\relax \newlabel{FirstPage}{{}{1}{}{}{}} \@writefile{toc}{\contentsline {title}{A Hands-On Quantum Cryptography Workshop For Pre-University Students}{1}{}} \@writefile{toc}{\contentsline {abstract}{Abstract}{1}{}} \citation{qkdreview} \citation{rsa} \citation{niel} \citation{bb84proof,bb84proof2} \citation{bb84} \citation{nocloning,eprdevices} \citation{ekert} \citation{entg} \citation{bell} \citation{exp1,exp2,exp3} \citation{momentum,brazildemo,choco,entangleme,interactivesims,interactivetuts} \citation{bb84} \citation{bb84proof} \citation{diamanti2016practical} \citation{bennett1992experimental} \citation{Hwang2003decoystate} \@writefile{toc}{\contentsline {section}{\numberline {I}Introduction}{2}{}} \@writefile{toc}{\contentsline {section}{\numberline {II}BB84 Protocol With a Twist}{3}{}} \newlabel{sec:bb84}{{II}{3}{}{}{}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Summary of the BB84 protocol. Alice generates a random sequence $A$ of bits to send over the quantum channel. For each bit, she chooses a basis $X$ to transmit a photon with the corresponding polarization (figure top-left) to Bob. For every photon Bob receives, he randomly chooses a basis $Y$ to measure the photon's polarization (figure top-right). After transmitting the entire sequence $A$, Alice sends her basis sequence $X$ to Bob using the classical channel. If Bob chooses the same basis as Alice for a particular photon ($X = Y$), Bob should measure the same polarization and he can accurately infer the value of Alice's bit. Alice and Bob keep only the bits corresponding to photons that were prepared and measured with the same basis, resulting in an identical bit sequence for both parties that they can utilize for encryption. }}{4}{}} \newlabel{figure:bb84}{{1}{4}{}{}{}} \@writefile{toc}{\contentsline {section}{\numberline {III}\textbf {Experimental Implementation}}{5}{}} \newlabel{sec:implementation}{{III}{5}{}{}{}} \citation{github} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces BB84 setup (quantum channel): Alice encodes a string of bits using different linear polarization choices -- created using a pulsed laser source, quarter-wave plate (QWP) and a rotatable polarizer (RP). Bob projects Alice's photons into different polarization bases, and measures the corresponding intensity with a photodetector (PD).\newline Classical channel: Using infrared transceivers (IR-TR), Alice and Bob communicate the matched bases and the encrypted message.\newline Side-channel attack (SCA): Using a beam splitter (BS), Eve splits off Alice's photons and measures them in two different bases simultaneously. She also intercepts the matched bases and encrypted message using her IR receiver from the classical channel. }}{6}{}} \newlabel{figure:setup}{{2}{6}{}{}{}} \citation{footnote1} \citation{footnote2} \citation{entropy} \citation{footnote3} \citation{footnote4} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces BB84 setup as implemented in the workshop. Optical components for the quantum channel were placed and aligned on small optical breadboards on top of short wooden tables -- the beam height was below eye level to ensure safety. Students are seated in a diamond configuration enclosing the setup, preventing accidental misalignment. The dashed line indicates the laser beam path. }}{7}{}} \newlabel{figure:student_setup}{{3}{7}{}{}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {A}Quantum Channel}{7}{}} \citation{irremote} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Schematic of the quantum channel. Alice transmits a series of polarized light pulses to Bob -- created using a laser diode, a quarter-wave plate (QWP) and a motorized polarizer. Bob projects the incoming states with his motorized polarizer and measures its intensity with a photodetector. The motors and laser diode are operated via the digital output on the microcontroller (DIG pins), while the photodiode readout is recorded by the analog-to-digital converter (ADC) on the microcontroller (A pins). QWP: Quarter-wave plate. GND: Ground connection. }}{8}{}} \newlabel{figure:quantum_setup}{{4}{8}{}{}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {B}Classical Channel}{8}{}} \newlabel{sec:classical}{{III\tmspace +\thinmuskip {.1667em}B}{8}{}{}{}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces The quantum setup of Alice (top) and Bob (bottom). The laser beam path is provided as a guidance. }}{9}{}} \newlabel{figure:quantum_pict}{{5}{9}{}{}{}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Schematic of the classical channel. A series of IR pulses enables Alice and Bob to communicate with each other. This enables them to exchange classical information e.g. basis choices, encrypted messages. Information, encoded as binary strings, is translated into pulse sequences. A microcontroller uses the pulse sequences to switch the state of an IR LED to transmit the message. An IR receiver detects the pulses and decodes it with a microcontroller. }}{9}{}} \newlabel{figure:classical_setup}{{6}{9}{}{}{}} \citation{footnote_extra} \citation{footnote5} \citation{bellovin} \@writefile{lof}{\contentsline {figure}{\numberline {7}{\ignorespaces Top: IR transmitter and receiver circuits are assembled on a solderless electrical breadboard. Bottom: The circles indicate Alice and Bob's IR transceiver circuits, while the arrow indicates the location of Eve's IR receiver. The spatial mode of the IR LED has a relatively large solid angle. }}{10}{}} \newlabel{figure:classical_pict}{{7}{10}{}{}{}} \citation{footnote6} \citation{footnote7} \citation{duda2012pattern} \@writefile{toc}{\contentsline {subsection}{\numberline {C}Building and applying the encryption key}{11}{}} \newlabel{sec:encryption}{{III\tmspace +\thinmuskip {.1667em}C}{11}{}{}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {D}Hacking the key distribution protocol}{11}{}} \newlabel{sec:hack}{{III\tmspace +\thinmuskip {.1667em}D}{11}{}{}{}} \citation{qcamp} \citation{sixquantum} \@writefile{lof}{\contentsline {figure}{\numberline {8}{\ignorespaces Four identified clusters of signal voltages measured by Eve's dual photodiodes 1 and 2 that measure light intensity after projecting the incoming polarization in two different basis (see Fig.\nobreakspace {}2{}{}{}\hbox {}). Each cluster represents a polarization state intercepted in the quantum channel and are arbitrarily assigned A, B, C, D. Each polarization state represents H, V, D or A sent from Alice to Bob. By assigning the correct polarization state through trial and error, Eve is able to derive the transmitted key. This is done via obtaining intelligible messages by decoding the ciphers transmitted through the classical channel. }}{12}{}} \newlabel{figure:kmeans}{{8}{12}{}{}{}} \@writefile{toc}{\contentsline {section}{\numberline {IV}The learning experience}{12}{}} \citation{handson} \citation{ryan} \citation{momentum} \citation{brazildemo} \citation{brazildemo} \@writefile{toc}{\contentsline {subsection}{\numberline {A}Planning considerations}{13}{}} \citation{github} \citation{cogconflict,cogconflict2} \citation{diqkd,diqkd2} \citation{blackpaper} \@writefile{toc}{\contentsline {subsection}{\numberline {B}Learning objectives}{14}{}} \@writefile{lof}{\contentsline {figure}{\numberline {9}{\ignorespaces Eve is revealed -- students are discussing in the debriefing session. }}{15}{}} \newlabel{figure:debrief}{{9}{15}{}{}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {C}Student's roles}{15}{}} \newlabel{sec:sturole}{{IV\tmspace +\thinmuskip {.1667em}C}{15}{}{}{}} \@writefile{toc}{\contentsline {subsection}{\numberline {D}Students feedback}{16}{}} \newlabel{sec:feedback}{{IV\tmspace +\thinmuskip {.1667em}D}{16}{}{}{}} \citation{streamcipher} \@writefile{lot}{\contentsline {table}{\numberline {I}{\ignorespaces Workshop feedback aggregated from 59 pre-university students.}}{17}{}} \newlabel{tab:response}{{I}{17}{}{}{}} \@writefile{toc}{\contentsline {section}{\numberline {V}Conclusion}{17}{}} \citation{prng_mt,prng_python} \citation{footnote_apdx1} \citation{mt_hack} \citation{cryptmt,othersc} \citation{footnote_apdx2} \citation{cryptobook} \@writefile{toc}{\contentsline {section}{\numberline {}A. Encryption of Long Messages}{18}{}} \@writefile{toc}{\contentsline {section}{\numberline {}B. Cost and components}{18}{}} \bibcite{qkdreview}{{1}{}{{}}{{}}} \bibcite{rsa}{{2}{}{{}}{{}}} \@writefile{toc}{\contentsline {section}{\numberline {}Acknowledgments}{19}{}} \@writefile{toc}{\contentsline {section}{\numberline {}References}{19}{}} \bibcite{niel}{{3}{}{{}}{{}}} \bibcite{bb84proof}{{4}{}{{}}{{}}} \bibcite{bb84proof2}{{5}{}{{}}{{}}} \bibcite{bb84}{{6}{}{{}}{{}}} \bibcite{nocloning}{{7}{}{{}}{{}}} \bibcite{eprdevices}{{8}{}{{}}{{}}} \bibcite{ekert}{{9}{}{{}}{{}}} \bibcite{entg}{{10}{}{{}}{{}}} \bibcite{bell}{{11}{}{{}}{{}}} \bibcite{exp1}{{12}{}{{}}{{}}} \bibcite{exp2}{{13}{}{{}}{{}}} \bibcite{exp3}{{14}{}{{}}{{}}} \bibcite{momentum}{{15}{}{{}}{{}}} \bibcite{brazildemo}{{16}{}{{}}{{}}} \bibcite{choco}{{17}{}{{}}{{}}} \bibcite{entangleme}{{18}{}{{}}{{}}} \bibcite{interactivesims}{{19}{}{{}}{{}}} \bibcite{interactivetuts}{{20}{}{{}}{{}}} \bibcite{diamanti2016practical}{{21}{}{{}}{{}}} \bibcite{bennett1992experimental}{{22}{}{{}}{{}}} \bibcite{Hwang2003decoystate}{{23}{}{{}}{{}}} \bibcite{github}{{24}{}{{}}{{}}} \bibcite{footnote1}{{25}{}{{}}{{}}} \bibcite{footnote2}{{26}{}{{}}{{}}} \bibcite{entropy}{{27}{}{{}}{{}}} \bibcite{footnote3}{{28}{}{{}}{{}}} \bibcite{footnote4}{{29}{}{{}}{{}}} \bibcite{irremote}{{30}{}{{}}{{}}} \bibcite{footnote_extra}{{31}{}{{}}{{}}} \bibcite{footnote5}{{32}{}{{}}{{}}} \bibcite{bellovin}{{33}{}{{}}{{}}} \bibcite{footnote6}{{34}{}{{}}{{}}} \bibcite{footnote7}{{35}{}{{}}{{}}} \bibcite{duda2012pattern}{{36}{}{{}}{{}}} \bibcite{qcamp}{{37}{}{{}}{{}}} \bibcite{sixquantum}{{38}{}{{}}{{}}} \bibcite{handson}{{39}{}{{}}{{}}} \bibcite{ryan}{{40}{}{{}}{{}}} \bibcite{cogconflict}{{41}{}{{}}{{}}} \bibcite{cogconflict2}{{42}{}{{}}{{}}} \bibcite{diqkd}{{43}{}{{}}{{}}} \bibcite{diqkd2}{{44}{}{{}}{{}}} \bibcite{blackpaper}{{45}{}{{}}{{}}} \bibcite{streamcipher}{{46}{}{{}}{{}}} \bibcite{prng_mt}{{47}{}{{}}{{}}} \bibcite{prng_python}{{48}{}{{}}{{}}} \bibcite{footnote_apdx1}{{49}{}{{}}{{}}} \bibcite{mt_hack}{{50}{}{{}}{{}}} \bibcite{cryptmt}{{51}{}{{}}{{}}} \bibcite{othersc}{{52}{}{{}}{{}}} \bibcite{footnote_apdx2}{{53}{}{{}}{{}}} \bibcite{cryptobook}{{54}{}{{}}{{}}} \bibdata{mainNotes} \bibstyle{apsrev4-1} \citation{REVTEX41Control} \citation{apsrev41Control} \providecommand\NAT@force@numbers{}\NAT@force@numbers \newlabel{LastBibItem}{{54}{24}{}{}{}} \newlabel{LastPage}{{}{24}{}{}{}}