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We implement a quantum random number generator based on a balanced homodyne measurement of vacuum
fluctuations of the electromagnetic field. The digitized signal is directly processed with a fast randomness
extraction scheme based on a linear feedback shift register. The random bit stream is continuously read in a
computer at a rate of about 480 Mbit/s and passes an extended test suite for random numbers.

I. INTRODUCTION

Various cryptographic schemes, classical or quantum,
require high quality and trusted random numbers for key
generation and other aspects of the protocols. In order
to keep up with data rates in modern communication
schemes, these random numbers need to be generated at
a high rate1. Equally, large amounts of random numbers
are at the core of Monte Carlo simulations2. Algorithmi-
cally generated pseudo-random numbers are available at
very high rates, but are deterministic by definition and
therefore unsuitable for cryptographic purposes. For ap-
plications that require unpredictable random numbers,
hardware random number generators have been used in
the past3 and more recently4. These involve measuring
noisy physical processes, and conversion of the outcome
into random numbers. Since it is either practically (e.g.
for thermal noise sources) or fundamentally impossible to
predict the outcome of such measurements, these physi-
cally generated random numbers are considered “truly”
random.

Quantum random number generators (QRNG) be-
long to a class of hardware random number generators
where the source of randomness is the fundamentally un-
predictable outcome of quantum measurements. Early
QRNGs were based on observing the decay statistics
of radioactive nuclei5,6. More recently, similar QRNGs
based on Poisson statistics in optical photon detection
have been reported7–13. Different schemes use the ran-
domness of a single photon scattered by a beam split-
ter into either of two output ports14,15. As the reflec-
tion/transmission of the photon is intrinsically random
due to the quantum nature of the process, the unpre-
dictability of the generated numbers is ensured16. Other
implementations of QRNGs measure the amplified spon-
taneous emission17, the vacuum fluctuations of the elec-
tromagnetic field18–20, or the intensity21,22 and phase
noise of different light sources23–30.

In this paper we report on a QRNG based on measur-
ing vacuum fluctuations of a light filed as the source of
ramdomness18–20. Such measurements have a very high
bandwidth compared to schemes based on photon count-
ing7–13, and have a much simpler optical setup compared
to phase noise measurements23–30. Coupled with an effi-
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FIG. 1. Schematic of the quantum random number genera-
tor. A polarizing beam splitter (PBS) distributes light from
a 780 nm laser equally onto two photodiodes, generating pho-
tocurrents i1 and i2. The current difference i1−i2 is amplified,
digitized, and processed to generate random numbers.

cient randomness extractor, we obtain an unbiased, un-
correlated stream of random bits at a high rate.

II. IMPLEMENTATION

Figure 1 schematically shows the setup of our QRNG.
A continuous wave laser (wavelength 780 nm) is used as
the local oscillator (LO) for the vacuum fluctuations en-
tering the beam splitter at the empty port. The output of
the beam splitter is directed onto two photodiodes, and
the photocurrent difference is processed further. This
setup is known as a balanced homodyne detector31,32

and maps the electrical field in the second mode entering
the beam splitter to the photocurrent difference i1 − i2.
Here, the second input port is empty, so the homodyne
measurement is probing the vacuum state of the electro-
magnetic field. This field fluctuates33, and is used as the
source of randomness. As the vacuum field is indepen-
dent of external physical quantities, it can not be tam-
pered with. Since the optical power impinging on the
two photodiodes is balanced, any power fluctuation in
the local oscillator will be simultaneously detected, and
therefore cancel in the photocurrent difference32,34. In an
alternative view, the laser beam can be seen as generating
photocurrents i1, i2 with a shot noise power proportional
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FIG. 2. Amplified noise levels measured into a resolution
bandwidth B = 1 kHz. The total noise is measured from
the photocurrent difference i1 − i2 with equal optical power
impinging on both photodiodes and approaches the theoret-
ical shot noise level of -52 dBm (dashed trace) given by (1).
The current i1 of a single photodiode reveals colored classical
noise. The electronic noise is measured without any optical
input.

to the average optical power. The shot noise currents
from the diodes add up as they are uncorrelated, while
amplitude fluctuations in the laser intensity (referred to
as classical noise) do not affect the photocurrent differ-
ence.

The power of the two output ports is balanced by rotat-
ing the laser diode in front of a polarizing beam splitter
(PBS). Light leaving the PBS is detected by a pair of re-
verse biased silicon pin photodiodes (Hamamatsu S5972)
connected in series to perform the current subtraction.
The balancing of photocurrents is monitored by observ-
ing the voltage drop across a resistor RDC providing a
DC path from the common node to ground. We achieve
a 50 dB rejection ratio of the classical noise from the laser
intensity fluctuations by careful balancing. The fluctua-
tions ∆(i1 − i2) above 20 MHz are amplified by a tran-
simpedance amplifier (Analog Devices AD8015) followed
by two wideband RF gain blocks (Mini Circuits MAR-
6). The entire amplifier chain has a calculated effective
transimpedance of Reff ≈ 540 ± 118 kΩ.

To ensure that the fluctuations at the amplifier out-
put are dominated by quantum noise, the spectral power
density is measured (see Fig. 2). With an optical power
of 3.1 mW received by each photodiode corresponding to
an average photocurrent I = 1.7 mA, we observe a noise
power of P = −53.5 dBm (at 75 MHz) in a bandwidth of
B = 1 kHz. This is about 1.5 dB lower than the theoret-
ically expected shot noise value (dashed trace)

P =
4eIBReff

2

Z
≈ −52 dBm , (1)

where e is the electron charge and Z = 50 Ω the load
impedance.35 The difference is compatible with uncer-
tainties in determining the transimpedance of the ampli-
fier. The measured total noise has a relatively flat power
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FIG. 3. Autocorrelation of the total noise signal sampled at
60 MHz, computed over 109 samples (solid line), compared
with the 2σ confidence level (dashed line).

density in the range of 20 to 120 MHz, with high pass fil-
ters in the circuit suppressing low frequency fluctuations.
The high end of the pass band is defined by the cutoff
frequency of the amplifier. To illustrate the effectiveness
of removing classical noise in the photocurrents, the spec-
tral power density of the photocurrent generated from a
single diode is also shown. Strong spectral peaks at var-
ious radio frequencies appear to enter the system prob-
ably via the laser diode current. For completeness, the
spectral power density of the electronic noise is recorded
without any optical input and found to be at least 10 dB
below the total noise level, i.e., the total noise is domi-
nated by quantum fluctuations.

The amplified total noise is digitized into signed 16 bit
words xi at a sampling rate of 60 MHz with an analog
to digital converter (ADC, Analog Devices AD9269-65).
The sampling rate is lower than the cut-off frequency of
the noise signal to avoid temporal correlation between
samples. As shown in Fig. 3, the normalized autocorre-
lation

A(d) = 〈xi xi+d〉n/〈x2
i 〉n (2)

evaluated over n = 109 samples shows that the abso-
lute value of the autocorrelation |A(d)| for non-zero de-
lay (d > 0) is below 1.2× 10−3, which is slightly smaller
than what has been observed in other experiments.23,36,37

The residual correlation above the 2σ confidence level for
d <∼ 60 is a consequence of the finite bandwidth of the
signal, as stated by the Wiener-Khinchin theorem.

III. ENTROPY ESTIMATION

The total noise measured before the ADC contains
both quantum and electronic noise. To determine how
much randomness from non-classical origin can be safely
extracted, it is necessary to estimate the entropy H(Xq)
contributed by the quantum process.

Therefore, we assume that the measured total noise
signal Xt = Xq + Xe is the sum of independent ran-
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FIG. 4. Probability distribution of the measured total noise
with variance σt

2 (a), electronic noise with variance σe
2 (b),

and the estimated quantum noise with variance σq
2 (c). The

filled areas in (a), (b) show the actual measurements over 109

samples, the solid lines fit to Gaussian distributions.

dom variables Xq for the quantum noise, and Xe for the
electronic noise which includes the photodetector, am-
plifier and digitizer noise22,37. All three variables Xq,
Xe and Xt are assumed to have discrete values between
−215 and 215 − 1. We take the worst case scenario that
an adversary has full knowledge of the electronic noise,
i.e., is able to predict the exact outcome of Xe at any
moment. In this case, the amount of quantum-based
randomness in the acquired total noise signal is quanti-
fied by the conditional entropy H(Xt|Xe), i.e., the en-
tropy in the total signal, given full knowledge of the
electronic noise Xe. As the variables are assumed to
be additive and independent, the conditional entropy is
H(Xt|Xe) = H(Xq +Xe|Xe) = H(Xq|Xe) = H(Xq).

The variance of the total noise, σ2
t , is given by the sum

of the variances σ2
q for the quantum noise, and σ2

e for the

electronic noise. Over 109 samples, we find σt = 4504.41
and σe = 1481.8, measured with the laser switched off
(see Fig. 4). Note that for the total noise, the observed
distribution is slightly skewed compared to a Gaussian
distribution [solid line in Fig. 4(a)], possibly due to a
distortion in the digitizer. Assuming the quantum noise
Xq has a Gaussian distribution33, we would assign a vari-
ance σ2

q = σ2
t − σ2

e ≈ 4253.72. To estimate the entropy
for a Gaussian distribution, we use the Shannon entropy

HS(Xq) =

215−1∑
x=−215

−pq(x) log2 pq(x) , (3)

where pq(x)is the probability distribution of the quantum
noise Xq. Since σq � 1, HS(Xq) can be well approxi-
mated by

+∞∫
−∞

−f(x) log2 f(x) dx = log2(
√

2πe σq) , (4)

01 1 100
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FIG. 5. Schematic of a LFSR-based randomness extractor.
Eight bits (from the shaded positions) are extracted for every
16 bits of input.

where f(x) is a Gaussian probability density function
with variance σ2

q , and e the base of the natural loga-

rithm38. This yields 14.1 bits of entropy per 16 bit sam-
ple. We also evaluate the min-entropy of this distribu-
tion,

H∞(Xq) = − log2(max[pq(x)]) ≈ log2(
√

2πσq) , (5)

where max[pq(x)]is the maximum value of the probability
distribution of Xq. This yields a min-entropy of 13.4 bits
per 16 bit sample.

The Shannon entropy HS(Xq) serves as an upper
bound of extractable randomness, while the min-entropy
sets a lower bound, i.e. the least amount of randomness
possessed by each sample. An alternative estimation of
the entropy in Xq assumes that electronic noise is not
only known to a third party, but also could be tampered
with19,36,39.

IV. RANDOMNESS EXTRACTION

In many applications, random numbers are required to
be not only unpredictable, but also uniformly distributed.
As such, the raw ADC output cannot be directly
used. Randomness extractors convert non-uniformly dis-
tributed raw data into a uniformly distributed binary
stream without correlations40. Although there is no
deterministic universal randomness extractor40, various
practical implementations have been reported. Examples
are Trevisan’s extractor, a Toeplitz hashing extractor37,
random matrix multiplications22,41, or a family of secure
hashing algorithms (SHA)18.

In this work, we use a randomness extractor based on
a Linear Feedback Shift Register (LFSR) as shown in
Fig. 5, equivalent to a cyclic redundancy check (CRC)42.
The LFSRs are well known for generating long pseudo-
random streams with little computational resources, and
are in widespread use in communication applications for
spectrum whitening43–47.

We use a maximum length LFSR with 63 cells and a
two-element feedback path. Its state at any time t is a
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row vector St of 63 bits, with a recursion relation

St+1 = StM +Rt (6)

=
(
s0, s1, s2, · · · s62

)


0 0 · · · 0 1
1 0 · · · 0 1
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0


+
(
0, 0, 0, · · · 0, rt

)
=
(
s1, s2, s3, · · · s62, s0 + s1 + rt

)
,

where an elementary addition represents a binary xor,
and a multiplication a binary and operation.

The 63×63 matrix M represents the shift and feedback
operation on the LFSR state. The addition of row vector
Rt describes the injection of one raw random bit rt into
St. After n cycles, the LFSR state becomes

St+n = StM
n +RtM

n−1 + · · ·+Rt+n−1︸ ︷︷ ︸
A

. (7)

Row vector A can be expressed as a matrix product

A =
(
rt, rt+1, · · · , rt+n−1

)
T , (8)

with

T =


S′Mn−1

S′Mn−2

...
S′I

 , S′ =
(
0, 0, · · · 0, 1

)
. (9)

Matrix T in (9) is a 63 × 63 Toeplitz matrix with rows
generated from a LFSR sequence (6) with Rt = 0 and
initial state St = S′. It was shown that multiplying an
input stream by such a Toeplitz matrix can be used as a
hashing function that generates an almost-uniform out-
put43.

In our setup, we serially inject the 16 bits from each
ADC output word into the LFSR, but extract only 8 bits
si provided by stream St (at positions 62, 60, · · · 48 after
the injection) in a parallelized topology. This is equiva-
lent to a privacy amplification process48, and ensures that
no residual correlations due to the non-uniform input dis-
tribution or any classical noise that may be known to an
adversary are present in the output stream, because the
extraction ratio of 50% is lower than the 13.4/16 ≈ 84%
allowed by the min entropy (5).

A merit of this extractor is its low complexity. Unlike
many other secure hashing algorithms, it can be easily
implemented either in high speed or low power technol-
ogy. Therefore, the extraction process does not limit the
random number generation rate. This scheme can be par-
allelized using 126 regsiter cells, capable of receiving up
to 63 injected raw bits per clock cycle while still following
the extractor equation (6). With a CPLD operating at
a clock frequency of 400 MHz, this algorithm would be
able to process up to 25× 109 raw input bits per second.
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FIG. 6. Distribution of random data before (blue) and after
(red) the randomness extractor, shown in time domain (left)
and histogram (right).

V. PERFORMANCE

To evaluate the quality of the extracted random num-
bers, we apply two suites of randomness tests: the statis-
tical test suite from NIST49, and the “Die-harder” ran-
domness test battery50. The output of our RNG passed
both tests consistently when evaluated over a sample of
400 Gigabit in the sense that occasional weak outcomes
of some tests do not repeat.

Our implementation has an output rate of about
480 Mbit/s of uniformly distributed random bits, with
the digitizer unit sampling at 60 MHz and randomness
extraction ratio of 50%; this is limited by the speed of
the data transmission protocol (USB2.0). While sig-
nificantly higher generation rates have been reported
recently17,23,25, our design in comparison is simpler both
in hard- and software implementation. With moderate
effort, our random number generation rate can be greatly
increased by extending the bandwidth of the photodi-
odes, amplifiers, and digitizer devices, while maintain-
ing the relatively simple randomness extraction mecha-
nism. Practically, the resolution-bandwidth product of
the ADC limits the random bit generation rate.
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VI. CONCLUSION

In summary, we demonstrated a random number gen-
eration scheme by measuring the vacuum fluctuations of
the electromagnetic field. By estimating the amount of
usable entropy from quantum noise and using an effi-
cient randomness extractor based on a linear feedback
shift register, we can generate uniformly distributed ran-
dom numbers at a high rate from a fundamentally un-
predictable quantum measurement.
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