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We present a technique to estimate the proportion of coherent emission in the light emitted by a
practical laser source without spectral filtering. The technique is based on measuring interferometric
photon correlations between the output ports of an asymmetric Mach-Zehnder interferometer. With
this, we characterize the fraction of coherent emission in the light emitted by a laser diode when
transiting through the lasing threshold.

I. INTRODUCTION

The invention of lasers can be traced to work describ-
ing the emission process of the light from an atom to be
spontaneous or stimulated [1]. An ensemble of atoms un-
dergoing stimulated emission will emit coherent light that
has a well-defined phase, while spontaneous emission will
lead to randomly phased incoherent light [2]. [XJ: The
concept of coherent and incoherent light have also
generated a fundamental interest in the statistical
properties of light sources, including light sources
containing a mixture of coherent and incoherent
light [3–6].] Coherent light is at the core of many appli-
cations, including interferometry [7], metrology [8], and
optical communication.

In traditional models of macroscopic lasers [9–11], the
emitted light is modeled to originate dominantly from
stimulated emission. These models predict a phase tran-
sition of the nature of emission with increasing pump
strength, separating two regimes where light emitted
is either spontaneous (below threshold), or stimulated
(above threshold).

However, experiments on small lasers have shown that
the transition from spontaneous to stimulated emission
is not abrupt [12–16]. Instead, light emitted from the
laser can be described as a mixture of spontaneous and
stimulated emission across a transition range.

In these experiments, the transition from spontaneous
to stimulated emission was characterized by measur-
ing the second-order photon correlation g(2), using a
Hanbury-Brown and Twiss scheme [17]. The measure-
ment result can be explained using Glauber’s theory of
optical coherence [3], where incoherent light from spon-
taneous emission would exhibit a “bunching” signature
with g(2)(0) > 1, while coherent light from stimulated
emission exhibits a Poissonian distribution with g(2) = 1.

The “bunching” signature associated with incoherent
light has a characteristic timescale inversely proportional
to its spectral width according to the Wiener-Khintchine
theorem [18–20]. In a practical measurement, the am-
plitude of the “bunching” signature scales with the ra-
tio of characteristic timescale of the light to the timing
response of the detectors [21]. Thus, when the spectral
width of incoherent light is so broad that the characteris-
tic timescale of the “bunching” signature is smaller than

the detector timing uncertainty, incoherent light may ex-
hibit g(2) ≈ 1, like coherent light.

To overcome the limited detector timing uncertainty,
a narrow band of incoherent light can be prepared with
filters from a wide optical spectrum of an incoherent light
source [22]. The narrow spectral width of a filtered in-
coherent light has a correspondingly larger characteristic
coherence timescale, which may be long enough to be
resolvable by the detectors.

However, for characterising the transition of a laser
from spontaneous to stimulated emission, such spectral
filtering presents some shortcomings. First, as spectral
filtering discards light outside the transmission window of
a filter, a result would be inconclusive for the full emission
of the source. Second, spectral filtering requires a priori
information or an educated guess of the central frequency
and bandwidth of stimulated emission. Third, it has been
shown that spectral filtering below the Schawlow-Townes
linewidth of the laser results in g(2)(0) > 1, similar to
light from spontaneous emission [23].

Light emitted by a laser is also incoherent in multimode
operation [24, 25], where a laser may emit coherent light
in multiple transverse and/or longitudinal modes. The
light in each mode may be coherent, but a combination
of multiple modes may result in a randomly phased light,
and therefore appear incoherent.

This motivates for methods quantifying the proportion
of coherent light emitted by a source without the need
for spectral filtering. A method to characterise the stim-
ulated and spontaneous emission from a pulsed laser has
been demonstrated before [26, 27].

In this paper, we present a method to quantify bounds
for the proportion of coherent light for a continuous wave
laser. Specifically, we investigate the brightest mode of
coherent emission from a semiconductor laser diode by
using interferometric photon correlations, i.e., a correla-
tion of photoevents detected at the output ports of an
asymmetric Mach-Zehnder interferometer. Earlier meth-
ods of interferometric photon correlation measurements
were used to study spectral diffusion in organic molecules
embedded in solid matrix [28, 29]. The method of inter-
ferometric photon correlation we use here was originally
applied to differentiate between incoherent light and co-
herent light with amplitude fluctuations [30]. In con-
trast to second-order photon correlations, this method
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FIG. 1. Experimental setup for measuring interferomet-
ric photon correlations. Light from a laser diode enters
an asymmetric Mach-Zehnder Interferometer. Single pho-
ton avalanche photodetectors (APD) at each output port of
the interferometer generate photodetection events, which are
time-stamped to extract the correlations numerically.

can clearly distinguish between finite linewidth coherent
light and broadband incoherent light [31]. [XJ: which
shows up as separable features in interferomet-
ric photon correlation. These separable features
have characteristic time constants inversely pro-
portional to the corresponding spectral widths of
coherent light and incoherent light. The fraction
of coherent light is extracted from the feature as-
sociated with coherent light, with a characteristic
timescale typically resolvable by the photodetec-
tors used. This eliminates the need for spectral
filtering.] We use this method to extract the fraction of
coherent light emitted by the laser diode over a range of
pump powers across the lasing threshold.

II. INTERFEROMETRIC PHOTON
CORRELATIONS

The setup for an interferometric photon correlation
measurement g(2X) is shown in Fig. 1. Light emitted
by the laser diode is sent through an asymmetric Mach-
Zehnder interferometer, with a propagation delay ∆ be-
tween the two paths of the interferometer that exceeds
the coherence time of the light.

With a light field E(t) at the input, the light fields at
the output ports A,B of the interferometer are

EA,B(t) =
E(t)± E(t+ ∆)√

2
, (1)

with the relative phase shift π acquired by one of the
output fields from the beamsplitter.

Using these expressions for the electrical fields, the
temporal correlation of photodetection events between
the two output ports is given by

g(2X)(t2 − t1) =
〈E∗

A(t1)E∗
B(t2)EB(t2)EA(t1)〉

〈E∗
A(t1)EA(t1)〉〈E∗

B(t2)EB(t2)〉
. (2)

Therein, 〈〉 indicates an expectation value. and/or an
ensemble average. Using Eqn. 1, g(2X)(t2 − t1) can be
grouped in several terms:

g(2X)(t2 − t1) =

=
1

4
[〈E∗(t1)E∗(t2)E(t2)E(t1)〉

+ 〈E∗(t1 + ∆)E∗(t2 + ∆)E(t2 + ∆)E(t1 + ∆)〉

+ 〈E∗(t1 + ∆)E∗(t2)E(t2)E(t1 + ∆)〉
+ 〈E∗(t1)E∗(t2 + ∆)E(t2 + ∆)E(t1)〉

− 〈E∗(t1 + ∆)E∗(t2)E(t2 + ∆)E(t1)〉
− 〈E∗(t1)E∗(t2 + ∆)E(t2)E(t1 + ∆)〉] .

(3)
The first two terms have the form of conventional

second-order photon correlation functions g(2)(t2 − t1).
The next two terms are conventional second-order pho-
ton correlation functions, time-shifted forward and back-
ward in their argument by the propagation delay ∆. The
last two terms reduce g(2X), leading to a dip at zero time
difference t2−t1 = 0, with a width given by the coherence
time of the light.

The expectation values appearing in Eqn. 3 can be
evaluated by using statistical expressions [2] of E(t) for
incoherent and coherent light [31].

For incoherent light, g(2X) exhibits a “bunching” sig-
nature peaking at time differences ±∆, g(2X)(±∆) =
1 + (1/4). At zero time difference, the expected “bunch-
ing” signature from conventional second-order photon
correlation functions in the first two terms, and the dip
from the last two terms of Eqn. 3 cancel each other, re-
sulting in g(2X)(0) = 1.

For coherent light, the second-order photon correla-
tion function g(2) = 1 combines with the negative con-
tributions from the last two terms of Eqn. 3 such that
g(2X)(0) = 1/2. [XJ: As the negative contributions
is related to the first-order coherence of the light
source, the dip has a shape that is related to the
spectral lineshape of the light source by a Fourier
transform.]

III. FRACTION OF COHERENT LIGHT IN A
MIXTURE

In order to obtain an interpretation of the nature of the
light emitted beyond just presenting the components of
g(2X), we consider a light field that is neither completely
coherent nor incoherent. We assume that light emitted
by the laser is a mixture of coherent light field Ecoh, and a
light field Eunc uncorrelated to Ecoh. The nature of Eunc
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can be coherent, incoherent, or a coherent-incoherent
mixture. [XJ: As Eunc may also be light field with
a mixture of uncorrelated coherent modes, Ecoh

here represents the coherent mode in the mixture
of light fields with the brightest intensity. ] In the
following, we extract quantitative information about the
components of the light field from interferometric photon
correlations g(2X), namely the fraction of optical power
in the brightest coherent component.

We model the light field mixture with an electrical field

Emix(t) =
√
ρEcoh(t) +

√
1− ρEunc(t) , (4)

where ρ is the fraction of optical power the brightest co-
herent emission, and the respective light field terms are
normalised such that |Emix| = |Ecoh| = |Eunc|.

Evaluating photon correlation in Eqn. 3 with this light
model, and further assuming that first, the propagation
delay in the interferometer is significantly longer than the
coherence time scale of the light source, and second, the
interferometer has good visibility yields

g
(2X)
mix (0) = 2ρ− 3ρ2

2
+

(1− ρ)2

2
g(2)unc(0) (5)

at zero time difference, with only two remaining param-

eters, ρ and g
(2)
unc(0), the second order photon correlation

of the uncorrelated field at zero time difference (see Ap-
pendix A).

The connection in Eqn. 5, together with the physical
requirement 0 ≤ ρ ≤ 1 for the fraction of coherent light

limits the possible combinations of g
(2)
unc(0) and g

(2X)
mix (0),

shown as non-shaded areas in Fig. 2; the exact expres-
sions for the boundaries are given in Appendix B.

We can now further assume that the uncorrelated light
source generates some mixture of coherent and com-
pletely incoherent light (g(2)(0) = 1), and thermal light
(g(2)(0) = 2). This constrains the second-order photon
correlation of the uncorrelated light:

1 ≤ g(2)unc(0) ≤ 2. (6)

We impose these bounds in Eqn. 5, and extract the
bounds to the fraction of optical power in the brightest
coherent emission ρ with an upper bound,

ρ ≤
√

2− 2 g(2X)(0), (7)

and a lower bound,

ρ ≥

{
1
2 + 1

2

√
3− 4 g(2X)(0), for 1

2 ≤ g
(2X)(0) ≤ 3

4

2− 2 g
(2X)
mix (0), for 3

4 ≤ g
(2X)(0) ≤ 1

,

(8)

with g
(2X)
mix (0) ranging from 1/2 for fully coherent light,

to 1 for fully incoherent light.
In practice, these two bounds for ρ are quite tight, and

allow to extract the fraction ρ in an experiment with a
small uncertainty.

figure2-eps-converted-to.pdf

FIG. 2. Combinations of g
(2)
unc(0) and g

(2X)
mix (0) that correspond

to physical and real-valued ρ. In shaded areas, no such solu-

tion exist. Inset: Zoom into the region 1 ≤ g
(2)
unc(0) ≤ 2, where

the uncorrelated light source is assumed to be a mixture of
coherent and completely incoherent light, and thermal light.

IV. EXPERIMENT

In our experiment, we measure interferometric pho-
ton correlations of light emitted from a temperature-
stabilised distributed feedback laser diode with a central
wavelength around 780 nm.

The setup is shown in Fig. 1. Interferometric pho-
ton correlations are obtained from an asymmetric Mach-
Zehnder interferometer, formed by 50:50 fibre beamsplit-
ters and a propagation delay ∆ of about 900 ns through
a 180 m long single mode optical fibre in one of the arms.
Photoevents at each output port of the interferometer
were detected with actively quenched silicon single pho-
ton avalanche photo diodes (APD). The detected photo-
events were time-stamped with a resolution of 2 ns for an
integration time T .

The correlation function g(2X) is extracted through his-
togramming all time differences t2−t1 between detection
event pairs in the inverval T numerically, which allows for
a clean normalization.

[XJ: The dip feature in g(2X), is related to the
lineshape of the coherent light by a Fourier trans-
form. We assume the coherent light emitted by a
laser has a Lorentzian lineshape [32]] The resulting
correlation is fitted to a two-sided exponential function,

g(2X)(t2 − t1) = 1−A · exp

(
−|t2 − t1|

τc

)
, (9)
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FIG. 3. Interferometric photon correlations g(2X) for different
laser currents IL, extracted from a histogram of photodetector
time differences (green symbols). The error range at a specific
time bin indicates an expected uncertainty according to a
Poissonian counting statistics. The black solid lines show a
fit to Eqn. 9, resulting in values for A (from top to bottom)
of −0.0006±0.0003, 0.326±0.008, 0.455±0.002, respectively.

where τc is the characteristic time constant of the coher-
ent light, and A is the amplitude of the dip. The value of
g(2X)(0) is the extracted from the fit as 1−A. Examples
of measured correlation functions and corresponding fits
for different laser powers are shown in Fig. 3.

A. Tranisition from incoherent to coherent light

A transition from incoherent to coherent emission is
expected as the laser current is increased across the lasing
threshold of the laser. We identify the lasing threshold
of a laser diode IT , by measuring the steepest increase
of optical power with the laser current (Fig 4). For our
diode, we find IT = 37 mA.

To observe the transition from incoherent to coherent
emisssion, we extract the fraction ρ of optical power in
the brightest coherent component in the light field at
different laser current IL across the lasing threshold from
measurements of g(2X) (Fig. 5, top part). The amplitude
of the dip is extracted by fitting these correlations to
Eqn. 9, from which the upper bound and lower bound of
ρ is extracted (Fig. 5, middle part).

From the fit, ρ remains near 0 below threshold. Above
the threshold ρ increases quickly with IL in a phase-
transition manner, reaching ρ = 0.986 (90% confidence

figure4-eps-converted-to.pdf

FIG. 4. Measured laser power against laser current IL. The
sharpest change was measured at IT = 37 mA, indicating the
threshold current (dashed line).

interval: 0.982 to 0.989) at IL = 120 mA. This agrees
with the expectation that the emission of the laser diode
is increasingly dominated by stimulated emission when
driven with current above the lasing threshold[33, 34].

The upper and lower bounds for ρ from Eqn. 7 and 8
are quite tight even near the lasing threshold, suggesting
that the mixture model Eqn. 4 captures the nature of the
light through the phase transition well.

The coherence time of the coherent light τc can also
be extracted from fitting g(2X) measurements to Eqn. 9
(bottom Fig. 5). We observe that the coherence time in-
creases with the current after the threshold current, be-
fore reaching a steady value between 300 to 350 ns. The
increase of coherence time corresponds to a narrowing of
the emission linewidth. This observation agrees with pre-
dictions from laser theory that line narrowing is expected
with increased pumping [34]. A small modulation of the
coherence time becomes visble for larger laser currents,
with a periodicity of about 6 mA.

B. Light statistics near a mode hop

Above the threshold, the laser can oscillate at different
longitudinal modes for different laser currents. It is in-
teresting to observe the presented method for extracting
the fraction of coherent emission near such a mode hop,
where two coherent emission modes compete.

For this, the spectrum of light emitted by the laser
diode was recorded at different laser currents with an
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FIG. 5. Top: Interferometric photon corrrelations g(2X)

for different laser currents IL. Middle: Corresponding up-
per bound of fraction ρ of coherent light (red) extracted via
Eqn. C1, and the lower bound (blue) extracted via Eqn. C2

from g(2X)(0). The dip in ρ is a result of emission at multiple
chip modes as explained in Section IV B. The inset shows the
extracted bounds for ρ at finer steps of laser current near the
lasing threshold. Bottom: Coherence time of coherent light τc
extracted from g(2X). The dashed line indicates the threshold
current IT = 37 mA.

optical spectrum analyser with a spectral resolution of
2 GHz (Bristol 771B-NIR). The laser diode emitted light
into two distinct narrow spectral bands with a changing
power ratio in the laser current range between 49 mA and
52 mA. Outside this window, only one of the modes could
be identified. Below 49 mA, the laser emission was cen-
tered around 780.07 nm, above 52 mA around 780.34 nm.

The power fractions rα,β of these two chip modes α
and β near the mode hop,

rα,β =
Pα,β

Pα + Pβ
, (10)

undergo a nearly linear transition (Fig. 6, top traces).

We measured g(2X) in the same transition regime and
extract ρ as described above (Fig. 6, bottom trace). In
the transition regime, ρ decreases when both chip modes
are present. This can be interpreted as coherent light in
one emission band being uncorrelated to coherent light
in the other one, but we did not carry out a measurement
that would test for a phase relationship between the two
modes.

figure6-eps-converted-to.pdf

FIG. 6. Different chip modes of the laser diode are excited for
different currents, resulting in a reduction of the g(2X) signa-
ture in a mode competition regime. Top: Power ratios rα,β
as a function of current for the chip modes α and β around
780.07 nm (solid squares) and 780.34 nm (hollow circles), re-
spectively. Bottom: Upper bound of fraction ρ of coherent
light (red) from extracted via Eqn. C1, and the lower bound

(blue) extracted via Eqn. C2 from g(2X)(0).

V. CONCLUSION

We presented a method to extract the fraction of co-
herent light in the emission of a laser by using inter-
ferometric photon correlations. As a demonstration, we
analyzed light emitted from a diode laser over a range of
laser currents, and observe a continuously increasing frac-
tion of coherent light with increasing laser current above
the lasing threshold. Applying this technique to light
emitted near a mode hop between longitudinal modes
suggests a reduction of the fraction of coherent light in
the transition regime, and an interpretation that the two
longitudinal modes can be viewed as mutually incoher-
ent coherent emissions. Apart from the characterisation
of lasers, this method can be useful in practical appli-
cations of continuous-variable quantum key distribution
protocols, where the noise of lasers as a source of coher-
ent states needs to be carefully characterised to ensure
security claims [35–37].
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Appendix A: Interferometric photon-correlation for
a mixture of light fields

The evaluation of g(2X) via Eqn. 3 requires the conven-
tional second-order photon correlation function g(2)(t1−
t2) = 〈E∗(t1)E∗(t2)E(t2)E(t1)〉. For the light field mix-
ture Eqn. 4, this is

g
(2)
mix(t2 − t1) =

=ρ2 g
(2)
coh(t2 − t1) + (1− ρ)2 g(2)unc(t2 − t1)

+ 2ρ(1− ρ)
[
1 + <[g

(1)
coh(t2 − t1) g(1)∗unc (t2 − t1)

]
,

(A1)
where g(1) is the first-order field correlation function for
the respective component light fields, g(1)∗ its complex
conjugate, and <[· · · ] extracts the real part of its argu-
ment.

The last term in Eqn. 3 can be written as

〈E∗
mix(t1)E∗

mix(t2 + ∆)Emix(t2)Emix(t1 + ∆)〉

=ρ2 |g(1)coh(t2 − t1)|2 + (1− ρ)2|g(1)unc(t2 − t1)|2

+2ρ(1− ρ)<[g
(1)
coh(t2 − t1) g(1)∗unc (t2 − t1)]

+2ρ(1− ρ)<[g
(1)
coh(∆) g(1)∗unc (∆)] ,

(A2)

where g(1)(∆) ≈ 0 for our experimental situation of the
propagation delay ∆ being significantly larger than the
coherence times of the respective light sources. Note that
all terms in Eqn. A2 are real-valued.

With this, the interferometric photon correlation at
zero time difference in Eqn. 3 is given by

g
(2X)
mix (0) =

=
1

4
[g

(2)
mix(∆) + g

(2)
mix(−∆)

+ 2(ρ2 g
(2)
coh(0) + (1− ρ)2 g(2)unc(0) + 2ρ(1− ρ))

− 2(ρ2 |g(1)coh(0)|2 + (1− ρ)2|g(1)unc(0)|2)] .
(A3)

We further assume that (1) the propagation delay
in the interferometer ∆ is significantly longer than the
coherence time scale of the light source, such that

g
(2)
mix(±∆) ≈ 1, (2) the interferometer has high visibility

such that |g(1)(0)| ≈ 1, and (3) the second order correla-

tion of the coherent light field is g
(2)
coh(0) = 1. With this,

Eqn. A3 leads to the relationship shown in Eqn. 5.

Appendix B: Boundaries of physically meaningful
combinations of interferometric correlations in a

mixture

Assuming a binary mixture of the light field as per
Eqn. 4, the interferometric correlation of the mixture,

g
(2X)
mix (0), and the conventional second order correlation

of the incoherent light, g
(2)
unc(0), at zero time difference

are constrained by relation Eqn. 5. Further assuming
the physical requirement 0 ≤ ρ ≤ 1 for the fraction ρ

gives a lower bound for g
(2)
unc(0),

g(2)unc(0) ≥


0 , g

(2X)
mix (0) ≤ 2

3

3 + 1

1−2g
(2X)
mix (0)

, g
(2X)
mix (0) ∈ [ 23 , 1]

2g
(2X)
mix (0) g

(2X)
mix (0) ≥ 1

. (B1)

For g
(2X)
mix (0) ∈ [0, 12 ), there is an upper bound

g(2)unc(0) ≤ 2g
(2X)
mix (0) . (B2)

Appendix C: Error propagation from fitting of g(2X)

measurement

Standard error propagation techniques of experimen-
tal data through Eqn. 7-9 lead to infinite uncertainties
for some dip amplitudes A and are therefore not used.
Instead, we extract upper and lower bounds of ρ. Equa-
tion 7 provides an upper bound

ρ ≤
√

2A , (C1)

and Eqn. 8 the lower bound

ρ ≥

{
2A, for 0 ≤ A ≤ 1

4
1
2 + 1

2

√
4A− 1, for 1

4 ≤ A ≤
1
2

(C2)

for ρ. The probability density for values of A in a mea-
sured ensemble is assumed to be a normal distribution,
with a mean value and standard deviation extracted from
the fit of measured g(2X) to Eqn. 9. This can be trans-
formed into a probability distribution for upper and lower
bounds for ρ using Eqns. C1 and C2. We exclude non-
physical values of ρ outside 0 ≤ ρ ≤ 1, and renormal-
ize the resulting distribution to compute an expectation
value of ρ and a 90% confidence interval shown in Fig. 6.
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