
LFSR based scrambler for random number

processing

December 8, 2014

This LFSR(Linear Feedback Shift Register) based randomness extractor was
originally designed as a post-processing algorithm for randomness extraction
purpose. Its input receives raw random bits from a physical random number
generator(RNG) and outputs a random stream that is uncorrelated and bias
free. The construct is compact and can be expected to operate at ultra-fast
frequency.

0

200

400

600

-40000 -30000 -20000 -10000 0 10000 20000 30000 40000

extracted numbers

0

200

400

600

-40000 -30000 -20000 -10000 0 10000 20000 30000 40000

raw numbers

......

0

1

0

1

1

1

4 bits12 bits

output dropped

sampled 16 bits input

lfsr based randomness extractor

Figure 1: randomness extraction process. The input stream comes from a phys-
ical random number generator, and follows a Gaussian distribution(left). The
extractor takes in the stream and produce an output stream that follows a
uniform distribution(right).

Fig 2 shows the very basic structure of the extractor. The central part is a
Fibonacci type LFSR. In this configuration, the bits from the LFSR taps are
XORed with the incoming random bit to generate one new bit. The new bit is
simultaneously sent to output and also back to the LFSR memory.

.
.
.
.
.
.

0

1

0

1

1

1

4 bits12 bits

output dropped

sampled 16 bits input

Figure 2: Basic structure of a 16-bit, serial-in/out randomness extractor

For each clock cycle, the extractor generates one bit output and update
the internal state of the LFSR. In this 16-bit structure, we intentionally add
a bit dropping step to ensure that the output entropy is no more than what’s
measured from the input numbers.

1



parallel-structure extractor

Here we also propose a parallel-structured extractor that has the same function-
ality.

12/2/2014 7:11:13 PM f=1.70 C:\Documents and Settings\shi yicheng\My Documents\eagle\LFSR\63bits_scrambler.sch (Sheet: 1/1)

1
2

63

64
65

126

366

62125

3 2 16263

64

65

66

125

126

63
bi

ts
 p

ar
al

le
l i

np
ut

in1

in2

in3

in62

in63

64=1̂ 2̂ in1

65=2̂ 3̂ in2

66=3̂ 4̂ in3

125=62̂ 63̂ in62

126=63̂ 64̂ in63
64

63
bi

ts
 p

ar
al

le
l o

ut
pu

t

XOR module

Figure 3: 63 bits parallel extractor.

Fig 3 shows an example of a 63-bit parallel extractor. The addresses of the
shift register are labelled in numbers. The arrows indicate the shift of bits at
each clock cycle. To generate an output of 63 bits in parallel, 63× 2 = 126 cells
of memory are needed. Cells 1 ∼ 63 store the state of the LFSR, and are to be
sent to output at next clock cycle; cells 64 ∼ 126 are used to store the next 63
bits that are newly generated by the XOR(Exclusive OR) module.

On each cycle, the extractor takes in 63 bits data generated by the RNG.
The bits stored in addresses 1 ∼ 64 will be read into the XOR module and
XORed with the 63 input random bits. The truth table for the XOR module is
shown in the figure, which can be interpreted as:

X64 = X1 ⊕X2 ⊕Xin1,

X63 = X2 ⊕X3 ⊕Xin2,

...

X126 = X63 ⊕X64 ⊕Xin63

Once the XOR operations are done, all bits in the shift register shift one step
to right: bits 1 ∼ 63 go to the parallel output, bits 64 ∼ 126 occupies addresses
1 ∼ 63, and addresses 64 ∼ 126 accommodates the 63 newly generated bits from
XOR module.

2


