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1 Abstract

We describe a series of Randomness Extractors for removing bias and residual
correlations in random numbers generated from measurements on noisy physical
systems. The structures of the randomness extractors are based on Linear
Feedback Shift Registers (LFSR). This leads to a significant simplification in
the implementation of randomness extractors.



2 Drawings
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Figure 1: flowchart of the process
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Figure 2: A 63-bit Fibonacci-type Linear Feedback Shift Register
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Figure 3: A 63-bit Galois-type Linear Feedback Shift Register
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Figure 4: Example of a Fibonacci-type randomness extractor, serial in-
put/output
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Figure 5: Example of a Galois-type randomness extractor, serial input/output
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Figure 6: Example of a Fibonacci-type randomness extractor, parallel in-
put/output
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Figure 7: Example of a Fibonacci-type randomness extractor, parallel in-
put/output



3 Invention background

The present invention is a randomness extraction processes that converts biased
random data into unbiased random bits.

3.1 Random number generation

A range of applications ranging from encryption to numerical modeling require
random numbers to be generated at high speed.[? ? ? ]| In particular, when
information security is of concern, the quality of the generated random numbers
should have good statistical properties. Ideally, they should possess no bias or
correlations. In other words these random numbers should be intrinsically un-
predictable.

Random number generators can be categorized into either pseudo-random num-
ber generators or physical random number generators. Pseudo-random number
generators are deterministic since they employ complex algorithmic functions to
generate their output, thus their output cannot be considered intrinsically ran-
dom. However, pseudo-random number generators are easy to implement and
are often used for computational purposes such as Monte-Carlo Simulations.

For applications that require a source of high quality random numbers for exam-
ple cryptographic key generation, a physical random number generator whose
output is based on intrinsically unpredictable physical processes is preferable.
Some typical sources of physical randomness used to generate a source of raw
random numbers include the detection of emission from radioactive nuclei, key
strokes derived from human input and various types electrical/optical noises.|?
? ? 7 ] Measurements on sources of physical randomness are often slower than
the computation speed of processors, and thus limits the output rate.

The raw random numbers derived from physical sources are also typically biased
and cannot be used directly. A post-processing step (also known as random-
ness extraction) is required to ensure the quality of the output numbers.[? ? ]
This post-processing generally involves performing logic operations on the raw
random data and will introduce further time delay in the final output stage.

3.2 Randomness extraction

From an information-theory point of view, a randomness extractor is a process
that converts a statistically weak binary stream into a new stream, with each
bit in the output stream possessing one bit of Shannon entropy. The process
should be in principle irreversible such that the raw data cannot be recovered
from the output.

One famous example of such an extractor is the so called Von-Neumann extrac-
tor.[? ] This specific extractor operates by grouping the raw input bit stream
into pairs and maps them to individual bits. It has been shown that the Von-
Neumann extractor eliminates the bias of the bit stream, but is not effective
against correlations. Also, the Von-Neumann extractor is not efficient as the



output rate is reduced by more than half of the input rate.[? ]

Another typical implementation of a randomness extractor uses a cryptographic
hashing function.[? ? | Such hashing functions are proven to be effective and
secure, but the complexity of the hashing functions slows down the processing
speed and increases the implementation difficulty.

A faster output rate generally requires more memory space and faster processing
units, thus compact implementations of such algorithms are difficult to realize.

The applicant came to notice, while implementing the randomness extractors,
another feature of importance, known as the conservation of entropy.

This proposition can be understood as the following: Since the randomness ex-
tractor is a deterministic process that does not input any additional entropy into
the input stream, the entropy of the output stream should be conserved. From
an information-theoretic point of view, each bit at the input of the randomness
extractor contains less than 1 bit of Shannon entropy. For an ideal randomness
extractor we require the output binary stream to possess a Shannon entropy of
1 per bit. One method of conserving entropy is to truncate the length of the
output stream.

From a cryptographic angle, a shorter output stream requires dropping a certain
portion of the output bits, which makes the entire extraction process practically
irreversible. Potential attackers are unable to recover the raw random data and
hence the security of the system is ensured.

The applicant observes that implementing such an entropy conversation process
improves the output quality of the randomness extractors.

3.3 Prior arts

Prior arts to be quoted?(saw several other patents did that...)
some possible quotes

US 8219602

US 6581078

US 8364977



4 Summary of the disclosure

The applicant proposes an efficient implementation of a randomness extractor
that processes raw random data from a source of physical randomness and pro-
duces high quality random numbers at the output.

The applicant observes that a simple and compact structure commonly known as
a Linear Feedback Shift Register (LFSR) is suitable for randomness extraction
due to properties such as spectrum whitening and uniformizing the distribution
of its output stream.

The applicant proposes a modification to the LFSR structure such that instead
of a deterministic structure , the LFSR receives a random serial input from a
physical source, performs a series of logic operations and output an extracted
random stream. The extracted random stream is at the same time used to up-
date the internal state of the LFSR and prepare for the next round of operation.

The applicant proposes two different structures of randomness extractors based
on the LFSR, namely the serial Fibonacci and serial Galois type.

The applicant also proposes two additional structures, namely the parallel Fi-
bonacci and Galois type randomness extractors. The two parallel version ex-
tractors have much faster output rates compared to their corresponding serial
versions, with an acceptable increase in computational resources.

The applicant employs the entropy conservation process mentioned earlier and
applies a bit-dropping step to all the extractors introduced to ensure a shorter
output stream and a conserved input/output entropy. The portion of dropped
bits is decided by first statistically measuring the entropy of the raw random
data, and then truncating the output stream length to match amount of entropy
measured.

The applicant claims the proposed structure to be a high speed, efficient ran-
domness extraction scheme, and can be implemented in compact and efficient
designs. The proposed structures may possibly be implemented as part of on-
chip random number generators for embedded systems.



5 Description of the drawings

Fig.1 shows a general flow chart of the random number generation process from
a physical randomness source. The process includes a physical randomness
source, a measurement / sampling unit, and a randomness extractor unit.

Fig.2 schematically shows the common structure of a Fibonacci-type Linear
Feedback Shift Register.

Fig.3 schematically shows the common structure of a Galois-type Linear Feed-
back Shift Register.

Fig.4 shows a possible implementation of a serial version, Fibonacci-type ran-
domness extractor

Fig.5 shows a possible implementation of a serial version, Galois-type random-
ness extractor

Fig.6 shows a possible implementation of a parallel version, Fibonacci-type ran-
domness extractor

Fig.7 shows a possible implementation of a parallel version, Galois-type ran-
domness extractor



6 Description of the invention

6.1 Randomness from physical sources

A physical random number generator (RNG) is based on measurements of a
source of physical randomness. Different implementations of physical random
number generators have been investigated. Typical sources of physical ran-
domness include radioactive counters, human behaviours(key strokes, mouse
movements, etc), electrical /optical noises, etc.[? 7 ? ? | A physical random-
ness source is usually quantum mechanical or chaotic, thus the measurement
outcome is believed to be unpredictable.

An example of such a randomness source and measuement is shown in Fig.2.
The applicant measures the noise from an optical detector to generate the raw
random data. Optical noise is believed to originate from quantum mechanical
fluctuations and thus effectively unpredictable. This is advantageous as the
measurements can be performed at high speed and the detection unit is com-
pact.

The outcome of the physical measurement is converted by an analog/digital con-
vertor (ADC) into a binary number of certain bit length, determined by ADC.
For a n-bit ADC, there are 2" possible outcomes. The statistically weak raw
data from the measurements will be distributed among these possible outcomes
with a non-uniform distribution.

6.2 Shannon entropy of a randomness source

In this section we introduce the concept of Shannon entropy as an measure of
the quality of the randomness source. A higher value of Shannon entropy indi-
cates that the source is more random while a Shannon entropy of zero indicates
that the source is perfectly predictable.

Before we perform the randomness extraction process, we characterize the amount
of entropy of the source of randomness as measured with our n-bit ADC such
that one may estimate the amount entropy to be retained later.

Each outcome of a measurement with a n-bit ADC can be considered as a ran-
dom variable X with 2™ possible values. The Shannon entropy is defined as for
a random variable X as

HX)=-> P(X =z;)logP(X = ;)

where > indicates the sum over all possible values of X, and P(X = z;) is the

z;
probability of the variable X with value z;.
The probability of each outcome P(X = x;) can be determined by counting
its number of occurances over a large number of measurement outcomes. For a

large enough sample size, we this formula is an accurate representation of the
Shannon entropy of the source of randomness.

For a n-bit ADC, the value of H(X) is between 0 and n, with 0 being per-



fectly non-random and n being perfectly random. A perfectly random case
corresponds to a uniform distribution among all 2™ possibilities.

6.3 Linear Feedback Shift Register (LFSR)

A brief introduction of the so called Linear Feedback Shift Register is necessary
before introducing the proposed randomness extractors.

A Linear Feedback Shift Register (LFSR) is an arithmetic structure which con-
sists of a shift register and XOR (Exclusive OR) gates. The shift register is of
length n and stores n bits of data at any instant. The length of the shift register
is commonly referred as the length of the LFSR. The bit content stored in the
shift register at a certain clock cycle is referred as the state of the LFSR within
that clock cycle.[? |

Fig.3 and Fig.4 shows two possible LFSR structures, namely the Fibonacci-type
and Galois-type. The LFSR memory cells are labelled with numbers 1 to 63.

As its name suggests, a LFSR operates by XORing bits inside a shift register
with the bit fed to the bottommost cell. The cells in the shift register that take
part in the XOR operations are commonly called the LFSR taps.

Fig.3 is an example of a 63-bit Fibonacci-type LFSR. cells 1 and 2 are chosen
as taps. At each clock cycle, the bits stored in cells 1 and 2 are XORed to
produce an output bit, which is simultaneously fed back to cell 63 of the shift
register. All other bits in the LFSR shift one step upwards in the process. We
have chosen here the output to be the XOR of cell 1 and 2.

Fig.4 is an example of a 63-bit Galois-type LFSR. cells 1 and 2 are chosen as
taps. At each clock cycle, the bit stored in cell 63 is shifted to cell 1. Simulta-
neously the same bit is XORed with the bit originally stored in cell 1, and its
outcome is sent to cell 2. All other bits in the LFSR shift one step downwards
in the process. We have chosen here the output to be the bit in cell 63.

It is obvious that an LFSR is a deterministic structure. The LFSR state is con-
tinually updated at each clock cycle and will eventually it return to its original
state at the beginning.

An LFSR of length n can have a maximum of 2" — 1 possible states. Also,
for a LFSR with all bits being zero in the shift register is not considered an
operational state since its output will always be zero regardless of length or
combination of taps.

In general, the taps of an LFSR can be arbitrarily chosen cells. In practice
we are interested in certain taps called "maximum period taps” that allow the
LFSR (of fixed length) to iterate through all 2" — 1 possible states before re-
peating itself. This is to avoid repeating patterns in the LFSR output. In the
examples in Fig.3 and Fig.4, cells 1 and 2 forms such a set of taps. The example
LFSR will go through 2% — 1 different states before repeating outcomes start
to occur.

10



Mathematically, an LFSR can be described by finite Galois field algebra. It can
be shown that the solutions for maximimum period taps for both Fibonacci-type
and Galois-type LFSRs can be analyzed by such algebra.

The output binary sequence of a LFSR with maximum period taps possess good
statistical properties. The occurances of Os and 1s are almost identical, as are
the two-bit pairs (00,01,10,11) and 3-bit triplets (000,001,010...) and so on.
Also, a discrete Fourier transform of the output stream shows a white spectra.
Although the stream is deterministic in nature, its repetition period will be
sufficiently long even for a moderate length LESR (263 — 1 for a 63-bit length
LFSR). As such, the output stream of such a LFSR is often used as a pseudo-
random number generator.

However, it should be noted that despite its good statistical properties, such a
pseudo-random stream cannot be considered as good random numbers for use
in information security as there exist methods to distinguish the pseudo-random
stream from a LFSR from a truly random stream.[? ]

The randomness extractor proposed by the applicant can be considered as a
combination of a physical randomness source and a LFSR structure. The appli-
cant proposes to utilize the good statistical properties of an LFSR output, and
meanwhile also introduces the unpredictablity of a physical randomness source
to construct an efficient and reliable randomness extraction scheme.

6.4 LFSR based randomness extractors

In this invention, the applicant utilizes the statistical properties of the LFSR
output, but additionally seeds it with a binary sequence originating from a phys-
ical source of randomness to construct a randomness extractor. We describe first
the serial version of the Fibonacci type and Galois type randomness extractors
and later expand upon them to their corresponding parallel versions which are
able to process all the bits in the word provided by the measurement in a single
clock step.

6.4.1 Serial Fibonacci type randomness extractor

Fig.5 shows the basic structure of a serial Fibonacci type extractor. The central
part is a Fibonacci type 63-bit LFSR, with the its taps chosen to give a maximal
period (cells 1 and 2). The extractor has a serial input and output. The length
of the LFSR is chosen to be 63 bits because it minimizes the number of tap
bits (and hence XOR operations) required. In each clock cycle, the following
operations take place:

1. One bit is read from the physical RNG to the input.

2. The input bit is XORed with the bits in cells 1 and 2 (labelled tap bits),
generating one new bit. The operation can be expressed as: Xouiput = X1 @
X2 5> Xinput

3. All bits in the LFSR shift one cell upwards, the vacated bottom cell is oc-
cupied by the newly generated bit. The new bit is at the same time sent to
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output.

In this example, each measurement outcome from a physical randomness source
is a 16-bit number which yields 12 bits of Shannon entropy. We therefore
dropped 4 out of the 16 output bits to ensure an entropy of 12 bits per sample
in the output stream. The LFSR is inially populated with bits from the input
of the physical RNG.

In general, a longer LFSR adds more complexity to the system but also improves
the statistical properties of the output. A LFSR length of < 32 bits significantly
reduces the quality of the output random numbers.

The applicant notes that the structure described is very similar to ”scramblers”
normally used in telecommunications.[? | However, a scrambler preserves the
output word length while in the randomness extractor described above one de-
liberately drops bits to conserve entropy.

6.4.2 Serial Galois type randomness extractor

Fig.6 shows the basic structure of a serial version, Galois-type extractor. The
central part is a Galois type 63-bit LFSR, with its taps chosen to give a maximal
period (cells 1 and 2). The extractor has a serial input and output. The length
of the LFSR is chosen to be 63 bits because it minimizes the number of tap
bits (and hence XOR operations) required. In each clock cycle, the following
operations take place:

1. One bit is read from the physical RNG to the input.

2. The input bit is XORed with the output bit (bit from cell 63) of the LFSR,
generating one new bit.

3. All bits in the LFSR shift one cell downwards. The vacated top cell is occu-
pied by the newly generated bit and the bit from cell 63 is sent to the output.
The XOR operation can be expressed as: X1 = Xinput © X63, X2 = X1 © Xe3

The Galois-type LFSR is mathematically equivalent to a Fibonacci-type LFSR,
both structures can be described by finite Galois field algebra. The applicant
notes that the serial Galois-type LFSR extractor presents a significant increase
in output bit rate since all the XOR operations simultaneously occur in one clock
cycle as compared to at least two clock cycles required in the serial Fibonacci-
type LFSR.

6.4.3 Parallel Fibonacci type randomness extractor

Fig.7 shows the basic structure of a parallel Fibonacci-type extractor. The cells
of the shift register are labelled with numbers 1 to 126. The arrows indicate the
shift of bits at each clock cycle. To generate an output of 63 bits in parallel,
63 x 2 = 126 cells of memory are required. Cells 1 ~ 63 store the state of the
LFSR, and are to be sent to output at the next clock cycle; cells 64 ~ 126 are
used to store the next 63 bits newly generated by the XOR circuit.
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Similar to the serial extractor, the operations in one clock cycle are as following:
1. 63 bits are read from the physical RNG to the input.

2. XOR operations are performed between the input 63 bits and the bits stored
in the shift register following the truth table below:

XOR circuit
Xos = X1 @ X2 @ Xinput1
Xe3 = X2 @ X3 @ Xinput2

X126 = Xo3 D X64 D Xinputes

One clock cycle generates 63 new bits by performing a pair of XOR operations
in sequence for every new bit.

3. All bits in the LFSR shift 63 cells forward: 64 — 1, 65 — 2, etc. The bits
originally stored in cells 1 ~ 63 are sent to output; the vacated cells 64 ~ 126
accommodate the newly generated 63 bits from the XOR circuit.

4. A portion of bits are dropped to conserve entropy.

The applicant notes that since all the XOR operations are performed in
parallel, the processing speed is 63 times faster than its serial version. This
speedup is at a cost of requiring more memory space and more XOR gates.
To build a parallel Fibonacci-type extractor using a n-bit LFSR that has k bit
parallel output, k must be less or equal to n. The number of memory cells
needed is simply n + k.

The entropy conservation condition and the LFSR length considerations remains
the same.

6.4.4 Parallel Galois type randomness extractor

Fig.8 shows the basic structure of a parallel Galois-type extractor. The cells of
the shift register are labelled with numbers 1 to 63, 64 to 126 and 64’ to 126’.
The arrows indicate the shift of bits at each clock cycle. To generate an output
of 63 bits in parallel, 63 x 3 = 189 memory cells are required. Cells 1 ~ 63 store
the state of the LFSR, and are to be sent to output at next clock cycle; cells
64 ~ 189 are used to store the 126 bits that will undergo the XOR operations.
Similar to the serial extractor, the operations in one clock cycle are as fol-
lowing;:
1. 63 bits are read from the physical RNG to the input.
2. XOR operations are performed between the input 63 bits and the bits stored
in the shift register following the truth table below:

XOR circuit 1 XOR circuit 2
Xear = X1 ® Xinput1 Xea = Xoa © Xo
Xes' = X2 @ Xinput2 Xe5 = Xe5 & X3

X126 = X63 D Xinputes | X126 = X126/ D Xea

One clock cycle performs 126 simultaneous XOR operations and generates 63

13



new bits.

3. All bits in the LFSR shift 63 cells forward: 64’ — 64, 64 — 1, 65’ — 65,
65 — 2, etc. The bits originally stored in cells 1 ~ 63 are sent to output; the
output from XOR circuit 1 occupies cells 64" ~ 126’; the output from XOR
circuit 2 occupies cells 64 ~ 126

4. A portion of bits are dropped to conserve entropy.

The Galois-type parallel extractor will speed up the processing speed at the
cost of additional memory space and XOR operations compared to its serial
version. To build a parallel Galois-type extractor using a n-bit LFSR that has
a k bit parallel output, k must be less or equal to n. The number of memory
cells needed would be n + m x k where m is the number of taps of the chosen
LFSR.

The entropy conservation condition and the LFSR length considerations remains
the same.
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