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Collective measurements on large quantum systems together with a majority voting strategy can
lead to a violation of the CHSH Bell inequality. In presence of many entangled pairs, this violation
decreases quickly with the number of pairs, and vanishes for some critical pair number that is a
function of the noise present in the system. Here, we show that a different binning strategy can lead
to a more substantial Bell violation when the noise is sufficiently small. Given the relation between
the critical pair number and the source noise, we then present an experiment where the critical
pair number is used to quantify the quality of a high visibility photon pair source. Our results
demonstrate nonlocal correlations using collective measurements operating on clusters of more than
40 photon pairs.

I. INTRODUCTION

The ability of detecting single quanta, already devel-
oped for some decades, is a crucial feature of experi-
mental quantum technologies, and the whole thinking
in quantum information science usually relies on it [1].
This notwithstanding, recent studies have considered sit-
uations in which single-quanta control and detection is
not available. For instance, in many-body systems mea-
surements are performed collectively – the same measure-
ment is applied to all particles and the outcome produced
is extensive in the system size – so single quanta identifi-
cation is lost. It is also common in such systems to have
only access to few-body correlators, in which case single-
quanta resolution is also lost [2]. Another example where
single-quanta detection is not available is when quantum
light is detected by biological systems [3–6].

Prompted by interest in these systems, it is relevant
to study what happens to the violation of Bell’s inequal-
ities. Several restrictions have been highlighted in the
limit of large numbers of particles. For instance, Bell
inequalities can’t be violated if only few-body collective
observables are measured [7], unless one adds assump-
tions [8, 9]. In a many-pair scenario, high-order collective
measurements are also unable to lead to a Bell violation
as soon as some realistic coarse-graining is present [10].
At the same time, it is also known that the ability to ad-
dress single quanta is not necessary for violating a Bell
inequality where n particles are subjected to collective
measurement processed through majority voting [11]. In
this case, however, the observed violation is known to
decrease quickly as a function of the number of particles.

In this paper, we show that substantial violation can
be obtained in presence of collective measurements for
an arbitrary number of particles by using a parity bin-
ning strategy. We discuss the resistance to noise of this
Bell violation as a function of the number of measured
particles n and compare it with the one obtained in the
previous approach. In each case we find that the maximal

cluster size nc for which a Bell violation can be obtained
is sensitive to experimental imperfections and proves to
be a good figure of merit to certify the quality of a high
visibility source [12–14] From this insight, we perform
a proof-of-principle experiment using a very high quality
source of photon pairs and demonstrate non-local correla-
tions with collective measurements operating on clusters
of up to 41 photon pairs.

II. THEORY

A. The many-pair scenario

Consider a source that produces n independent pairs of
correlated particles – in particular, particles belonging to
different pairs are a priori distinguishable [11]. One par-
ticle of each pair is sent to party Alice, the other to party
Bob. Each party submits all its n particles to the same
single-particle measurement, labeled x for Alice and y for
Bob. Alice’s (Bob’s) particle from the i-th pair returns
the outcomes aixy (bixy).

We focus on the case where each party performs two
measurements (x, y ∈ {1, 2}) and the single-particle out-
come is binary (a, b ∈ {0, 1}). The correlations observed
in this scenario are nonlocal if and only if they violate a
Bell inequality for two inputs and 2n outputs. For a given
correlation, locality can be checked by a linear program,
but the hope of completely solving the local polytope for
large n is slim, since the full list of inequalities is already
unknown for n = 2 [15, 16]. The number of liftings (that
is, loosely speaking, the number of different versions) of
CHSH alone is exponential in 2n.

We consider a family of measurements indexed by a
single angle β as follows:

A1 = σz, A2 = cos(2β)σz + sin(2β)σx

B1 = cosβ σz + sinβ σx, B2 = cosβ σz − sinβ σx.
(1)
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When applied to the Werner state

ρ = V |ψ−〉 〈ψ−|+ (1− V )I/4 , (2)

where |ψ−〉 = 1√
2
(|01〉 − |10〉) is the maximally entan-

gled state of two qubits, the statistics of a single pair are
described by the correlators

E11 = E12 = E21 = V cosβ , E22 = V cos(3β) (3)

where Exy = Prob(axy = bxy) − Prob(axy 6= bxy), and
uniformly random marginals.

So far, no assumption has been made, but now we
assume that each party is not able to observe the entire
string of outcomes, but only their sum:

axy =

n∑
i=1

aixy , bxy =

n∑
i=1

bixy (4)

with axy, bxy ∈ {0, 1, ..., n}. In other words, in a Stern-
Gerlach picture, each party can count how many particles
take each port, but is unable to sort out which of her
particles was correlated with which of the other party’s.

To simplify the test for Bell violation, we introduce a
processing of the data so that axy → a′xy and bxy → b′xy,
with a′xy, b

′
xy ∈ {+1,−1}, bringing us back to a two-input

and two-output scenario, in which the only relevant Bell
inequality is the CHSH inequality

Sn = E
(n)
11 + E

(n)
12 + E

(n)
21 − E

(n)
22 ≤ 2 , (5)

where E
(n)
xy = Prob(a′xy = b′xy) − Prob(a′xy 6= b′xy). If

the correlations of the primed variables violate CHSH,
certainly those of the original unprimed variables violated
some Bell inequality (surely the corresponding lifting of
CHSH [17]). Of course, information has been lost in the
binning, so the converse is not true.

Specifically, we consider two such local binnings, ma-
jority vote and parity. For each of them, we estimate a
lower bound on the Werner state visibility, V as a func-
tion of the number of pairs n at which a violation is
observed.

B. Majority vote

The first binning, majority vote, is obtained by com-
paring the observed output to a fixed threshold t = n/2.
If the outcome is larger than t, we produce ‘+1’, other-
wise we produce ‘-1’, i.e.

a′xy = sign(axy − t). (6)

Previous numerical studies suggest that the violation
(with optimized measurement setting) of CHSH after
such binning decreases roughly as ∼ 1/

√
n when n is

growing. For n . 65, one may numerically compute the
minimal visibility for each n for which violation is possi-
ble,

V maj(n) ' 1− 0.5690

n
+

0.2763

n2
. (7)

For instance, a violation with n = 21 pairs of Werner
states requires a visibility V ≥ 97.35% [18]; a visibility
V ≥ 99.12% still achieves a violation until n = 64 pairs.

C. Parity binning

Let us now consider the parity binning:

a′xy = (−1)axy (8)

and similarly for Bob. Recalling (4), the bipartite corre-

lator E
(n)
xy = 〈a′xyb′xy〉 is

E(n)
xy = 〈(−1)

∑
i a

i
xy × (−1)

∑
i b

i
xy 〉

= 〈
∏
i

(−1)a
i
xy+b

i
xy 〉 = (Exy)n.

(9)

Remarkably, in absence of noise, the CHSH inequality
can be significantly violated for arbitrarily large n. In-
deed, the single-box correlators (3) for V = 1 lead to

Sn = 3 cosn β − cosn(3β). (10)

Choosing β = β0√
n

, we find Sn
n→∞−−−−→ 3e−β

2
0/2 − e−9β2

0/2

whose maximum is S∞ = 8 · 3−9/8 ' 2.32 obtained for
β0 =

√
ln 3/2 ' 0.524.

This asymptotic violation S∞ > 2 disappears with the
least amount of white noise, since Sn(V ) = V nSn(V =

1)
n→∞−−−−→ 0 for any V < 1. Nevertheless, for every n there

exist a critical visibility Vc(n), such that violation will be
observed if V > Vc(n). The condition Sn ' 8·3−9/8V n '
8 · 3−9/8(1− n(1− V )) = 2 gives

V parity(n) ' 1− 1− 39/8/4

n
' 1− 0.14

n
. (11)

This expression, as opposed to Eq. (7), is not a numerical
guess, but an analytic approximation in the high visibility
regime. A violation with n = 4 pairs requires a visibility
higher than V ≥ 97%; a visibility V ≥ 99% produces a
violation with at least n = 14 pairs.

Comparing parity binning with majority vote, we have
noticed that the latter tolerates smaller values of V inso-
far as the possibility of violation is concerned. However,
the amount of violation is different in both cases: for
majority vote, the violation quickly decreases with the
number of pairs as ∼ 1/

√
n, whereas it only decreases

linearly ∼ V0 − βn in the parity case. Therefore, for V
high enough, parity may exhibit higher violations for the
same values of n. This behaviour starts at V & 99.4%
(see Appendix A, Fig. 5).

III. EXPERIMENT

A. Experimental setup

In our experiment (see figure 1), the output of a
grating-stabilized laser diode (LD, central wavelength
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FIG. 1. Schematic of the experimental set-up. Polarization
correlations of entangled-photon pairs are measured by the
polarization analyzers MA and MB , each consisting of a half
wave plate (λ/2) followed by a polarization beam splitter
(PBS). All photons are detected by Avalanche photodetec-
tors DH and DV , and registered in a coincidence unit (CU).

405 nm) passes through a single mode optical fiber (SMF)
for spatial mode filtering, and is focused to a beam waist
of 80µm into a 2 mm thick BBO crystal cut for type-II
phase-matching. There, photon pairs are generated via
spontaneous parametric down-conversion (SPDC) in a
non-collinear configuration, with a half-wave plate (λ/2)
and a pair of compensation crystals (CC) to take care
of the temporal and transversal walk-off [18]. Two spa-
tial modes (A, B) of down-converted light, defined by
the SMFs for 810 nm, are matched to the pump mode to
optimize the collection [19]. In type-II SPDC, each down-
converted pair consists of an ordinary and extraordinarily
polarized photon, corresponding to horizontal (H) and
vertical (V ) polarization in our setup. Polarization con-
trollers (PC) minimize the polarization transformation
caused by the SMFs to the collected modes.

One of the CC is tilted to adjust the phase be-
tween the two decay possibilities, obtaining an output
state very close to the singlet polarization Bell state
|ψ〉 = 1/

√
2 (|H〉A |V 〉B − |V 〉A |H〉B).

In the polarization analyzers (inset of figure 1), pho-
tons from SPDC are projected onto the linear polariza-
tions necessary for the Bell tests by λ/2 plates, set to
half of the analyzing angles θA(B), and polarization beam
splitters with extinction ratios of 1/2000 and 1/200 for
transmitted and reflected arms. Photons are detected by
avalanche photo diodes (APD), and corresponding detec-
tion events from the same pair identified by a coincidence
unit if they arrive within ≈ ±3 ns of each other.

The quality of polarization entanglement is assessed in
the traditional way via the polarization correlations in
a basis complementary to the intrinsic HV basis of the
crystal. With interference filters (IF) of 5 nm bandwidth
(FWHM) centered at 810 nm, we observe a visibility V45
= 98.68±0.20% in the 45◦ linear polarization basis. In
the natural H/V basis of the type-II down-conversion
process, the visibility reaches VHV = 99.67±0.12%.

Non perfect symmetry of the collection modes can lead
to “colored” noise, i.e. photon pairs that show anti-

correlation only in a specific measurement basis [20], re-
ducing the quality of the state. In a previous experi-
ment [12], we have already estimated the very high qual-
ity of the state generated by this source. The non-ideal
visibility is due to the non-perfect neutralization of the
polarization rotation caused by the SM fibers. This af-
fects the outcome of the violation observed, as we discuss
more in details later.

B. Measurement and Post-processing

In this proof of principle experiment, we did not aim
for a loophole-free demonstration. Due to the limited effi-
ciency of the APD detectors and the source geometry, we
assume that the detected photons are a fair sample of the
entire ensemble. Similarly, even though Alice and Bob
are not space-like separated, we assume that no commu-
nication happens between measurements on both sides.
Moreover, the basis choice is not random, as necessary
for a Bell test. Instead, we set the basis and record the
number of events in a fixed time. Based on or experience
with the setup, we assume that the state generated by
the source and all the other parameters of the experiment
do not change significantly between experimental runs.

A single measurement run lasts 60 s, during which we
record an average of 16×103 coincidences between detec-
tors at Alice and Bob. A detection event at the transmit-
ted output of each PBS is associated with 0, at the re-
flected one with 1. We discard any two-fold coincidences
between detectors belonging to the same party, corre-
sponding to multiple pairs of photos generated within
the coincidence time window. From the detected sin-
gle rates, we calculate an expected rate for these events
of ≈ 8.9× 10−6 1/s.

To avoid a bias due to the asymmetries in detector
efficiencies, we record coincidences not only in a basis
(Aj , Bk), but also in three equivalent bases (Aj+45◦, Bk),
(Aj , Bk + 45◦), and (Aj + 45◦, Bk + 45◦). A rotation by
45◦ effectively swaps the roles of the transmitted and re-
flected detectors. Each party, when using such a rotated
basis, needs to invert the measurement outcome. We re-
peat these measurement sets for a range of β, and the
corresponding four bases defined by Eq. (1).

To replicate the many-box scenario, we organize the
sequence of results into clusters of size n for every set
of measurement angles. For each cluster we calculate
the majority (parity) binning using Eq. (6) (Eq. (9)).
Following the procedure in (5), we obtain a value of Sn
for every n of interest. To evaluate the error associated
to every Sn, the same procedure is repeated 1000 times,
shuffling the order of the results every time before the
clustering.
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FIG. 2. Majority processing for different n applied to the
data. The error bars are obtained from the bootstrapping
procedure indicated in the text. The continuous lines are ob-
tained numerically following section II B, with V = 0.9892.
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FIG. 3. Parity processing for different n applied to the data.
The error bars are obtained from the bootstrapping procedure
indicated in the text. The continuous lines are calculated
using Eq. (10) with V = 0.9871.

C. Discussion

The results of the measurement are reported in fig. 2
for the majority vote and fig. 3 for the parity binning.
We estimate nc in both cases by identifying the largest n
that still shows a violation of inequality (5) For the case
of majority vote, nmaj

c = 41. The continuous lines in fig. 2
are obtained numerically, using as input a Werner state
with V = V maj

c = 0.9892 (c.f. Eq. (7)). Since the white

noise of a Werner state corresponds to a worst-case sce-
nario (any source with colored noise, with V the minimal
visibility over all choices of bases, will perform at least
as well as the corresponding Werner state), the continu-
ous lines are a lower bound on the observed violation. In
fig. 3 we observe that this is true indeed from small values
of the angle β. Instead, for larger angles the experimen-
tal violation is smaller than the predicted lower bound.
This is due to a rotation of the measurement basis due
to the imperfect neutralization of the SM fibers. Due
to the specific alignment procedure, this rotation affects
the detected visibility more for larger angles, as indicated
by the relatively low V45 = 98.68±0.20% in the 45◦ lin-
ear polarization basis. Reproducing the exact violation
expected would require an extensive characterization of
the rotation induced by the fibers that would not add to
much to the present demonstration.

A similar procedure is applied to the parity binning.
In this case, we find nparityc = 12. The continuous lines of
fig. 3 were obtained using Eq. (10) with V parity

c = 0.9871
(c.f. Eq. (11)). Similar conclusions regarding the effect
of the imperfect neutralization of the SM fibers can be
drawn.

IV. CONCLUSION

We considered a many-pair scenario, where n identical
entangled pairs are produced and measured collectively,
and showed experimentally that a Bell inequality can be
violated in this scenario. The maximal number of pairs
for which a violation can be observed quantifies the high
quality of the pair source. In our experiment we report
a violation up to 41 pairs in presence of majority voting,
and 12 pairs in presence of parity bining. We also prove
analytically that a violation can be observed in presence
of collective measurement for any number pairs n, and
that this violation can remain significant for arbitrary n
in the noiseless limit.
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FIG. 4. Amount of Bell violation remaining in the parity case when considering n = nc/2 pairs.

Appendix A: Amount of Bell violation with parity binning

In the main text we discuss the relation between the number of pairs at which a Bell violation can still be observed,
for either majority of parity binning, and the quality of the source in terms of visibility V . The amount of Bell
violation that is obtained in the many-pair scenario when using a majority binning is described in [11]. Here we
analyse how the amount of Bell violation depends on the number of pairs in the case of parity binning and compare
it to the majority case. In particular, we show that its decreases more and more slowly as the visibility increases.

To see this, we consider the CHSH expression (10), together with the choice of setting

β =
β0√
n
, β0 =

√
ln(3)

2
. (A1)

As discussed in the main text, these settings give rise to a violation for a number of pairs smaller than

nc(V ) =
1− 39/8/4

1− V
. (A2)

We then estimate the sensibility of the Bell violation to the number of pairs by computing the amount of violation
that can still be observed when the number of pairs is half of the maximum possible number, i.e. n = nc/2. For this,
we define the ratio

R =
Sn(V, n = nc(V )/2)− 2

Sn(V, n = 1)− 2
. (A3)

This quantity is represented in figure 4. Interestingly, only a fraction of the initial violation is lost independently of
the visibility. The decrease in violation is thus linear in n.

Moreover, since the number of pairs considered here increases with the visibility, the Bell violation with parity
binning becomes less and less sensitive to the number of pairs as the visibility increases. This contrasts with the case
of majority voting, where the violation is upper-bounded by the case V = 1, which decays as ∼ 1/

√
n.

Given this qualitative difference between the Bell violation provided by the majority and parity binnings, one should
expect that the Bell violation provided by the parity binning would outperform the one provided by the majority
procedure for a sufficiently large visibility. From figure 5, we see that this cross-over occurs around V = 0.994.



7

10 20 30 40 50 60
n2.0

2.1

2.2

2.3

2.4

2.5
CHSH

10 20 30 40 50 60
n2.0

2.1

2.2

2.3

2.4

2.5
CHSH

10 20 30 40 50 60
n2.0

2.1

2.2

2.3

2.4

2.5
CHSH

10 20 30 40 50 60
n2.0

2.1

2.2

2.3

2.4

2.5
CHSH

10 20 30 40 50 60
n2.0

2.1

2.2

2.3

2.4

2.5
CHSH

10 20 30 40 50 60
n2.0

2.1

2.2

2.3

2.4

2.5
CHSH

Parity binning

Majority binning

V=0.993 V=0.994 V=0.995

V=0.996 V=0.997 V=0.9999

FIG. 5. CHSH violation achieved by the majority and parity binnings as a function of the source visibility V and number of
pairs n. For V < 0.994, the largest Bell violation is achieved by the majority strategy. For V > 0.994, the parity strategy
provides a large violation for a range of n.


