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We investigate the multiple photon state in a bright narrowband correlated photon source. This
source is based on a double-Λ four-wave mixing process in a cold atomic ensemble. Our study
indicates a super-bunching phenomenon for both Stokes and anti-Stokes photons in the heralded
second-order auto-correlation functions. Within a coincidence window of 20 ns, we have observed
a photon quadruplet rate of (1.0 ± 0.2) × 103 h−1, implying an initial rate of approximately 1.0 ×
106 s−1, alongside an initial pair generation rate of around 3.7× 106 s−1. These findings signify an
enhancement in the probability of multiple photon states compared to the thermal properties in one
of the twin modes, underscoring the potential utility of preparing multiple-photon states from the
atomic ensemble.

I. INTRODUCTION

Nonclassical photon states represent promising quan-
tum resources, encompassing both continuous-variable
states, and discrete-variable states. The continuous-
variable states are exemplified by single-mode squeezed
states [1] and two-mode squeezed states [1, 2], while
discrete-variable states include Fock states, correlated
photon pairs [3], and entangled multiple-photon state like
GHZ states [4, 5], cluster states [6]. Among these, corre-
lated photon pairs have become foundational in the ad-
vancement of quantum technologies including quantum
entanglement [7, 8], quantum communications [9, 10],
and quantum metrology [11]. Conventionally, the gen-
eration of correlated photon pairs relies on spontaneous
parametric down-conversion (SPDC) processes in non-
linear crystals [12, 13] or spontaneous four-wave mixing
(FWM) in atomic media [14–20]. The non-degenerate
photon state in entangled twin modes can be effectively
modeled as two-mode squeezing [21–23]. Particularly,
in low squeezing or low gain conditions where higher-
order terms can be neglected, such two-mode photon
states can be approximated as correlated photon pairs,
with non-detectable vacuum states being disregarded.
While the generation of correlated photon pairs is fea-
sible, achieving high generation rates for entangled mul-
tiphoton states remains challenging. One existing ap-
proach involves interference multiplexing of correlated
photon pairs associated with post-selection [24–26]. Al-
ternative solutions include the cascaded SPDC process
[27] or directly applying the multiple-photon nonlinear
processes [28]. However, these methods result in low
generation rates. By implementing the PDC process in
the high-gain regime [23, 29], it is possible to achieve
specific multiple-pair photon states. Nonetheless, at-
taining reasonable generation probabilities necessitates
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a substantial increase in instantaneous pump power, of-
ten by orders of magnitude, compared to the conven-
tional continuous-wave pump used for generating corre-
lated photon pairs. Consequently, pulsed pumping be-
comes crucial to generate multiple photon pair states
within the pulse duration from the higher-order terms
in the PDC process.

This paper investigates multiple photon states gener-
ated from a bright correlated photon source based on
a double-Λ energy level scheme in a cold 87Rb atomic
ensemble. The characterization correlated photon pairs
from this bright source have been reported in Ref.[]. To
analyze the photon statistics, we performed the Hanbury-
Brown and Twiss (HBT) measurement on the twin
modes, denoted by Stokes and anti-Stokes, respectively.
Due to the limitations of single-photon detectors, which
lack photon number-resolving capability, we cannot di-
rectly obtain the full photon probability distribution [30].
Instead, we analyze the photon number fluctuations via
heralded auto-correlation functions and demonstrate the
enhanced generation probability of photon quadruplet
states. These observations indicate that this four-wave
mixing process operates in a regime similar to the high-
gain PDC with a relatively large mean photon number
⟨n⟩. In this regime, photons generated at the beginning
of the atomic ensemble seed the generation at the end
[23, 31]. As a counterpart to the high-gain case, in the
low-gain limit, the mean photon number is much smaller
than the effective brightness of zero-point vacuum fluc-
tuations, and the generated photons do not enhance the
generation rate [23]. Achieving such a high-gain regime
for near-resonant four-wave mixing in a cold atomic en-
semble is feasible with modest pump power under a
continuous-wave configuration, typically at the order of
several milliwatts. Furthermore, the observations sug-
gest a signature of superradiant emission [32, 33]. This
phenomenon can occur in nonlinear process [17, 33, 34]
and is characterized by super-bunching features in the
second-order correlation function[35–38].

In this experiment, the FWM process involves double-
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Λ atomic energy levels driven by two pump fields denoted
as ωp and ωc, as shown in Fig.1 (a). In the presence of
the pump fields, an effective interaction emerges between
twined Stokes (ωs) and anti-Stokes modes (ωas), which is
described by an effective Hamiltonian characterizing the
nonlinear parametric process as

Ĥs,as = h̄κ(â†asâ
†
s + âasâs) . (1)

Here, κ denotes the nonlinear parametric coupling coef-
ficient, given by κ = −i

√
ωasωs/2χ

(3)EpEc where χ(3)

is the third-order nonlinear susceptibility of this para-
metric process. Analogous to the non-degenerate SPDC,
the evolution of this Hamiltonian results in a two-mode
squeezing on the initial vacuum state in twined modes.
In the low squeezing limit, the photon state [21] is ex-
pressed as

(1− p

2
)|0, 0⟩ − i

√
p|1, 1⟩ − p|2, 2⟩+O(p

3
2 ) , (2)

where the state |n, n⟩ represents a photon state in the
Stokes mode with n photons and simultaneously n pho-
tons in the corresponding anti-Stokes mode, and

√
p rep-

resents the photon pair probability amplitude. |0, 0⟩ sig-
nifies the vacuum state. O(p3/2) indicates the higher-
order excitations, whose probabilities are equal or smaller
than p3. This photon state suggests that the proba-
bility of double excitations is quadratically lower than
that of single excitations in the low squeezing approxi-
mation. Our findings demonstrate a deviation of multi-
photon probability in photon statistics.

II. AUTO-CORRELATION

The second-order auto-correlation function g(2)(τ) is a
measure of temporal correlations in single mode[39]. Af-
ter tracing over one of the modes in the two-mode squeez-
ing, the remaining mode is left in a thermal state [40] with
photon bunching behavior g(2)(0) = 2. In Fig.2 (a) and
(b), the unheralded auto-correlation functions on twin

modes give the zero-delay value g
(2)
s-s (0) = 1.95±0.12 and

g
(2)
as-as(0) = 1.99±0.11, which verifies the thermal photon
statistics and Schmidt mode purity [41] in each mode of
the correlated photon pairs. The heralding efficiency of
correlated photon pairs is approximately 1.9% for Stokes
mode and 2.9% for anti-Stokes mode. This indicates that
the unheralded auto-correlation derived from coincidence
counting is predominantly attributed to unpaired photon
events. If the initial state is thermal light, the attenua-
tion does not change the value of g(2)(0) which remains
equal to 2. If the initial photon state is nonclassical, op-
tical losses can significantly impact g(2)(0), degrading its
nonclassical photon statistics [42]. To address this issue,
we measure the second-order correlation function con-
ditioned on the detection of one photon in the twinned
mode. The definition of heralded auto-correlation func-
tions was proposed with the post-selected averaging on
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FIG. 1. (a) The double-Λ atomic energy levels involved in the
four-wave mixing process. In this experiment, the pumping
field detuning is set at ∆p = −50 MHz while the coupling
field is resonant. (b) A schematic representation of the ex-
perimental setup. The pumping beam and coupling beam
counter-propagate along the longest axis of a cigar-shaped
atomic ensemble, with a collection path angled by approxi-
mately 1 degree. The collected Stokes and anti-Stokes pho-
tons are split by a 50:50 fiber-based beam splitter and de-
tected by two single-photon detectors, respectively.

every term in the auto-correlation functions [43, 44],
yielding a normalization value dominated by the cross-
correlations between twin modes. However, some criti-
cisms [45, 46] have pointed out its limitations on revealing
correlation properties in a single mode. Referring to the
analysis detailed in Appendix.C, this quantity stands for
purity of heralded single-photon source [47, 48], repre-
senting the conditional probability of detecting another
photon within the coincidence window once a correlated
photon pair is confirmed.
Conversely, we obtain the heralded normalized auto-

correlation function by using paired photon events in
twin modes as the trigger, instead of all photon events in
one of the split channels for unheralded auto-correlation.
The methodology for this post-selection process is de-
tailed in Appendix. B. As a result, this heralded auto-
correlation function explores the local correlation rela-
tionship between paired photons and photons in the other
split channel. Theoretically, this coincidence counting
measurement for anti-Stokes mode corresponds to

g
(2)
h-as(τ = t2 − t1) =

G(2)(t1, t2|ts)
G(1)(t1)G(1)(t2)

, (3)

in which the timing notations ts and t1 represent a mea-
sured photon pair event in Stokes mode and split channel
1, t2 denotes the photon event in the other split channel
within the neighboring time of this photon pair. A similar
definition can also be applied to Stokes photons to obtain
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the correlation function g
(2)
h-s(τ

′). Since Stokes photons
precede anti-Stokes photons in the correlated pair, post-
selection involves Stokes photons in reverse time after
detecting an anti-Stokes photon. In these heralded auto-
correlation functions, we observe the super-bunching fea-
tures. As depicted in Fig.3 (a) and (b), Using the paired
photon events within 20 ns coherence time, the heralded
normalized auto-correlation function for Stokes has a
maximum g

(2)
h-s = 3.41 ± 0.32 while the heralded auto-

correlation function for anti-Stokes shows a maximum
g
(2)
h-s = 3.38 ± 0.33. Fig.3 (c) and (d) show the heralded
auto-correlations based on 20-40 ns pair window. This
indicates that paired photons within the second oscilla-
tion interval have a larger correlation with photons lo-
cated in the first oscillation interval. According to the
relationship between auto-correlation and photon fluctu-
ation, expressed as g(2)(0) = 1 + (Var(n) − ⟨n⟩)/⟨n⟩2,
these zero-delay values larger than those of thermal light
indicate higher photon number fluctuations within the
coherence time for correlated photon pairs.

Superradiance, which has been reported in the para-
metric process [19, 33, 49–52], predict the super-bunching
feature with g(2)(0) > 2 [36, 37, 53–57]. From the per-
spective of single-mode squeezing, this also indicates a
nonclassical photon distribution with large photon num-
ber fluctuations, distinct from the Bose-Einstein distri-
bution of thermal light [58, 59]. However, unlike anti-
bunching (g(2)(τ) < 0.5), which is a clear criterion for
nonclassical nature, super-bunching behavior can poten-
tially be generated from classical mechanisms, like the
gain competition in bimodal lasers [60] and the construc-
tive interference of multiple indistinguishable two-photon
paths with thermal light [50]. Therefore, photon coin-
cidences at zero time delay alone are not sufficient to
demonstrate the presence of superradiance[38]. It is also
necessary to examine the enhancement of the sponta-
neous radiative decay rate in cross-correlation [].

III. PHOTON STATISTICS

Referring to the photon-resolving analysis method of
superradiant photon statistics as described in Ref.[22], we
investigate the rate of photon pair (R2), photon triplet
(R3), and photon quadruplet (R4) with respect to the
single-photon rate. According to the model detailed in
Appendix.D, these photon detection rates can be ex-
pressed as a linear combination of products of photon
state probabilities and corresponding effective efficiency
functions which is determined by the transmission, de-
tection efficiency, and integration time. In Fig.4 (a) and
(b), the ratios between multiple-photon detection rates
and single-photon detection rates are plotted on a log-
arithmic scale relative to the detection rates of Stokes
photons Rs and anti-Stokes photons Ras, respectively.
We observe that as the single photon detection rate in-
creases, R2/Rs and R2/Ras exhibit two distinct plateaus.
On a logarithmic scale, R3/Rs demonstrates an approx-
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FIG. 2. Figures (a) and (b) illustrate the auto-correlation
functions associated with the unheralded Stokes photon and
anti-Stokes photon, respectively. This data originates from
the identical dataset presented in Fig.3. The mechanism re-
sponsible for the oscillation feature in (a) remains unidenti-
fied.

imately linear relationship with Rs, characterized by a
fitted slope parameter of 0.98 ± 0.01. Similarly, R4/Rs

is proportional to Rs with a fitted slope parameter of
1.06 ± 0.06. Compared to the anti-Stokes photon rate
Ras, these fitted slopes are given as 0.81±0.02 for R3/Ras

and 0.89± 0.06 for R3/Ras. These observations confirm
that the probability p2 of the initial photon state |2, 2⟩
scales roughly quadratically with the probability p1 of
the initial photon states |1, 1⟩ as the single-photon prob-
ability. However, this method cannot resolve the gain
factor β in the relation p2 = βp21. Identifying this gain
factor necessitates the knowledge of effective functions.
In the subsequent analysis, we incorporated the trans-
mission ratio and detection efficiency to deduce the ini-
tial photon state generation rate and estimate this gain
factor.

For an effective measurement duration of approxi-
mately 7 hours, with experimental settings of a pumping
laser power of about 800 µW and coupling laser power
of roughly 10 mW, we acquired an average Stokes count
rate of (3.32±0.07)×105 s−1 and an average anti-Stokes
photon count rate of (2.21 ± 0.08) × 105 s−1. Within a
20 ns coincidence window, the photon pair counting rate
was measured at (8138±290) s−1 with heralding efficien-
cies 2% for Stokes photons and 2.9% for anti-Stokes pho-
tons. Fig.5 illustrates the triplet temporal distribution
relative to their relative delays within a large 80 ns coin-
cidence window. The majority of photon triplets are con-
centrated within a 20 ns coincidence window. With this
coincidence window, the rate of photon triplets consist-
ing of one Stokes photon and two anti-Stokes photons was
recorded as (28 ± 2) s−1, while the rate for triplets con-
sisting of two Stokes photons and one anti-Stokes photon
was (41± 3) s−1. Furthermore, a four-photon event was
recorded at a rate of (1044 ± 216) h−1. Fig.6 shows the
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FIG. 3. The heralded auto-correlation functions defined as
Eq. 3 for Stokes photons and Anti-Stokes photons are eval-
uated. In panels (a) and (b), we observe the heralded auto-
correlation for Stokes and anti-Stokes photons, respectively,
with selected pairs falling within a 20 ns coincidence window,
corresponding to the first peak in the cross-correlation. In
panels (c) and (d), the auto-correlation functions for Stokes
and anti-Stokes photons are depicted for pairs occurring
within a 20-40 ns coincidence window, corresponding to the
second peak in the cross-correlation. The delayed peak ob-
served in Fig.(c) suggests a higher probability of detecting
another Stokes photon after a certain delay relative to the
Stokes photon paired in a 20-40 ns coincidence window. Con-
versely, the early peak observed in Fig.(d) indicates an in-
creased probability of detecting another anti-Stokes photon
preceding the anti-Stokes photons paired within a 20-40 ns
coincidence window.
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FIG. 5. Triplet photon coincidence within a coincidence win-
dow 0-80 ns. (a) The histogram shows the detected triplet
events consisting of one Stokes photon and two anti-Stokes
photons in Ch3 and Ch4 respectively. The x-axis denotes the
time delay of photon events between Ch3 and Stokes mode,
while the y-axis represents the time delay between CH4 and
Stokes mode. The theoretical accidental count per bin is
RsRch3Rch4t

2
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2 ≃ 418 (b) The histogram exhibits the
triplet events consisting of two Stokes photons and one anti-
Stokes photon in Ch3 and Ch4 respectively. The theoretical
accidental count per bin is RasRch1Rch2t

2
coitmeas/n

2 ≃ 623.

temporal distribution of detected four-photon events for
a 80 ns coincidence window, revealing an oscillation pat-
tern inherited from second-order cross-correlation. The
total transmission ratio for Stokes channels is approxi-
mately 0.13 with quantum efficiencies 70% for two Stokes
single-photon detectors. For the anti-Stokes channels,
the transmission ratio is 0.12, with quantum efficiencies
of 50% for anti-Stokes single-photon detectors. Resort-
ing to this knowledge of transmission ratios in collection
paths and quantum efficiencies, the analysis detailed in
Appendix.F reconstructed the effective probability func-
tions for photon event detection. This enables us to infer
the initial photon state from the atomic ensemble within
the collection solid angle in the experimental setup. The
analysis indicates that, in our collection setup, the pho-
ton pair generation rate out of the atomic cloud reaches
1 × 106 s−1 with expected heralding efficiencies around
27% for both Stokes channel and anti-Stokes channels.
Simultaneously, the photon quadruplet generation rate
was determined to be about 4 × 104 s−1, accounting for
roughly 1% of all Stokes photon events and anti-Stokes
photon events. The residual three-photon event genera-
tion rates are calculated as approximately 9×104 s−1 for
two Stokes photon and one anti-Stokes and 1 × 105 s−1

for one Stokes photon and two anti-Stokes photons. We
further assume that all photon triplet states originate
from the photon quadruplet state and are caused by
photon loss in the atomic ensemble and the collection
path. Under these assumptions, we estimate the initial
photon quadruplet generation rate to be up to around
9.5 × 105 s−1, alongside a pure photon pair generation
rate of 3.7 × 106 s−1, with estimated loss coefficients of
approximately 0.56 for Stokes photons and 0.54 for anti-
Stokes photons. Thus, the initial photon quadruplet gen-
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FIG. 6. (a) The green histogram illustrates the four-fold pho-
ton event counts within an 80 ns coincidence window over an
observation period of 7 hours. The dashed line represents a
theoretical estimation of approximately 110 accidental four-
fold photon events per 2 ns bin during the same measurement
duration. The accidental four-fold photon detection ratio
(Racc4) is determined by R1R2R3R4t

3
coi, where Ri denotes the

detection rate in each single-photon detector, and tcoi is the
coincidence window. The grey histogram presents an example
of accidental four-fold photon event counts from an uncorre-
lated coincidence window. (b) This 2D histogram illustrates
the spatial distribution of four-photon event counts against
the relative delay between two Stokes photons and the delay
between two anti-Stokes photons in a single four-fold photon
event. (c) This displays the four-fold event counts versus the
delay time of the anti-Stokes photon after the Stokes photon.
Ch1 and Ch2 are two detector channels for Stokes photons,
while Ch3 and Ch4 are two channels for anti-Stokes photons.

eration rate is nearly of the same order of magnitude as
the photon pair generation rate.

Given the assumption that the generation of corre-
lated photons in the atomic medium follows a Poisson
process, the probabilities associated with specific pho-
ton states, such as |1, 1⟩ and |2, 2⟩, can be formulated
with respect to a given time interval ∆t. The esti-
mated probability p̄1 of observing the state |1, 1⟩ within
∆t is expressed as p̄1 = R2∆te−R2∆t, while the prob-
ability p̄2 of detecting the state |2, 2⟩ in the same in-
terval is given by p̄2 = R4∆te−R4∆t. These probabili-
ties are influenced by the selection of the time window.

Within a defined 20 ns coincidence window, the probabil-
ity model yields a photon pair rate of p̄1 ≃ 0.07 and pho-
ton quadruplet rate of p̄2 ≃ 0.019. The photon quadru-
plet probability, p̄2, is enhanced by a factor of approxi-
mately 3.85 compared to the squared one-photon prob-
ability, p̄21. Furthermore, it exceeds the predicted value
of P (2) ≃ 0.0044 for a photon state with a mean photon
number ⟨n⟩ ≃ 0.074 based on photon number distribu-
tion for thermal light. According to the Bose-Einstein
distribution, the probability of observing n photons is
given by P (n) = 1/(⟨n⟩ + 1)(⟨n⟩/(⟨n⟩ + 1))n. Although
the complete photon number distribution cannot be de-
termined due to the lack of photon-number-resolving de-
tectors, the observed ratio between the photon pair and
photon quadruplet probabilities indicates a higher like-
lihood of multiple photon events than predicted by the
Bose-Einstein distribution. This deviation suggests an
enhancement in the occurrence of multi-photon events.

IV. CONCLUSION

In conclusion, besides generating correlated photon
pairs, the FWM process in a cold atomic ensemble can
also produce correlated four-photon states with a decent
generation rate. Our investigation focused on these four-
photon states. The correlated photons were collected
from the phase-matching mode in the paraxial regime
of the counterpropagating pump fields. Using the HBT
setup, we examined the auto-correlation, heralded auto-
correlation from the photon coincidence counting mea-
surement. The enhanced probability of two same-mode
photons within a zero-delay time bin can be verified from
heralded auto-correlation. For the photon quadruplet
state |2, 2⟩, in addition to the quadratic relation with
the single-pair probability, a linear gain is also observed.
This photon statistics deduction reveals that the initial
photon states exhibit a high generation rate of four-
photon states, making this approach competitive with
previous high-photon-number state generation protocols.
Given the potential for optimizing the collection and fil-
ter system, as well as enhancing the optical depth of the
atomic cloud, a higher detection rate of multiple-photon
states can be anticipated. Such our-photon states hold
significant potential for a variety of applications, These
include the generation of heralding higher-order Fock
states[? ], implementation of multiparty teleportation
[61], improvement of the phase sensitivity in interferom-
etry experiments [62], detecting sub-wavelength interfer-
ence [63] and enhanced visibility in ghost imaging [64].
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given by:

pb = R2∆te−R2∆t ≈ R2∆t (A1)

This approximation holds as ∆t = 2 ns for the minimal
time bin in our timestamp and R2∆t ≪ 1. Hence, the
average background count per bin in the far delay regime
is:

N̄b = pbN1 ≈ R1R2∆tTm (A2)

Experimentally, the background count serves as the nor-
malization factor to obtain the auto-correlation function
g(2)(τ), corresponding to the theoretical normalization
value ⟨a†(t+ τ)a(t+ τ)⟩⟨a†(t)a(t)⟩ with a constant time
value ∆tTm. This method allows us to infer the auto-
correlation function by analyzing the coincidence his-
togram in the Hanbury Brown and Twiss (HBT) setup.

The zero-delay count Nτ=0 within the same measure-
ment time Tm and time bin ∆t can be expressed by the
conditional coincidence probability pτ=0 as:

Nτ=0 = pτ=0N1 (A3)

The thermal properties yield g(2)(τ = 0) = 2, hence the
zero-delay count Nτ=0 within the zero-delay bin is writ-
ten in terms of the average background count per bin
in the far delay regime as Nτ=0/N̄b = 2. Therefore, the
zero-delay conditional coincidence probability is given by:

pτ=0 = 2R2∆t (A4)

Appendix B: Heralded coincidence histogram

Considering the heralding case involving the photon
rate in the Stokes channel denoted as Rs, we can record
the pair rate Cs1 between this channel and arm 1 for the
anti-Stokes channel. Post-selection procedures account
only for photon events in arm 1 paired with the Stokes
mode. Once the pair is confirmed, the photon events
in arm 2 before and after this photon event in arm 1
will accumulate to the whole histogram. The coincidence
histogram is the sum of Nh

1 = Cs1Tm individual counting
histograms. Even when arm 1 photon events are post-
selected, the probability per bin in the far delay regime
in arm 2 is independent of Rs, R1, or Csi, with pb ≈
R2∆t due to the absence of correlation between them.
Moreover, it is not necessary to post-select photon events
in arm 2, as the photon counting histogram inherently
records only those photon events in arm 2 that are close
to the paired photon events in arm 1. Consequently, the
average background count per bin in the far delay regime
is

N̄h
b = pbN

h
1 = pbCs1Tm (B1)

At the zero-delay bin, if the photon event numberNh
τ=0 =

phτ=0N
h
1 is measured in relation to the far-delay average

background count as

Nh
τ=0/N̄

h
b = k (B2)

Then, we obtain

phτ=0 = kR2∆t =
k

2
pτ=0 (B3)

Here, pτ=0 refers to the probability of two photons within
zero-delay time bin ∆t for all photons in the same mode,
while phτ=0 refers to the probability of two photons ex-
isting within zero-delay time bin ∆t for paired photons.
This analysis indicates that super-bunching with g(2)(0)
represents the enhancement of conditional coincidence
probability.

Appendix C: Former definition of heralded
auto-correlation function

Previously, the second-order correlation function for
one arm conditioned on the observation of one photon
in the other arm is proposed with an averaging proce-
dure over post-selection, as described in previous works
[43, 44, 65]. For example, the second-order correlation
function for “as” mode conditioned on “s” mode is de-
fined as

g(2)ps (t1, t2|ts) =
⟨â†s(t1)â†as(t2)âas(t2)âs(t2)⟩ps

⟨â†s(t1)âs(t1)⟩ps⟨â†as(t2)âas(t2)⟩ps
.

(C1)
Here, ⟨:⟩ps denotes an average over events post-selected
on the detection of a Stokes photon. Analog to the un-
heralded auto-correlation, g(2)(0) = 2p(2as)/p

2(1as), this
quantity can be expressed by the conditional probability
[66] as

g(2)ps (0) =
2p(2as|1s)
p2(1as|1s)

(C2)

where p(nas|1s) denotes the probability of detecting one
Stokes photon and at the subsequent coincidence window
the Stokes mode containing nas photons. The conditional
probabilities are related to the photon state probabilities
using Bayes’s theorems as

p(nas|1s) =
p(nas, 1s)

ps
=

p(nas, ns)∑
n p(ns, nas)

≈ p(nas, ns)

p(1as, 1s)
(C3)

in which p(nas, ns) is the joint probabilities of nas pho-
tons in anti-Stokes mode and ns photon in the Stokes
mode, also it represents the probabilities of photon state
|ns, nas⟩. The last approximation refers to the case
where the single-pair probability is dominant compared
to multiple-pair states.

If we consider a two-mode squeezing state
√
p|1, 1⟩ +

p|2, 2⟩, neglecting the vacuum and the n > 2 higher
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terms, this post-selected normalized g
(2)
ps is given as

p(2as|1s) ≈ p2/(p+ 2p2)

p(1as|1s) ≈ p/(p+ 2p2)

g(2)ps (0) ≈ 2p+ 4p2
(C4)

It is easy to observe that this post-selected quantity is
determined by the single-pair probability p. In the low

squeezing limit where p ≪ 1, it is clear that g
(2)
ps con-

sistently exhibits g
(2)
ps ≪ 1. This example underscores

that g
(2)
ps does not function as a correlation function, in-

stead, it signifies the purity of the heralded single photon.
Specifically, if a pair of photons in the twin modes is de-

tected, g
(2)
ps denotes the conditional probability of another

photon’s existence within the same coincidence window
in the anti-Stokes mode. Therefore, we can predict that

the property g
(2)
ps (0) < 1 applies to the photon pairs gen-

erated from SPDC and FWM, given that the condition
p ≪ 1 is satisfied for the minimal time bin. This implies
that with a lower photon generation rate, a deeper dip in

g
(2)
ps (τ) can be achieved. This dip indicates strong non-
classical cross-correlation between two modes rather than
sequential photons within a single mode [45, 46, 65]. Con-
sequently, any correlated photon pairs exhibiting strong
cross-correlation and low generation probability can be
considered as a heralded single-photon source. This post-

selected quantity g
(2)
ps can be used to evaluate the quality

of the heralded single-photon.

Appendix D: Multiple photon detection model

Assuming that all detected single photons, correlated
photon pairs, photon triplets, and photon quadruplets
originate from a quantum photon state represented by√
p1|1, 1⟩ +

√
p2|2, 2⟩, resembling the form of a two-

mode squeezed state neglecting vacuum and higher-order
terms. Here, p1 denotes the probability of the state |1, 1⟩,
and p2 represents the probability of |2, 2⟩. In the approx-
imation of a two-mode squeezed state, we can anticipate
the relationship p2 = p21.

Furthermore, we assume that all photon triplet events
originate solely from the state |2, 2⟩, rather than from a
distinct process generating three photons, and the detec-
tors do not have photon-number resolving ability. The
rates of single-photon generation Rs and Ras, photon
pair generation R2, photon triplet generation R3, and
photon quadruple generation R4 are proportional to the
corresponding state probabilities as follows:

Rs ∝ ηs(p1 + p2)

Ras ∝ ηas(p1 + p2)

R2 ∝ η2(ηs, ηas)(p1 + p2)

R3 ∝ η3(ηs, ηas)p2

R4 ∝ η4(ηs, ηas)p2

(D1)

Under the approximation of p2 ≪ p1, we have

Rs ∝ ηsp1

Ras ∝ ηsp1

R2 ∝ η2(ηs, ηas)p1

(D2)

where ηi (for i = s, as) represents an effective function
determined by transmission, coupling efficiency, integra-
tion time, and detection efficiency in the corresponding
channels. Similarly, ηi (for i = 2, 3, 4) is a combination
of ηs and ηas, dependent on the detection configuration.
These effective probability functions depend solely on the
experimental setup and detection configuration, indepen-
dent of the initial photon state probabilities p1 and p2.

Therefore, the ratio between the correlated photon pair
rate and the Stokes single-photon rate R2/Rs is a con-
stant relative to the Rs as

R2

Rs
=

η2(ηs, ηas)

ηs
= const (D3)

The ratio of photon triplet rate and Stokes single-photon
rate is given as

R3

Rs
=

η3p2
ηs(p1 + p2)

(D4)

If p2 has a quadratic relation with p1 as p2 = βp21 with a
gain factor β and we obtain

R3

Rs
=

η3p2
ηs(p1 + p2)

≃ η3βp1
ηs

(D5)

Therefore R3/Rs is proportional to Rs, and in logarith-
mic scale, it will show a linear relation with slope 1.

The photon quadruple rate, defined by Eq. D1, shares
the same structure as the photon triplet rate but with
a different efficiency function η4. Consequently, the con-
clusions drawn from the photon triplet analysis can also
apply to the photon quadruple rate. Furthermore, ex-
tending this analysis to ratios relative to the anti-Stokes
single-photon rate is feasible by substituting Rs with Ras

and replacing ηs with the corresponding detection effi-
ciency parameter ηas.

Appendix E: Collection transmission and quantum
efficiencies

The total collection efficiencies (total transmission) are
determined by losses in the collection channels, primarily
due to imperfect coupling between the collected Gaus-
sian spatial mode and the single-mode fiber, transmis-
sion loss in the Etalon systems, and attenuations in the
single-mode fibers and fiber adaptors. These losses are
assessed by measuring the attenuation of a laser beam
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in these systems. Therefore, the total transmissions used
in the initial state deduction represent upper bounds for
the real transmission condition. Due to the small col-
lection solid angle, a portion of correlated photon pairs
with opposite wave vectors may not overlap well with the
collected spatial mode, resulting in a significant chance
that only one of the correlated photon pairs is collected.
These unpaired single photons in the collection spatial
mode contribute substantially to the noise single-photon

count rates S
(i)
s and S

(i)
as for each mode. This also indi-

cates that the model in the following appendix provides
an estimate for the worst case. The actual initial photon
quadruplet rate under wider phase-matching conditions
is expected to be higher than the evaluation.

The two single-photon detectors in Stokes channels are
fiber-coupled Excelitas detectors with a nominal quan-
tum efficiency of approximately 70%, while the two
single-photon detectors in anti-Stokes channels are free-
space detectors with homemade coupling systems, result-
ing in estimated quantum efficiencies for anti-Stokes pho-
tons of 50%.

Appendix F: Initial state deduction

Firstly, we model the loss and absorption of photons in
the atomic ensemble. Here, we designate the loss prob-
ability for Stokes photons as As and the loss probability
for anti-Stokes photons as Aa. The residual four-photon
rate is given as

R
(i)
4 = R4(1−As)

2(1−Aa)
2 (F1)

Owing to the loss of single photons, a fraction of the four-
photon states undergo the loss of a single photon into a
three-photon state with the following rates:

R
(i)
3a = 2R4(1−As)As(1−Aa)

2

R
(i)
3s = 2R4(1−As)

2Aa(1−Aa)
(F2)

Here, the subscript 3a signifies one Stokes and two anti-
Stokes photons, while 3s represents two Stokes and one
anti-Stokes photon. The Stokes anti-Stokes pair origi-
nates from two sources: one from the original two-photon
pairs, and the other contributed by the loss of photon in
photon quadruples.

R
(i)
2 = R2(1−As)(1−Aa) + 4R4(1−As)As(1−Aa)Aa

(F3)
Incoherent scattering rates for Stokes and anti-Stokes are
expressed as follows:

S(i)
s = Ss(1−As) +R2(1−As)Aa + 2R4(1−As)AsA

2
a

S(i)
a = Sa(1−Aa) +R2As(1−Aa) + 2R4A

2
sAa(1−Aa)

(F4)

The total loss in the collection channels encompasses spa-
tial collection loss, total fiber coupling loss, Etalon filter
loss, and fiber-based beam splitter loss. Correspondingly,
the transmission rate in the Stokes channel is denoted as
Ts, while the transmission in the anti-Stokes channel is
denoted as Ta. We utilize the superscript (t) to indicate
the transmitted event rate. The rates for different photon
states are expressed as follows:

1. The photon quadruplets

R
(t)
4 = R

(i)
4 T 2

s T
2
a (F5)

2. The photon triplets(3a for two anti-Stokes photons
and 3s for two Stokes photons)

R
(t)
3s = R

(i)
3s T

2
s Ta + 2R

(i)
4 T 2

s Ta(1− Ta)

R
(t)
3a = R

(i)
3aTsT

2
a + 2R

(i)
4 Ts(1− Ts)T

2
a

(F6)

3. The photon pairs

R
(t)
2 =R

(i)
2 TsTa + 2R

(i)
3aTsTa(1− Ta)

+ 2R
(i)
3s Ts(1− Ts)Ta

+ 4R
(i)
4 Ts(1− Ts)Ta(1− Ta)

(F7)

4. The two-photon both in Stokes or anti-Stokes

R
(t)
2s =R

(i)
3s T

2
s (1− Ta) +R

(i)
4 T 2

s (1− Ta)
2

R
(t)
2a =R

(i)
3a (1− Ts)T

2
a +R

(i)
4 (1− Ts)

2T 2
a

(F8)

5. Single photon scattering

S(t)
s =R

(i)
2 Ts(1− Ta)

+R
(i)
3aTs(1− Ta)

2 + 2R
(i)
3s Ts(1− Ts)(1− Ta)

+ 2R
(i)
4 Ts(1− Ts)(1− Ta)

2

+ S(i)
s Ts

S(t)
a =R

(i)
2 (1− Ts)Ta

+ 2R
(i)
3a (1− Ts)Ta(1− Ta) +R

(i)
3s (1− Ts)

2Ta

+ 2R
(i)
4 (1− Ts)

2Ta(1− Ta)

+ S(i)
a Ta

(F9)

Having accounted for the entire loss in both Ls and
La, we describe the likelihood of a photon traversing
a specific arm of the beam splitter and reaching the
corresponding detection channels as P1, P2, P3, P4, re-
spectively. These probabilities adhere to the conditions
P1 + P2 = 1 and P3 + P4 = 1, where channel 1 and
channel 2 represent the two arms for Stokes photons,
while channel 3 and channel 4 denote the two outputs
for anti-Stokes photons. The probability distribution for
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a photon cluster state across four channels is expressed
as follows:

P (n, a− n,m, b−m) =

C(a, n)C(b,m)Pn
1 P

a−n
2 Pm

3 P a−m
4

(F10)

Here, the variable “a” denotes the number of Stokes pho-
tons within a given photon state, with possible values of

0, 1, or 2. Similarly, ”b” represents the count of anti-
Stokes photons in the same photon state, with potential
values of 0, 1, or 2.
In the HBT setup, photons in four channels are de-

tected using single photon detectors with detection ef-
ficiencies Qs for Stokes photon and Qa for anti-Stokes
photon. Therefore, we can express the photon counting
measurement rates in terms of the initial photon state
rates.

R
(m)
4-photon = R

(t)
4 P1111Q

2
sQ

2
a (F11)

R
(m)
1S,2aS = R

(t)
4 [2P1111Qs(1−Qs)Q

2
a + (P2011 + P0211)QsQ

2
a] +R

(t)
3a (P1011 + P0111)QsQ

2
a (F12)

R
(m)
2S,1aS = R

(t)
4 [2P1111Q

2
s(1−Qa)Qa + (P1120 + P1102)Q

2
sQa] +R

(t)
3s (P1110 + P1101)Q

2
sQa (F13)

R
(m)
2 =R

(t)
2 QsQa

+R
(t)
3a [2(P1011 + P0111)QsQa(1−Qa) + (P1020 + P1002 + P0120 + P0102)QsQa]

+R
(t)
3s [2(P1110 + P1101)Qs(1−Qs)Qa + (P2010 + P0210 + P2001 + P0201)QsQa]

+R
(t)
4 [4P1111QsQa(1−Qs)(1−Qa) + 2(P2011 + P0211)QsQa(1−Qa)

+ 2(P1120 + P1102)Qs(1−Qs)Qa + (P2020 + P2002 + P0220 + P0202)QsQa]

(F14)
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