

H =

3∑
n=1

{h̄ωnσ̂nn}+ [
Ω01

2
e−iωL1 σ̂01 + H.c.]

+[
Ω12

2
e−iωL2 σ̂12 + H.c.] , (8)

where the transition frequencies ωn and laser-mediated interactions with Rabi frequency Ωij are included, while
spontaneous emissions are considered through the Lindblad term

Lspon =
∑
n,m

γnm
[
2σ̂nmρσ̂

†
nm − σ̂nnρ− ρσ̂nn

]
. (9)

with γnm the inverse decay rate from level n to m. We neglect Doppler broadenning effects and other dephasing
factors.

The experimental conditions allow for the adiabatic elimination of the level |1〉 as described in the main text. This
is related to the fact that the experimental set up yields a majoritary population of the excited level 5D3/2 F= 3, and
due to the selection of detunings and laser powers

|∆nl|,Ω0n,Ωnm, γnm, γ10 � γ21 , (10)

the decay to the ground state is mainly through the 5P1/2 F=2 state. The validity of the adiabatic elimination in
this regime was confirmed by numerical simulations involving the four levels.

Temporal evolution of the effective three-level system

We now present a theoretical analysis that properly describes the temporal evolution of the effective three-level
system evolving under the action of Eq. (4) in the main text. From this evolution, the coefficients ρij = 〈i|ρ|j〉 satisfy
a set of coupled linear differential equations. This set of equations can be transformed into an algebraic one using the
Laplace transform

ρ̃ij(s) ≡ L[ρij(t)] ≡
∫ ∞

0

dtρij(t)e
−st, (11)

with s a complex variable, since the Laplace transform of the time derivative ρ̇ij(t) with a predetermined boundary
condition at a given initial time t = 0 satisfies the relation [3]

L[ρ̇ij(t)] = ρij(t)e
−st
∣∣∣∣∞
0

+ s

∫ ∞
0

dtρij(t)e
−st

= −ρij(0) + sρ̃(s) . (12)

Being interested in the correlation function Eq.(5), we solve this set of equations for ρ̃22 and ρ̃′33 subject to different
initial conditions; then, we apply the inverse Laplace transform to obtain the time dependence of these elements. For
an initial state ρ00(t = 0) = 1 the algebraic equations lead to

Q(s)ρ̃22(s) =
1

2
Ω2

eff (s+ γ30)

(
s+

1

2
γ23

)
s−1 , (13)

Q(s)ρ̃33(s) =
1

2
Ω2

effγ23

(
s+

1

2
γ23

)
s−1 , (14)



4

c
(1)
22 = −0.01546 c

(2)
22 = 0 c

(3)
22 = 0.49333 c

(4)
22 = 0.00718

c
(1)
33 = −0.96753 c

(2)
33 = −0.00034 c

(3)
33 = 0.00001 c

(4)
33 = 0.00035

TABLE I: Numerical coefficients that determine ρ22(t), Eq. (22) and ρ′33(τ), Eq.(22).

with the fourth-order polynomial

Q(s) =
(

(s+
γ23

2
)2 + ∆2

eff

)
(s+ γ23)(s+ γ30) + Ω2

eff(s+
γ23

2
)(s+ γ30 +

γ23

2
) . (15)

Similarly, for ρ′33(τ = 0) = 1 one obtains

Q(s)ρ̃′22(s) =
1

2
γ30Ω2

eff(s+
1

2
γ23)s−1 , (16)

Q(s)ρ̃′33(s) =

[(
(s+

1

2
γ23)2 + ∆2

eff

)
(s+ γ23)s+ Ω2

eff

(
s+

1

2
γ23

)2
]
s−1 . (17)

The time dependence of the density matrix elements will be given by the nature of the roots of Eqs. (13-16).
According to the experimental data, and using the electronic structure of 87Rb atoms,

Ωeff = 163.04MHz , ∆eff = −16.2MHz

γ23 = 2.436MHz , γ30 = 35.92MHz. (18)

This results in that two of the roots of Q(s) are real while the other two are complex numbers, the latter being
complex conjugate of each other:

r1 = −37.025MHz ∼ −(γ30 + γ23/2) (19)

r2 = −1.2306MHz ∼ −(γ23/2) (20)

r3,4 = −1.2445± 163.984iMHz

= −γ̃ ± iΩ̃

∼ −γ23

2
±
√

Ω2
eff + ∆2

eff +
γ23

2
(γ30 −

γ23

2
)i (21)

These roots determine the general features of ρ22(t) and ρ′33(τ) that translate into the exponential and oscillatory
aspects of the correlation function P(t, t+ τ). Since the two real roots of Q(s) are negative

ρ22(t) = 0, if t < 0,

ρ′33(τ) = 0, if τ < 0.

For t > 0

ρ22(t) = c
(1)
22 (1− er1t) + c

(2)
22 (1− er2t) + c

(3)
22 (1− cos(Ω̃t)eγ̃t)

+ c
(4)
22 sin(Ω̃t)eγ̃t , (22)

so that ρ22(t→ 0+) = 0. For τ > 0

ρ′33(τ) = 1 + c
(1)
33 (1− er1τ ) + c

(2)
33 (1− er2τ ) + c

(3)
33 (1− cos(Ω̃τ)eγ̃τ )

+ c
(4)
33 sin(Ω̃τ)eγ̃τ . (23)

The coefficients resulting from the experimental set-up are shown in Table I. From these values it is expected that
asymptotically ρ′33(∞) → 0.03207 and ρ22(∞) → 0.47787. The ideal asymptotic P(t;∞) function corresponds to
state with a population of about 3% for level |3〉 and about 0.48% for level |2〉. At long times ρ′33 has an oscillatory

behaviour with a small amplitude ∼ c(4)
33 and frequency Ω̃.

While ρ′33(τ) exhibits a discontinuity at τ = 0, ρ22(t) is continuos at t = 0. The discontinuity of ρ′33(τ) gives rise to
the implicit presence of a Heaviside function in Eq. (7) of the main text. It reflects that before time t the atom–field
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can be considered to be in a superposition of states that involves, among other states, that of an atom in state |2〉
and no photons in the EM modes associated to the transition |2〉 → |3〉 and an atomic state |3〉 with a single photon
in one of these modes.

The discontinuity, due to the time boundary condition on ρ′, has a structural character. This was verified by
numerical calculations that were performed involving not just the four levels here mentioned, but all their hyperfine
sublevels.
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