
LFSR based extractor for random number

processing

Shi Yicheng

December 13, 2014

Overview

The LFSR(Linear Feedback Shift Register) based randomness extractor was
originally designed as an algorithm for randomness extraction of a physical
Random Number Generator(RNG).

Random numbers generated directly from a physical random number gener-
ator are usually biased and have inter-bits correlations, and are not considered
useful for most cryptographic purposes. A randomness extractor receives raw
random bits from a physical random number generator and outputs a random
stream that is uncorrelated and bias free, converting a weak randomness stream
into a strong one to suite most applications.

0

200

400

600

-40000 -30000 -20000 -10000 0 10000 20000 30000 40000

extracted numbers

0

200

400

600

-40000 -30000 -20000 -10000 0 10000 20000 30000 40000

raw numbers

Randomnss extraction
process

Physical random number
generator

extracted random
number

Figure 1: randomness extraction process. The input stream comes from a phys-
ical random number generator, and follows a Gaussian distribution(left). The
extractor takes in the stream and produce an output stream that follows a
uniform distribution(right).

Real-life implementations of randomness extractor do appear in various lit-
eratures. Most common methods involves using different cryptographic hashing
functions. These methods are in general proven to be effective and secure, but
the complexity of the hashing functions slows down the processing speed and
increases the implementation difficulty.

We propose here a new randomness extractor based on a LFSR structure.
The construct is compact and can be expected to operate at ultra-fast frequency.

Basic Structure

Fig 2 shows the basic structure of the LFSR based extractor. The central part
is a Fibonacci type LFSR, with the LFSR taps chosen to give a maximal period.
The extractor has a serial input and output. On each clock cycle, the following

1

operations take place:
1. One bit is read from the physical RNG to input.
2. The input bit is XORed with the bits from the LFSR taps, generating one
new bit. The operation can be expressed as: Xoutput = X1 ⊕X2 ⊕Xinput

3. The LFSR shifts, all bits move one position up, the vacated bottom position
is occupied by the newly generated bit. The new bit is at the same time sent to
output.
4. A portion of bits are dropped to conserve entropy.

12/13/2014 6:13:14 AM f=2.20 C:\Documents and Settings\shi yicheng\My Documents\eagle\LFSR\63bits_scrambler_serial.sch (Sheet: 1/1)

1
2

63

3

62

12 bits16 bits input from RNG 4 bits

output dropped

tap bit
tap bit

Figure 2: Example of a 63-bit, serial-in/out randomness extractor. The input
random numbers are grouped in 16-bit words. Addresses 1 and 2 are the LFSR
taps.

In this 63-bit structure, we intentionally add a bit dropping step to conserve
the entropy of the input and output. A statistical measurement of the input
yields 12 bits of Shannon entropy within every 16 bits. In response, for every
16 bits output, we drop 4 bits such that the process becomes irreversible.

The exact length of the LFSR is subject to different applications. A longer
LFSR will be more suitable if security issues are of concern; shorter LFSR on
the other hand will make the whole processing unit more compact.

Parallel-Structure Extractor

The basic structure shown in the last section has a serial input/output. In order
to enhance the performance we propose a parallel structure extractor based on
the same principle.

Fig 3 shows an example of a 63-bit parallel extractor. The addresses of the
shift register are labelled in numbers. The arrows indicate the shift of bits at
each clock cycle. To generate an output of 63 bits in parallel, 63× 2 = 126 cells
of memory are needed. Cells 1 ∼ 63 store the state of the LFSR, and are to be
sent to output at next clock cycle; cells 64 ∼ 126 are used to store the next 63
bits that are newly generated by the XOR(Exclusive OR) module.

Similar to the serial extractor, the operations in one clock cycle are as fol-

2

12/13/2014 6:12:39 AM f=2.20 C:\Documents and Settings\shi yicheng\My Documents\eagle\LFSR\63bits_scrambler.sch (Sheet: 1/1)

1
2

63

64
65

126

366

62125

3 2 16263

64

65

66

125

126

63
bi

ts
 p

ar
al

le
l i

np
ut

in1

in2

in3

in62

in63

64

dr
op

pe
d

64=1 2 in1

65=2 3 in2

66=3 4 in3

125=62 63 in62

126=63 64 in63

ou
tp

ut

47
 b

its
16

 b
its

Figure 3: 63 bits parallel extractor. The input is grouped in 63 bits words.

lowing:
1. 63 bits are read from the physical RNG to the input.
2. XOR operations are performed between the input 63 bits and the bits stored
in the shift register. Following the truth table below:

X64 = X1 ⊕X2 ⊕Xinput1,

X63 = X2 ⊕X3 ⊕Xinput2,

...

X126 = X63 ⊕X64 ⊕Xinput63

this step will generate 63 new bits. It’s worth noting here that all these XOR
operations are performed in parallel, thus no extra operating time is required
compare to the serial extractor.
3. The parallel LFSR shifts. All bits shift 63 addresses forward: 64→ 1, 65→ 2,
etc. Bits originally stored in addresses 1 ∼ 63 are sent to output; the vacated
addresses 64 ∼ 126 accommodate the newly generated 63 bits from the XOR
operations.
4. A portion of bits are dropped to conserve entropy.

The parallel structured extractor will speed up processing speed at a cost of
requiring more memory space and more XOR gates compare to its serial version.
To build a parallel extractor using a n-bit LFSR that has k bit parallel output,
k must be less or equal to n. The number of memory cells need is simply n+ k.

performance

As a preliminary assessment, the 63-bit parallel extractor was used to process
raw bits generated from a random number generator. The output unbiased

3

stream is sent through a randomness test suite to test for validity. The pro-
cessed stream passed the randomness test: no obvious bias and correlations are
detected in the output stream.

4

