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22. Z. L. Yuan, M. Lucamarini, J. F. Dynes, B. FrÃűhlich, A. Plews, and A. J. Shields. Robust random number
generation using steady-state emission of gain-switched laser diodes.Applied Physics Letters, 104(26):261112,
Jun 2014.

23. Hongyi Zhou, Xiao Yuan, and Xiongfeng Ma. Randomness generation based on spontaneous emissions of lasers.
Physical Review A, 91(6):062316, Jun 2015.



24. M. Jofre, M. Curty, F. Steinlechner, G. Anzolin, J. P. Torres, M. W. Mitchell, and V. Pruneri. True random numbers
from amplified quantum vacuum.Optics Express, 19(21):20665, Oct 2011.

25. Christian Gabriel, Christoffer Wittmann, Denis Sych, Ruifang Dong, Wolfgang Mauerer, Ulrik L. Andersen,
Christoph Marquardt, and Gerd Leuchs. A generator for unique quantum random numbers based on vacuum states.
Nature Photon, 4(10):711â̆AŞ715, Aug 2010.
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Abstract: We implement a quantum random number generator based on a balanced homodyne
measurement of vacuum fluctuations of the electromagnetic field. We used wave front splitting
of the local oscillator instead of amplitude splitting in order to simplify the optical setup. The
digitized noise signal is processed with a fast randomness extraction scheme based on a linear
feedback shift register. The random bit stream is continuously read in a computer at a rate of
about 480 Mbit/s and passes an extended test suite for random numbers.
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1. Introduction

Generating high quality and trusted random numbers is an essential task in various crypto-
graphic schemes and many other fields such as Monte Carlo simulations [1] and various ran-
domized algorithms. Algorithmically generated pseudo-random numbers are available at very
high rates and can be easily implemented in software, but they are deterministic in nature and
therefore are not suitable for cryptographic purposes. As an alternative, hardware random num-
ber generators have been used [2,3]. They measure noisy physical processes and convert the out-
come into random numbers. Since it is impossible to predict the outcome of such measurements,
these physically generated random numbers are more trustedcompared to pseudo-random num-
bers.

Quantum random number generators (QRNG) is a class of hardware random number gener-
ators whose source of randomness is the outcome of quantum measurements. Early implemen-
tations of QRNGs made use of decay statistics of radioactivenuclei [4, 5]. A number of more
recent implementations using quantum optical measurements have been reported. These include
measuring photon number statistics [6–12], scattering events of single photons by a beam split-
ter [13], amplified spontaneous emission of a fiber amplifier [14]. QRNGs based on measuring
the intensity [15,16] and phase noise [17–24] of different light sources have also been reported.

In this paper we report on a QRNG implementation based on measuring the vacuum fluctua-
tions of the electromagnetic field, which has been reported in [25–28]. Such measurements are
known for their high bandwidth and simple optical setup. In this paper, we simplify the optical
setup of the homodyne detector down to only a laser diode and two photodiodes without using
light splitting components. Combined with an efficient randomness extractor, we are able to
generate unbiased and uncorrelated stream of random bits ata high rate, but now with a much
simpler optical setup.



2. Optical homodyne measurement by wavefront splitting

The QRNG based on measuring vacuum fluctuations of the electromagnetic field uses an bal-
anced homodyne detector. A conventional setup consists of alaser diode (LD) as a local oscil-
lator, a 50:50 beam splitter (BS), and two photodiodes (PD1, PD2). A collimation lens and a
mirror is also used to steer and guide the laser beam.

Fig. 1 (b) shows the schematic of a conventional balanced homodyne detector. The local os-
cillator (LO) in modea enters the BS and is directed onto two photodiodes and the photocurrent
difference is measured. This setup maps fluctuations of electrical field in modeb to the photocur-
rent differencei1 − i2. When probing the vacuum fluctuations of EM fields, the input modeb of
the BS is kept empty (i.e. mode b is at|0〉).

A core requirement for a balanced homodyne detection is the mixing of modea andb at the
beam splitter, which is governed by the following matrix

(

Ẽc

Ẽd

)

= M

(

Ẽa

Ẽb

)

where M=

(

1 −1
1 1

)

(1)

Where Ẽa, b, c, d represents the oscillating electrical fields at modesa, b, c, d. This matrix
relation is ensured by the boundary conditions of the electromagnetic fields between the dielec-
tric media of the beam splitter. The mixing of modea andb also requires good overlap of their
spatial profile as well as their frequency. Although measuring the vacuum state does not need
to go through this non-trivial process, careful placement and tuning of optical components are
still needed.
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Fig. 1. Splitting mechanisms of the two different implementations. A conventional balanced
homodyne detection scheme (a) relies on the beam splitter matrix relation between the input
modesa, b and the output modesc, d. In the wavefront-splitting implementation (b), this
is replaced by spatially splitting the elliptical transverse mode of a laser beam.

We can simplify the setup of the balanced homodyne detector by using a different mode
decompositon of the local oscillator, thus replacing the beam splitter matrix in (1). Fig.1 (b)
shows the simplified setup that we propose. A pair of square shaped photodiodes are placed
adjacent to each other are directly exposed to the laser beam, each receiving approximately
half of the laser beam spot. The optical mode from the laser diode is typically of elliptical
transverse profile and for simplicity, the electrical field amplitude at the photodiode surface can
be approximated by

Ẽl (x, y, t) = Ê0 · g(x, y, t) = ǫ̂E0(e−iωt · e−x
2/wx

2
· e−y

2/wy
2
) (2)

whereǫ is the polarization vector, andE0 is the global field amplitude. The terme−x
2/wx

2 ·
e−y

2/wy
2

describes a transverse beam profile of a 2D gaussian distribution with different param-
etersωx ,ωy alongx, y directions. The functiong(x, y, t) = e−iωt ·e−x2/wx

2 ·e−y2/wy
2

describes
the optical mode of the local oscillator.

We now introduce a somewhat similar mode functionh(x, y, t) which is manually defined as



h(x, y, t) = g(x, y, t) ·
{

+1 f or y > 0
−1 f or y < 0

(3)

It is clear thath(x, y, t) is orthogonal tog(x, y, t) since
∫

g(x, y, t) · h(x, y, t)dx3 = 0, thus the
two modes can be considered as independent harmonic oscillators. Consider a second field in
modeh, Ẽv = ǫ̂E1 · h(x, y, t) is being mixed with the local oscillator at modeg. The electrical
field on the "upper half" (y > 0) and "down half" (y < 0) can be written as

Ẽup = ǫ̂ (E0 + E1) ·
{

g(x, y, t) f or y > 0
0 f or y < 0

(4)

Ẽdown = ǫ̂ (E0 − E1) ·
{

0 f or y > 0
g(x, y, t) f or y < 0

It it easy to see that Equation (4) reproduce the beam splitter matrix in (1). The photocurrent
differencei1− i2 shown in Fig.1 (b) now maps to the vacuum fluctuations of an electromagnetic
field with a mode functionh(x, y, t), which is kept at vacuum state. The mixing of the two
modes is automatically ensured since the vacuum field is present everywhere.

In contrast to a conventional homodyne detector based on amplitude splitting of fields through
beam splitter, we use the splitting of wave front of the laserbeam and thus eliminated the usage
of beam splitting components. The setup is now much simplified compared to those in [25–28]
and the non-trivial alignment procedures can be avoided.

3. Implementation
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Fig. 2. Amplified noise levels measured into a resolution bandwidthB = 60 kHz. The red
trace is the amplified photocurrent differencei1 − i2, with equal optical power impinging
on both photodiodes. The blue trace corresponds to the electronic noise which is measured
without any optical input.

Figure 2 schematically shows the balanced homodyne detection setup of our QRNG. A con-
tinuous wave laser (wavelength 780 nm) is used as the local oscillator for the vacuum fluctua-
tions. The beam from the laser diode impinges directly onto apair of photodiodes (OSRAM
SFH2701). The sensitive area of the two photodiodes are two 0.6 × 0.6 mm squares and are
placed next to each other with a 1 mm gap in between.

The laser diode casts an elliptical beam spot of about 2.5 mm long and 0.7 mm wide, which
covers the two photodiodes. A fraction of the optical power is received by the two photodiodes.
By carefully adjusting the position of the beam spot, we are able to balance the optical power
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Fig. 3. Amplified noise levels measured into a resolution bandwidthB = 100 kHz. The red
trace is the amplified photocurrent differencei1 − i2, with equal optical power impinging
on both photodiodes. The blue trace corresponds to the electronic noise which is measured
without any optical input.

received by the two diodes. The fluctuations of photocurrentdifference∆(i1− i2) is amplified by
a transimpedance amplifier (Analog Devices AD8015) followed by two wideband RF differen-
tial amplifiers (Analog Devices AD8351). The entire amplifier chain has a calculated effective
transimpedance ofReff ≈ 1 MΩ.

Fig 3 shows the measured total noise output (red trace) whichhas a relative flat power density
range from about 10 MHz to 150 MHz. The lower end of the band is set by the AC coupling
capacitors in the gain block while the high end is determinedby the cut-off frequency of the
amplifiers. As a comparison, the electronic noise (blue trace) is measured with the laser diode
switched off. The signal to noise ration is found to be over 10 dB at lower frequencies (0-50
MHz) and around 5 dB at higher frequencies (50-100 MHz) and weconclude that the total noise
is dominated by quantum fluctuations.

The amplified noise signal is digitized into signed 12 bit words at a sampling rate of 200
MHz with an analog to digital converter (ADC, Analog DevicesAD9634). The normalized
autocorrelation evaluated over 107 samples is shown in Fig 4. The autocorrelation measured up
to a delay ofd = 100 is on the order of 10−4 which is below the 2σ confidence level. Residual
correlation is observed ford < 10 and is a consequence of the finite bandwidth of the noise
signal (150 MHz) and the high sampling rate of the ADC (200 MHz).

4. Entropy estimation and randomness extraction

We estimate the entropy in the raw data to help determine the amount of extractable random-
ness from our QRNG. Two different definitions of entropy are used here. An upper bound of
randomness is given by the Shannon entropy, and the min-entropy is computed to set an lower
bound.

For this setup, we followed the same assumptions made in our previous work [28] which
assumes that the measured total noise signalXt = Xq + Xe is the sum of independent random
variablesXq for the quantum noise, andXe for the electronic noise. The three variablesXq ,
Xe andXt are assumed to follow Gaussian distributions and take discrete values between−211

and 211 − 1. Considering the worst case scenario that an adversary hasfull knowledge of the
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Fig. 4. Autocorrelation of the total noise signal sampled at 200 MHz, computed over 107

samples (solid line), compared with the 2σ confidence level (dashed line).

electronic noise, the conditional Shannon entropy in this case is

H (Xt |Xe ) = H (Xq + Xe |Xe ) = H (Xq |Xe ) = H (Xq ) (5)

A variance ofσ2
q = σ

2
t − σ2

e ≈ 531.62 is calculated forXq . For such a Gaussian distribution
with σq ≫ 1, the Shannon entropy can be computed as

HS (Xq ) =
211−1
∑

x=−211

−pq (x) log2 pq (x) (6)

≈
+∞
∫

−∞

− f (x) log2 f (x) dx = log2(
√

2πeσq )

≈ 11.1bits

The min-entropy of the quantum noiseXq is computed as

H∞(Xq ) = − log2(max[pq (x)]) (7)

≈ log2(
√

2πσq )

≈ 10.38bits

The Shannon entropyHS (Xq ) and min-entropyH∞(Xq ) set up the upper and lower bound
of extractable randomness. We use a randomness extractor based on a Linear Feedback Shift
Register (LFSR) which has been reported in our previous work[28]. The extractor is equivalent
to multiplying an input stream of 63 bits to a 63× 63 Toeplitz matrix generated from a LFSR
and is shown to be a valid hashing function [29]. The low complexity of this extractor allows
it to be easily implemented either in high speed or low power technology. This scheme can be
par- allelized using 126 register cells, capable of receiving up to 63 injected raw bits per clock
cycle to even further speed up the process.
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5. Performance

We apply the statistical test suite from NIST [30], and the “Die-harder” randomness test bat-
tery [31] to evaluate the quality of the extracted random numbers. Our RNG output passed both
tests consistently when evaluated over a sample of 400 Gigabit in the sense that occasional weak
outcomes of some tests do not repeat.

Our implementation has an output rate of about 480 Mbit/s of uniformly distributed random
bits, with the digitizer unit sampling at 200 MHz and randomness extraction ratio of 66%; this is
limited by the speed of the data transmission protocol (USB2.0). Although significantly higher
generation rates have been reported recently [14, 17, 19], our design is by far the most com-
pact and with moderate effort, our random number generation rate can be greatly increased by
extending the bandwidth of the photodi- odes, amplifiers, and digitizer devices.

6. Conclusion

In summary, we demonstrated a random number generation scheme by measuring the vacuum
fluctuations of the electromagnetic field. By using wave front splitting instead of amplitude
splitting, we eliminated the usage of any beam splitting optics in our setup. By estimating the
amount of usable entropy from quantum noise and using an efficient randomness extractor based
on a linear feedback shift register, we can generate uniformly distributed random numbers at a
high rate from a fundamentally unpredictable quantum measurement.


