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Hong-Ou-Mandel interference between triggered and heralded single
photons from separate atomic systems
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We present Hong-Ou-Mandel interference of single photons generated via two different physical processes by
two independent atomic systems: scattering by a single atom, and parametric generation via four-wave mixing in
a cloud of cold atoms. Without any spectral filtering, we observe a visibility of V = 62 ± 4%. After correcting
for accidental coincidences, we obtain V = 93 ± 6%. The observed interference demonstrates the compatibility
of the two sources, forming the basis for an efficient quantum interface between different physical systems.
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I. INTRODUCTION14

Hong-Ou-Mandel (HOM) interference [1] takes place when15

two indistinguishable photons arrive simultaneously at the two16

inputs of a 50:50 beam splitter, making them leave together17

from the same output port [2]. It provides a fundamental18

primitive for the coherent interfacing of separate quantum19

systems via their emitted photons [3] as an alternative to20

their direct interaction [4,5]. It is the basis of quantum21

teleportation [6–8] and entanglement swapping [9,10].22

Initially developed as a sensitive tool for timing mea-23

surements, this effect has been used for connecting sepa-24

rated copies of the same quantum systems with photons:25

nonlinear crystals [11–13], neutral atoms [14,15], with a26

particularly high visibility between two 87Rb atoms [16],27

quantum dots [17,18], NV centers in diamond [19], single28

molecules [20,21], atomic ensembles [22], trapped ions [23],29

and superconducting qubits [24]. In order to observe the HOM30

interference, two photons must be indistinguishable in all31

degrees of freedom. The use of identical sources ensures the32

matching of the temporal shape and bandwidth of the generated33

photons, allowing for very high visibility when the sources are34

accurately synchronized.35

There are still a few experimental demonstrations of HOM36

interference with single photons originating from different37

physical processes: a single quantum dot and parametric38

down-conversion in a nonlinear crystal [25], and different39

parametric effects in nonlinear optical materials [26]. These40

two demonstrations rely on spectral filtering in order to41

match the temporal shape and the bandwidth of the generated42

photons.43

II. IDEA44

In this work we demonstrate the compatibility of two45

single photon sources based on 87Rb which generate single46

photons via two different physical processes: scattering from a47

single atom (SA) in free space, and heralding on photon pairs48

prepared by parametric conversion using four-wave mixing49

(FWM) in a cold atomic vapor.50

*christian.kurtsiefer@gmail.com

As depicted in Fig. 1(a), we combine the generated single 51

photons on a 50:50 beam splitter. If the two photons are 52

compatible, the HOM effect will decrease the rate of coincident 53

events at the outputs as compared to having two completely 54

distinguishable photons. 55

Both sources generate single photons with a decaying 56

exponential temporal envelope. For the SA source, the time 57

constant is given by the natural linewidth of the transition [27], 58

while for the FWM source it is determined by the optical 59

density of the atomic ensemble [28,29]. 60

The timing characteristics of the two sources are determined 61

by the generation processes. The FWM process generates 62

photon pairs with Poissonian statistics, and we obtain a 63

heralded single photon by detecting one photon of the pair 64

[30–32], while the emission of a single photon from the single 65

atom is triggered by an excitation pulse. The detection of the 66

heralding photons from the FWM also serves as the trigger 67

for the excitation pulse of the single atom source, effectively 68

synchronizing the whole experiment. 69

III. EXPERIMENTAL SETUP 70

Figure 1(b) shows the FWM energy level scheme: two 71

pump beams at 795 and 762 nm excite the atoms from 72

5S1/2, F = 2 to the 5D3/2, F = 3 level via a two photon 73

transition. The detailed experimental setup is shown in Fig. 2. 74

We separate time-correlated photon pairs with wavelengths 75

776 nm (signal) and 780 nm (idler) from the residual pump 76

light using narrowband interference filters (bandwidth 3 nm 77

FWHM, transmission >90%). A pair of additional interference 78

filters (same bandwidth and transmission) are used to suppress 79

the residual pump light in each arm. The bandwidth of these 80

filters is much larger than the bandwidth of the parametrically 81

generated photons, so they do not affect the spectral envelope 82

of the photons, which we subsequently collect into single 83

mode fibers. The detection of a signal photon by an avalanche 84

photodetector (APD) Dt heralds the presence of a single 85

photon in the idler mode with a high fidelity [33]. The heralding 86

efficiency of the FWM is ≈0.5%, including all losses and the 87

limited efficiency of the APD. 88

The SA source generates single photons by optically 89

exciting the electronic transition of interest and collecting 90

the consequent photon emitted by spontaneous decay [34]. 91
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FIG. 1. (Color online) (a) Schematic representation of the Hong-
Ou-Mandel experiment. Heralded photons from pairs generated
by four-wave mixing in an atomic ensemble interfere with single
photons generated by a single atom after heralding on a 50:50 beam
splitter, and are detected by avalanche photodetectors at the outputs.
(b) Simplified level scheme of the FWM process. (c) Level scheme
for the single atom in the dipole trap and electronic transition used
for exciting the single atom.

A single atom is trapped at the focus of a far-off-resonant92

optical dipole trap (FORT) obtained by focusing a Gaussian93

beam (λ = 980 nm) to a waist of 1μm using an aspheric lens94

(numerical aperture 0.55). Further details of the trapping are95

described in [27,35]. The trapped atom undergoes molasses96

cooling and is optically pumped to the 5S1/2, F = 2, mF = −297

state. To ensure a sufficiently long coherence time of the98

FIG. 2. (Color online) (Top left) Four-wave mixing setup: Pump
1 (795 nm) and Pump 2 (762 nm) are overlapped in a copropagating
geometry inside the cold cloud of 87Rb atoms in a magneto-optical
trap (MOT), generating signal (776 nm) and idler (780 nm) photon
pairs. The detection of a signal photon heralds the presence of a single
photon in idler mode, and is used to trigger the excitation of the single
atom. (Bottom left) Single atom setup: A 87Rb atom is trapped in free
space between two confocal aspheric lenses (AL; numerical aperture
0.55) with a far-off-resonant optical dipole trap (λ = 980 nm). After
an adjustable delay time �T from the trigger, an electro-optic
modulator (EOM) generates an optical pulse to efficiently excite
the single atom. The presence of an atom in the trap is periodically
checked using APD Df . (Right) HOM interferometer: single photons
from both sources interfere at a 50:50 beam splitter (BS). An
acousto-optic modulator (AOM) matches the central frequencies of
both photons. P: polarizer, F : interference filters, λ/2, λ/4: half- and
quarter-wave plates, PBS: polarizing beam splitter, BS: nonpolarizing
beam splitter, Da , Db, Df , Dt : avalanche photodetectors.
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FIG. 3. (Color online) (Top) Temporal profile of the excitation
pulse. (Bottom) Temporal profile of the single photons generated by
the single atom (open circles) and four-wave mixing (filled circles)
sources. The coherence times are obtained from exponential fits (solid
lines).

prepared state, we apply a bias magnetic field of 2 G along 99

the optical axis. After the atom is prepared in the initial state, 100

it can be excited to 5P3/2, F = 3, mF = −3 [see Fig. 1(c)] by a 101

short resonant optical pulse generated using a fast electro-optic 102

modulator (EOM). The beams used for optical pumping and 103

excitation are collinear with the dipole trap, and are focused 104

onto the atom by the same aspheric lens. The excitation pulse 105

duration τe = 3 ns is much shorter than the excited state 106

lifetime τs = 26 ns, and its amplitude is set to maximize the 107

excitation probability. 108

The aspheric lens is also used to collect the spontaneously 109

emitted single photons. The collection mode is separated from 110

the excitation mode using a 99:1 beam splitter and is then 111

coupled into a single mode fiber. The overall generation, 112

collection and detection efficiency is ≈0.5%. We periodically 113

check for the presence of the atom in the FORT by monitoring 114

fluorescence with detector Df ; if the atom is lost, a new atom 115

is loaded from a MOT. 116

The FWM setup is located in an adjacent room, approxi- 117

mately 15 m away from the rest of the setup. To allow sufficient 118

time to generate and synchronize the excitation pulse for the 119

SA source, the heralded photon from the FWM travels through 120

a 230 m long fiber. 121

Both photons are launched into the two input ports of the 122

HOM interferometer. A polarizing beam splitter in each input 123

port transmits only horizontally polarized photons; a half-wave 124

plate sets the relative polarizations of the photons incident on 125

the nonpolarizing 50:50 beam splitter. We measure a spatial 126

mode overlap of ≈98% between the two inputs. The output 127

modes of the beam splitter are coupled into two single mode 128

fibers connected to two APDs, Da and Db. 129

We measured the temporal envelope of the generated 130

photons to estimate the expected visibility. We show these 131

profiles in Fig. 3, together with the temporal profile of the 132

pulse used to excite the single atom. For both sources the time 133

profile is a decaying exponential described by 134

ψi(t) =
√

1

τi

e
− t−ti

2τi �(t − ti) with i = f,s, (1)
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where τf,s are the coherence times from FWM and SA sources,135

respectively, ts is the single atom excitation instant following a136

heralding event at tf , and �(t) is the Heaviside step function.137

For the single atom, we confirm τs = 26.18 ± 0.11 ns, cor-138

responding to the natural linewidth of the transition. For the139

FWM source, τf = 13.61 ± 0.73 ns, where the uncertainty is140

mainly due to the drifting optical density of the atomic cloud.141

In order to observe the HOM interference we also need to142

ensure that both photons have the same central frequency. The143

single atom experiences an ac Stark shift from the dipole trap144

and a Zeeman shift from a bias magnetic field, resulting in a145

detuning of δs = 76 MHz from the natural transition frequency146

for the emitted photon. We compensate for this detuning by147

shifting the central frequency of the photon coming from the148

FWM using an acousto-optic modulator (AOM).149

IV. DATA ANALYSIS150

The HOM interference can be observed by comparing the151

probability of coincidence P between detectors Da and Db for152

interfering (P||) and noninterfering (P⊥) photons. We adjust153

the relative polarizations of the input modes from parallel154

(interfering) to orthogonal (noninterfering) by rotating a half-155

wave plate. We estimate P using the coincidence detection156

rates. All detection events are time stamped with a temporal157

resolution of 125 ps. We offset the detection times of all158

detectors to account for the delays introduced by the electrical159

and optical delay lines, and we only consider a detection160

sequence valid if either Da or Db clicks within 85 ns of a161

trigger from Dt . We then sort the time delay between detection162

events �tab into time bins of width 10 ns and normalize the163

distribution by dividing by the total number of trigger events164

Nt over the measurement time:165

G(�tab) = Nab|t (�tab)

Nt

. (2)

The measured G⊥ and G|| are shown in Fig. 4. For |�tab| �166

50 ns, the coincidence probability for noninterfering photons167

increases significantly above the background at large |�tab|,168

while it remains at an almost constant level for the interfering169

case. To quantify this observation, we define a visibility V for170

the HOM interferometer as171

V = 1 − P||/P⊥, (3)

where the probabilities P are obtained by a sum over the time172

bins within a coincidence window Tc:173

V = 1 −

∑
Tc

G||(�tab)∑
Tc

G⊥(�tab)
. (4)

The choice of Tc determines the influence of the accidental174

count rates on the visibility. Similar to what has been used in175

the past [23], we choose Tc = −25 � �tab � 25 ns, a window176

long enough to include the longer of the two photon coherence177

times, resulting in V = 62 ± 4%.178

V. THEORY-TIME ENVELOPE MATCHING179

The probability of coincidence events for unit time G(�tab)180

in the noninterfering case, i.e., photons with orthogonal181
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FIG. 4. (Color online) Coincidence probability between Da and
Db for valid sequences measured at �T = 0. The filled and
open circles represent the cases where photons have perpendicular
(noninterfering) and parallel (interfering) polarizations, respectively.
The data is sorted into 10 ns wide time bins and normalized to the
total number of trigger events Nt . For an integration window of Tc =
−25 � �tab � 25 ns, the interference visibility V = 62 ± 4%. The
upper solid line represents Gacc + A · G⊥(�tab) [see Eq. (5)], and
the lower solid line represents Gacc + A · G||(�tab) [see Eq. (6)].
Gacc is a constant offset, while A is a scaling factor.

polarization, is given by adding probabilities for independent 182

pair events: 183

G⊥(�tab) = 1

4

∫ ∞

−∞
|ψf (t) ψs(t + �tab)|2

+ |ψf (t + �tab) ψs(t)|2 dt. (5)

When the two incident photons have identical polarizations, 184

their pair amplitudes interfere (with the minus sign determined 185

by one of the reflections on the beam splitter): 186

G||(�tab) = 1

4

∫ ∞

−∞
|ψf (t)ψs(t + �tab)

−ψf (t + �tab)ψs(t)|2 dt. (6)

The total probability P is obtained by integrating over 187

time: P = ∫
G(�tab)d(�tab). In the noninterfering case, as 188

expected, we obtain P⊥ = 1
2 . In the interfering case, for �T = 189

0, i.e., when the heralding time and the single atom excitation 190

are synchronized, P|| = (τs−τf )2

2(τs+τf )2 . Using these results, Eq. (3) 191

reduces to 192

V = 4τsτf

(τs + τf )2
. (7)

Using the measured values for τs and τf , we obtain an expected 193

visibility of 90.0 ± 1.5%. To properly compare it with the 194

one measured experimentally, we choose a large integration 195

window Tc = −75 � �tab � 75 ns and correct for accidental 196

coincidences Gacc. We obtain a corrected visibility of V = 197

93 ± 6%, which is compatible with the expected value. 198

VI. HONG-OU-MANDEL DIP 199

We can also vary the degree of interference by changing the 200

delay �T between the heralding time tf and the single atom 201

excitation time ts . To maintain a constant rate of two photon 202

003800-3
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FIG. 5. (Color online) Normalized coincidence probability
P||/P⊥ = 1 − V , corrected for accidental coincidences, showing the
“HOM dip.” The solid line shows expected values obtained from
Eq. (8).

events as we vary �T , Tc has to be much larger than maximum203

value of |�T | used in the experiment. As before, we choose204

Tc = 150 ns and subtract Gacc from the measured G⊥ and G||.205

In Fig. 5 we plot the ratio P||/P⊥, and observe the familiar206

HOM dip [1]. From Eqs. (5) and (6) we can derive the shape207

of the dip:208

P||
P⊥

=1− 4τsτf e�T/τ

(τs + τf )2
with

{
τ = −τs, if �T � 0,

τ = τf , if �T < 0.

(8)

The dip is slightly asymmetric due to the different coherence 209

times τf ,τs in the asymmetric photon profiles in Eq. (1). Using 210

Eq. (8) and the measured values for τf and τs , we obtain the 211

solid line plotted in Fig. 5. Most of the measured points lie 212

within one standard deviation of this line. 213

VII. CONCLUSION 214

In conclusion, we have observed HOM interference be- 215

tween a triggered single photon source based on a single 87Rb 216

atom, and a heralded single photon source based on four-wave 217

mixing in a cold 87Rb cloud. 218

These two sources, though based on the same atomic 219

species, generate quantum light through two different pro- 220

cesses. Without any spectral filtering, we observe a HOM visi- 221

bility of V = 62 ± 4%. Correcting for accidental coincidences 222

due to the limited collection efficiencies of the two sources, 223

the measured visibility is 93 ± 6%, a value compatible with 224

the expected 90.0 ± 1.5%. 225

The observed interference demonstrates the compatibility 226

of the spectral and timing characteristics of our two sources. 227

This is a fundamental requisite for the transfer of quantum 228

information between the two, and ultimately for the realization 229

of quantum networks to generate entanglement between 230

separated nodes [36] made up of different physical systems. 231
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