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Abstract

We present a technique to estimate the proportion of coherent emission in the light emitted by a

practical laser source without spectral filtering. The technique is based on measuring interferomet-

ric photon correlations between the output ports of an asymmetric Mach-Zehnder interferometer.

With this, we characterize the fraction of coherent emission in the light emitted by a laser diode

when transiting through the lasing threshold.
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I. INTRODUCTION

The invention of lasers can be traced to work describing the emission process of the

light from an atom to be spontaneous or stimulated [1]. An ensemble of atoms undergoing

stimulated emission will emit coherent light that has a well-defined phase, while spontaneous

emission will lead to randomly phased incoherent light [2]. Coherent light is at the core of

many applications, including interferometry [3], metrology [4], and optical communication.

The concepts of coherent and incoherent light also generated a fundamental interest in the

statistical properties of light sources, including light sources containing a mixture of coherent

and incoherent light [5–8].

In traditional models of macroscopic lasers [9–11], the emitted light is modeled to originate

dominantly from stimulated emission. These models predict a phase transition of the nature

of emission with increasing pump strength, separating two regimes where light emitted is

either spontaneous (below threshold), or stimulated (above threshold).

However, experiments on small lasers have shown that the transition from spontaneous

to stimulated emission is not abrupt [12–16]. Instead, light emitted from the laser can be

described as a mixture of spontaneous and stimulated emission across a transition range.

In these experiments, the transition from spontaneous to stimulated emission was char-

acterized by measuring the second-order photon correlation g(2), using a Hanbury-Brown

and Twiss scheme [17]. The measurement result can be explained using Glauber’s theory

of optical coherence [5], where incoherent light from spontaneous emission would exhibit

a “bunching” signature with g(2)(0) > 1, while coherent light from stimulated emission

exhibits a Poissonian distribution with g(2) = 1.

The “bunching” signature associated with incoherent light has a characteristic timescale

inversely proportional to its spectral width according to the Wiener-Khintchine theorem [18–

20]. In a practical measurement, the amplitude of the “bunching” signature scales with the

ratio of the characteristic timescale of the light to the timing response of the detectors [21].

Thus, when the spectral width of incoherent light is so broad that the characteristic timescale

of the “bunching” signature is smaller than the detector timing uncertainty, incoherent light

may exhibit g(2) ≈ 1, like coherent light.

To overcome the limited detector timing uncertainty, a narrow band of incoherent light

can be prepared with filters from a wide optical spectrum of an incoherent light source [22].
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The narrow spectral width of a filtered incoherent light has a correspondingly larger char-

acteristic coherence timescale, which may be long enough to be resolvable by the detectors.

However, for characterisingwhen characterizing the transition of a laser from spontaneous

to stimulated emission, such spectral filtering presents some shortcomings. First, as spec-

tral filtering discards light outside the transmission window of a filter, a result would be

inconclusive for the full emission of the source. Second, spectral filtering requires a priori

information or an educated guess of the central frequency and bandwidth of stimulated emis-

sion. Third, it has been shown that spectral filtering below the Schawlow-Townes linewidth

of the laser results in g(2)(0) > 1, similar to light from spontaneous emission [23].

Light emitted by a laser is also incoherent in multimode operation [24, 25], where a laser

may emit coherent light in multiple transverse and/or longitudinal modes. The light in

each mode may be coherent, but a combination of multiple modes may result in a randomly

phased light, and therefore appear incoherent.

This motivates the search for methods for quantifying the proportion of coherent light

emitted by a source without the need for spectral filtering. A method to characterize the

stimulated and spontaneous emission from a pulsed laser has been demonstrated before

[26, 27].

In this paper, we present a method to quantify bounds for the proportion of coherent

light for a continuous -wave laser. Specifically, we investigate the brightest mode of coherent

emission from a semiconductor laser diode by using interferometric photon correlations, i.e.,

a correlation of photoevents detected at the output ports of an asymmetric Mach-Zehnder

interferometer. Earlier methods of interferometric photon correlation measurements were

used to study spectral diffusion in organic molecules embedded in a solid matrix [28, 29].

The method of interferometric photon correlation we use here was originally applied to dif-

ferentiate between incoherent light and coherent light with amplitude fluctuations [30]. In

contrast to second-order photon correlations, this method can clearly distinguish between

finite -linewidth coherent light and broadband incoherent light through separable correlation

features [31]. These separable features have characteristic time constants inversely propor-

tional to the corresponding spectral widths of coherent and incoherent light components.

The fraction of coherent light is extracted from its associated correlation feature, which

decays over a characteristic timescale corresponding to the coherence time. This coherence

time is typically long enough to be easily resolved by the single photodetectors with a time
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FIG. 1. Experimental setup for measuring interferometric photon correlations. Light from

a laser diode enters an asymmetric Mach-Zehnder Iinterferometer. Single -photon avalanche

photodetectorsphotodiodes (APDs) at each output port of the interferometer generate photode-

tection events, which are time-stamped to extract the correlations numerically.

resolution below 1 ns. This method also allows us to obtain the spectral bandwidth of the

coherent component without a spectral filter. For the incoherent component, the spectral

feature is typically too wide to be detected in a time-domain photon correlation with limited

detector timing resolution. Nevertheless, we can use this method to extract the fraction of

coherent light emitted by the laser diode over a range of pump powers across the lasing

threshold.

II. INTERFEROMETRIC PHOTON CORRELATIONS

The setup for an interferometric photon correlation measurement g(2X) is shown in Fig. 1.

Light emitted by the laser diode is sent through an asymmetric Mach-Zehnder interferometer,

with a propagation delay Δ between the two paths of the interferometer that exceeds the

coherence time of the light.

With a light field E(t) at the input, the light fields at the output ports A,B of the

interferometer are

EA,B(t) =
E(t) ± E(t + Δ)

√
2

, (1)

with the relative phase shift π acquired by one of the output fields from the beamsplitter.

Using these expressions for the electrical fields, the temporal correlation of photodetection

events between the two output ports is given by

g(2X)(t2 − t1) =
〈E∗

A(t1)E
∗
B(t2)EB(t2)EA(t1)〉

〈E∗
A(t1)EA(t1)〉〈E∗

B(t2)EB(t2)〉
. (2)

ThereinHere, 〈〉〈 〉 indicates an expectation value. and/or an ensemble average. Using
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Eqn. Eq. (1), g(2X)(t2 − t1) can be grouped into several terms:

g(2X)(t2 − t1)=

=
1

4

[
〈E∗(t1)E

∗(t2)E(t2)E(t1)〉

+ 〈E∗(t1 + Δ)E∗(t2 + Δ)E(t2 + Δ)E(t1 + Δ)〉

+ 〈E∗(t1 + Δ)E∗(t2)E(t2)E(t1 + Δ)〉

+ 〈E∗(t1)E
∗(t2 + Δ)E(t2 + Δ)E(t1)〉

− 〈E∗(t1 + Δ)E∗(t2)E(t2 + Δ)E(t1)〉

− 〈E∗(t1)E
∗(t2 + Δ)E(t2)E(t1 + Δ)〉

]
.

(3)

The first two terms have the form of conventional second-order photon correlation func-

tions g(2)(t2 − t1). The next two terms are conventional second-order photon correlation

functions, time-shifted forward and backward in their argument by the propagation delay

Δ. The last two terms reduce g(2X), leading to a dip at zero time difference t2 − t1 = 0, with

a width given by the coherence time of the light.

The expectation values appearing in Eqn. Eq. (3) can be evaluated by using statistical

expressions [2] of E(t) for incoherent and coherent light [31].

For incoherent light, g(2X) exhibits a “bunching” signature peaking at time differences

±Δ, g(2X)(±Δ) = 1 + (1/4). At zero time difference, the expected “bunching” signature

from conventional second-order photon correlation functions in the first two terms , and the

dip from the last two terms of Eqn. Eq. (3) cancel each other, resulting in g(2X)(0) = 1.

For coherent light, the second-order photon correlation function g(2) = 1 combines with

the negative contributions from the last two terms of Eqn. Eq. (3) such that g(2X)(0) = 1/2.

As these negative contributions are related to the first-order coherence of the light source,

the shape of the dip can be used to obtain the spectral distribution of this light source

component through a Fourier transform.

III. FRACTION OF COHERENT LIGHT IN A MIXTURE

In order to obtain an interpretation of the nature of the light emitted beyond just pre-

senting the components of g(2X), we consider a light field that is neither completely coherent

nor incoherent. We assume that light emitted by the laser is a mixture of a coherent light
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FIG. 2. Combinations of g
(2)
unc(0) and g

(2X)
mix (0) that correspond to physical and real-valued ρ. In

shaded areas, no such solution exist. Inset: Zzoom into the region 1 ≤ g
(2)
unc(0) ≤ 2, where the

uncorrelated light source is assumed to be a mixture of coherent and completely incoherent light ,

and thermal light.

field Ecoh, and a light field Eunc uncorrelated to Ecoh. The nature of Eunc can be coherent, in-

coherent, or a coherent-incoherent mixture. As Eunc may also be a mixture of uncorrelated

coherent modes, Ecoh here represents the coherent mode in the mixture with the highest

intensity. In the following, we extract quantitative information about the components of

the light field from interferometric photon correlations g(2X), namely the fraction of optical

power in the brightest coherent component.

We model the light field mixture with an electrical field

Emix(t) =
√

ρEcoh(t) +
√

1 − ρEunc(t), (4)

where ρ is the fraction of optical power of the brightest coherent emission, and the respective

light field terms are normalized such that |Emix| = |Ecoh| = |Eunc|.

Evaluating photon correlation in Eqn. Eq. (3) with this light model, and further assum-

ing that first, the propagation delay in the interferometer is significantly longer than the

coherence time scale of the light source, and, second, the interferometer has good visibility

yields

g
(2X)
mix (0) = 2ρ −

3ρ2

2
+

(1 − ρ)2

2
g(2)
unc(0) (5)

at zero time difference, with only two remaining parameters, ρ and g
(2)
unc(0), the second -order

photon correlation of the uncorrelated field at zero time difference (see Appendix A).

The connection in Eqn. Eq. (5), together with the physical requirement 0 ≤ ρ ≤ 1 for the

fraction of coherent light, limits the possible combinations of g
(2)
unc(0) and g

(2X)
mix (0), shown as

non-shaded areas in Fig. 2; the exact expressions for the boundaries are given in Appendix

B.

We can now further assume that the uncorrelated light source generates some mixture of

coherent and completely incoherent light ([g(2)(0) = 1)], and thermal light ([g(2)(0) = 2)].



DIRECT MEASUREMENT OF THE COHERENT LIGHT ... 7

This constrains the second-order photon correlation of the uncorrelated light:

1 ≤ g(2)
unc(0) ≤ 2. (6)

We impose these bounds in Eqn. Eq. (5), and extract the bounds to the fraction of optical

power in the brightest coherent emission ρ with an upper bound,

ρ ≤
√

2 − 2 g(2X)(0), (7)

and a lower bound,

ρ ≥






1
2

+ 1
2

√
3 − 4 g(2X)(0), for 1

2
≤ g(2X)(0) ≤ 3

4

2 − 2 g
(2X)
mix (0), for 3

4
≤ g(2X)(0) ≤ 1,

, (8)

with g
(2X)
mix (0) ranging from 1/2 for fully coherent light, to 1 for fully incoherent light.

In practice, these two bounds for ρ are quite tight, and allow us to extract the fraction ρ

in an experiment with a small uncertainty.

IV. EXPERIMENT

In our experiment, we measure interferometric photon correlations of light emitted from

a temperature-stabilized distributed feedback laser diode with a central wavelength around

780 nm.

The setup is shown in Fig. 1. Interferometric photon correlations are obtained from an

asymmetric Mach-Zehnder interferometer, formed by 50:5050 : 50 fiber beamsplitters and

a propagation delay Δ of about 900 ns through a 180 -m -long single -mode optical fiber

in one of the arms. Photoevents at each output port of the interferometer were detected

with actively quenched silicon single -photon avalanche photo diodes (APDs). The detected

photoevents were time-stamped with a resolution of 2 ns for an integration time T .

The correlation function g(2X) is extracted through histogrammingby drawing a histogram

of all time differences t2 − t1 between detection event pairs in the interval T numerically,

which allows for a clean normalization.

The shape of the dip in g(2X) is related to the spectral line shape of the coherent light

through a Fourier transform. If we assume that the coherent light emitted by a laser has
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FIG. 3. Interferometric photon correlations g(2X) for different laser currents IL, extracted from a

histogram of photodetector time differences (green symbols). The error range at a specific time

bin indicates an expected uncertainty according to a Poissonian counting statistics. The black

solid linescurves show a fit to Eqn. Eq. (9), resulting in values for A (from top to bottom) of

−0.0006 ± 0.0003, 0.326 ± 0.008, and 0.455 ± 0.002, respectively.

FIG. 4. Measured laser power against laser current IL. The sharpest change is observed at

IT = 37 mA, indicating the threshold current (dashed line).

a Lorentzian line shape [32], the resulting correlation can be modeled by a two-sided expo-

nential function,

g(2X)(t2 − t1) = 1 − A ∙ exp

(

−
|t2 − t1|

τc

)

, (9)

where τc is the characteristic time constant of the coherent light, and A is the amplitude of

the dip. The value of g(2X)(0) is the extracted from the fit as 1 −A. Examples of measured

correlation functions and corresponding fits for different laser powers are shown in Fig. 3.

A. Transition from incoherent to coherent light

A transition from incoherent to coherent emission is expected as the laser current is

increased across the lasing threshold of the laser. We identify the lasing threshold of a laser

diode IT , by measuring the steepest increase of optical power with the laser current (Fig .

4). For our diode, we find IT = 37 mA.

To observe the transition from incoherent to coherent emission, we extract the fraction

ρ of optical power in the brightest coherent component in the light field at different values

of the laser current IL across the lasing threshold from measurements of g(2X) (Fig. 5, top

partpanel). The amplitude of the dip is extracted by fitting these correlations to Eqn. Eq.

(9), from which the upper bound and lower bound of ρ isare extracted (Fig. 5, middle

partpanel).

From the fit, ρ remains near 0 below threshold. Above the threshold, ρ increases quickly
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FIG. 5. Top: Iinterferometric photon correlations g(2X) for different laser currents IL. Middle:

Ccorresponding upper bound of fraction ρ of coherent light (red) extracted via Eqn. Eq. (C1),

and the lower bound (blue) extracted via Eqn. Eq. (C2) from g(2X)(0). The dip in ρ is a result

of emission at multiple chip modes as explained in Section. IVB. The inset shows the extracted

bounds for ρ at finer steps of laser current near the lasing threshold. Bottom: Ccoherence time of

coherent light τc extracted from g(2X). The dashed line indicates the threshold current IT = 37 mA.

with IL in a phase-transition manner, reaching ρ = 0.986 (90% confidence interval:, 0.982

to –0.989) at IL = 120 mA. This agrees with the expectation that the emission of the laser

diode is increasingly dominated by stimulated emission when driven with current above the

lasing threshold [33, 34].

The upper and lower bounds for ρ from Eqn. Eqs. (7) and (8) are quite tight even near

the lasing threshold, suggesting that the mixture model Eqn. equation (4) captures the

nature of the light through the phase transition well.

The coherence time of the coherent light τc can also be extracted fromby fitting g(2X)

measurements to Eqn. Eq. (9) (bottom Fig. 5, bottom panel). We observe that the coherence

time increases with the current after the threshold current, before reaching a steady value

between 300 toand 350 ns. The increase of coherence time corresponds to a narrowing of

the emission linewidth. This observation agrees with predictions from laser theory that line

narrowing is expected with increased pumping [34]. A small modulation of the coherence

time becomes visible for larger laser currents, with a periodicity of about 6 mA.

B. Light statistics near a mode hop

Above the threshold, the laser can oscillate at different longitudinal modes for different

laser currents. It is interesting to observe the presented method for extracting the fraction

of coherent emission near such a mode hop, where two coherent emission modes compete.

For this, the spectrum of light emitted by the laser diode was recorded at different laser

currents with an optical spectrum analyzer with a spectral resolution of 2 GHz (Bristol

771B-NIR). The laser diode emitted light into two distinct narrow spectral bands with a

changing power ratio in the laser current range between 49 mA and 52 mA. Outside this
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FIG. 6. Different chip modes of the laser diode are excited for different currents, resulting in a

reduction of the g(2X) signature in a mode competition regime. Top: Ppower ratios rα,β as a

function of current for the chip modes α and β around 780.07 nm (solid squares) and 780.34 nm

(hollowopen circles), respectively. Bottom: Uupper bound of the fraction ρ of coherent light (red)

from extracted via Eqn. Eq. (C1), and the lower bound (blue) extracted via Eqn. Eq. (C2) from

g(2X)(0).

window, only one of the modes could be identified. Below 49 mA, the laser emission was

centered around 780.07 nm, and above 52 mA it was centered around 780.34 nm.

The power fractions rα,β of these two chip modes α and β near the mode hop,

rα,β =
Pα,β

Pα + Pβ

, (10)

undergo a nearly linear transition (Fig. 6, top tracespanel).

We measured g(2X) in the same transition regime and extract ρ as described above (Fig.

6, bottom tracepanel). In the transition regime, ρ decreases when both chip modes are

present. This can be interpreted as coherent light in one emission band being uncorrelated

to coherent light in the other one, but we did not carry out a measurement that would test

for a phase relationship between the two modes.

V. CONCLUSION

We presented a method to extract the fraction of coherent light in the emission of a laser

by using interferometric photon correlations. As a demonstration, we analyzed light emitted

from a diode laser over a range of laser currents, and observe a continuously increasing

fraction of coherent light with increasing laser current above the lasing threshold. Applying

this technique to light emitted near a mode hop between longitudinal modes suggests a

reduction of the fraction of coherent light in the transition regime, and an interpretation that

the two longitudinal modes can be viewed as mutually incoherent coherent emissions. Apart

from the characterization of lasers, this method can be useful in practical applications of

continuous-variable quantum key distribution protocols, where the noise of lasers as a source

of coherent states needs to be carefully characterized to ensure security claims [35–37].
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APPENDIX A: INTERFEROMETRIC PHOTON- CORRELATION FOR A MIX-

TURE OF LIGHT FIELDS

The evaluation of g(2X) via Eqn. Eq. (3) requires the conventional second-order photon

correlation function g(2)(t1 − t2) = 〈E∗(t1)E
∗(t2)E(t2)E(t1)〉. For the light field mixture

Eqn. equation (4), this is[AU: In Eq. (A1), is the end square bracket correct as added?]

g
(2)
mix(t2 − t1)=

= ρ2 g
(2)
coh(t2 − t1) + (1 − ρ)2 g(2)

unc(t2 − t1)

+ 2ρ(1 − ρ)
[(

1 + <Re
[
g

(1)
coh(t2 − t1) g(1)∗

unc (t2 − t1)
]])

,

(A1)

where g(1) is the first-order field correlation function for the respective component light fields,

g(1)∗ is its complex conjugate, and <Re[∙ ∙ ∙ ] extracts the real part of its argument.

The last term in Eqn. Eq. (3) can be written as

〈E∗
mix(t1)E

∗
mix(t2 + Δ)Emix(t2)Emix(t1 + Δ)〉

= ρ2
∣
∣
∣g(1)

coh(t2 − t1)
∣
∣
∣
2

+ (1 − ρ)2
∣
∣g(1)

unc(t2 − t1)
∣
∣2

+ 2ρ(1 − ρ)<Re
[
g

(1)
coh(t2 − t1) g(1)∗

unc (t2 − t1)
]

+ 2ρ(1 − ρ)<Re
[
g

(1)
coh(Δ) g(1)∗

unc (Δ)
]
,

(A2)

where g(1)(Δ) ≈ 0 for our experimental situation of the propagation delay Δ being signifi-

cantly larger than the coherence times of the respective light sources. Note that all terms

in Eqn. Eq. (A2) are real- valued.

With this, the interferometric photon correlation at zero time difference in Eqn. Eq. (3)

is given by

g
(2X)
mix (0)=

=
1

4

[

g
(2)
mix(Δ) + g

(2)
mix(−Δ)

+ 2
(
ρ2 g

(2)
coh(0) + (1 − ρ)2 g(2)

unc(0) + 2ρ(1 − ρ)
)

− 2

(

ρ2
∣
∣
∣g(1)

coh(0)
∣
∣
∣
2

+ (1 − ρ)2
∣
∣g(1)

unc(0)
∣
∣2
)]

.

(A3)

We further assume that (1) the propagation delay in the interferometer Δ is significantly

longer than the coherence time scale of the light source, such that g
(2)
mix(±Δ) ≈ 1, (2) the

interferometer has high visibility such that |g(1)(0)| ≈ 1, and (3) the second -order correlation
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of the coherent light field is g
(2)
coh(0) = 1. With this, Eqn. Eq. (A3) leads to the relationship

shown in Eqn. Eq. (5).

APPENDIX B: BOUNDARIES OF PHYSICALLY MEANINGFUL COMBINA-

TIONS OF INTERFEROMETRIC CORRELATIONS IN A MIXTURE

Assuming a binary mixture of the light field as per Eqn. Eq. (4), the interferometric

correlation of the mixture, g
(2X)
mix (0), and the conventional second -order correlation of the

incoherent light, g
(2)
unc(0), at zero time difference are constrained by relation Eqn. equation

(5). Further assuming the physical requirement 0 ≤ ρ ≤ 1 for the fraction ρ gives a lower

bound for g
(2)
unc(0),

g(2)
unc(0) ≥






0, g
(2X)
mix (0) ≤ 2

3

3 + 1

1−2g
(2X)
mix (0)

, g
(2X)
mix (0) ∈ [2

3
, 1]

2g
(2X)
mix (0), g

(2X)
mix (0) ≥ 1.

. (B1)

For g
(2X)
mix (0) ∈ [0, 1

2
), there is an upper bound

g(2)
unc(0) ≤ 2g

(2X)
mix (0). (B2)

APPENDIX C: ERROR PROPAGATION FROM FITTING OF g(2X) MEASURE-

MENT

Standard error propagation techniques of experimental data through Eqn. Eqs. (7)-–(9)

lead to infinite uncertainties for some dip amplitudes A and are therefore not used. Instead,

we extract upper and lower bounds of ρ. Equation (7) provides an upper bound

ρ ≤
√

2A, (C1)

and Eqn. Eq. (8) provides the lower bound

ρ ≥






2A, for 0 ≤ A ≤ 1
4

1
2

+ 1
2

√
4A − 1, for 1

4
≤ A ≤ 1

2

(C2)
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for ρ. The probability density for values of A in a measured ensemble is assumed to be

a normal distribution, with a mean value and standard deviation extracted from the fit of

measured g(2X) to Eqn. Eq. (9). This can be transformed into a probability distribution for

upper and lower bounds for ρ using Eqns. Eqs. (C1) and (C2). We exclude non-physical

values of ρ outside 0 ≤ ρ ≤ 1, and renormalize the resulting distribution to compute an

expectation value of ρ and a 90% confidence interval shown in Fig. 6.
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