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I. INTRODUCTION

Multiphoton states are states with more than two
photons entangled or correlated in single or multiple
modes. Such states are a fundamental resource for
quantum sciences and technologies [1]. At a foundational
level, multiphoton GHZ and W states have enabled
powerful tests to disprove local realistic theories [2] and
explore unique entanglement classes [3, 4] Multiphoton
states enable secure communication protocols [5, 6] and
also find application in quantum metrology [7]. In the
form of cluster states, they are essential for scalable and
resource efficient photonic quantum computing [8, 9].
States with four photons have also been used to encode
decoherence-resistant quantum information [10].

(Part in Italics to be removed) Several types of
entangled multiphoton states, such as three and four-
photon GHZ states have been prepared by interfering
and combining photon pairs from spontaneous parametric
downconversion (SPDC) in independent crystals [1, 2,
11–15]. Another approach utilizes the onset of laser-
like stimulation in SPDC, by retro-reflecting a pulsed
pump and an initially generated pair to stimulate the
generation of further pairs entangled with the reflected
two-photon state [16, 17]. However, such schemes require
synchronized pump pulsing and complicated geometries
for erasure of which-path information. Without the
need for such complicated schemes, It is well known
that multiphoton states can be directly produced by
strong pumping of non-linear processes like SPDC
and spontaneous four-wave mixing (SFWM), where
the probability of producing more than one photon-
pair increases with the pump power [18, 19]. In
directly pumping an SPDC process, the probability
of producing entangled four photons is twice as high
as producing two independent entangled pairs, due to
bosonic enhancement [20, 21] Highly entangled W states
have also been produced by analyzing the higher-order
component in a directly pumped SPDC process [22].

Although there have been theoretical explorations of
the rich temporal structure of correlated photon states
from SPDC or SFWM [23], direct analysis of the output
from SPDC without modification by filtering has been
challenging due to the jitter and response averaging
of detectors [24]. Correlated photons from SPDC
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typically have very short coherence lengths, shorter than
the length of the SPDC crystal itself. Thus, in the
above cases, pulsed pumps with large instantaneous
powers and narrowband filters are used to isolate and
analyze correlated multiphoton states from the same
downconversion event. This leads to losses. The large
bandwidth of photons from SPDC also limits their use
in memory and repeater schemes that require efficient
interfacing with material quantum systems.

Spontaneous four-wave mixing in atomic clouds is an
excellent and bright [25? ] alternative to produce
narrowband photons with long coherence times [26–30].
Photons from this process can be spectrally shaped to
be narrower or wider than atomic transition linewidths,
making them well-suited for quantum networking
applications such as memory, repeater, and entanglement
distribution schemes involving atoms. Furthermore,
their long coherence times, typically in the order of
tens of nanoseconds, allow them to be well resolved
by off-the-shelf photon detection electronics. Here, we
demonstrate that SFWM in a cold atomic cloud is a
source for producing time correlated four-photons. The
long coherence length of the correlated photon-pairs
produced typically exceeds the length of the non-linear
medium. This can lead to bosonic enhancement in the
collective emission of a correlated second pair within
the coherence time of one pair Thus, it is possible to
observe a correlation within higher-order pair generation
in direct continuous-wave (cw) pumping at nominal
powers without the need for filters.

In cw-pumped SFWM within an atomic medium, the
third-order nonlinear interaction of a weak narrowband
pump laser and coupling laser with the medium generates
narrowband, correlated optical fields which we call Stokes
and anti-Stokes by convention. A single frequency
conversion process produces the following state that can
contain multiple Stokes and anti-Stokes photons [31–33],

|Ψ⟩ = 1

β

∞∑
n=0

(α)
n |n, n⟩ (1)

Here, β ≡ coshζ, α ≡ tanhζ, ζ is related to the
effective interaction Hamiltonian and is proportional to
the pump power, and |n, n⟩ indicates correlated Fock
states with n photons each in the Stokes and anti-
Stokes modes. A complete expression for the interaction
Hamiltonian and the nonlinear susceptibilities can be
found in [27, 34]. From Eq. 1, it is evident that
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at small interaction strengths (ζ ≈ 0) the probability
of generating states with four photons relates to the
probability of producing pairs as P4 = P 2

2 . In this
case the four photon states contain correlated and
entangled quadruplets of two Stokes and anti-Stokes
photons generated within a single SFWM process[35].
However, in the event of multiple independent frequency
conversion processes occurring, four-photon states can
contain uncorrelated and unentangled double pairs. In
this case, the probability of creating n pairs (Pn)
within a certain time window, is described by a Poisson
distribution of mean u, Pn = e−µµn/n!. For small µ,
P4 ≈ P 2

2 /2.[35].

Here, we study the four photon component from
SFWM in a cold cloud of Rb87 atoms using double
Hanbury Brown and Twiss (HBT) type setups, one in
each of the correlated modes. We introduce an efficient
technique for identifying coincidences across multiple
detectors, which helps us analyze three-fold and four-fold
coincidences of the photons generated from the nonlinear
interaction. The generation rate for quadruplets scales
quadratically with the pump power as compared with
the generation of pairs, which scales linearly. We analyze
the temporal structure of the detected coincidences and
identify a strong contribution of correlated four-photons
or quadruplets over uncorrelated but accidental double-
pairs. Within a correlation window of 20 ns we observe
a peak in three-fold coincidences that is twice the
value at longer delays. This indicates that we observe
quadruplets correlated in time within 20 ns, as opposed
to a Poisson distribution of uncorrelated four photons
detected outside the correlation time. This confirms
the presence of stimulation or bosonic enhancement in
the generation of the second-pair within the correlation
time [16, 35], and that the entire macroscopic ensemble
of individual atoms behaves coherently as a unit in the
generation of quadruplets. Having taken into account
channel losses and detector efficiencies, we estimate an
instantaneous photon quadruplet generation rate of 2.3×
106 counts per second close to saturation of the nonlinear
frequency conversion.

Multiphoton narrowband photons have so far been
demonstrated by spatially multiplexing two SFWM
events, spontaneous Raman events, and cascaded
geometries [36–39]. Our results show that direct
pumping holds potential to be a simpler alternative
to producing multiphotons with the possibility of
being entangled. To our knowledge, microscopic and
macroscopic phenomenological models of SFWM as a
collective process involving individual atomic emitters
have dealt only with the generation of photon-pairs
[40, 41]. Our results pave the way for the extension of
such models to better understand the microscopic origin
of correlated multiphoton states.
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FIG. 1. (a) Energy levels involved in the Double-Λ
spontaneous four-wave mixing in 87Rb. Solid blue and red
arrows indicate cw pump and coupling fields respectively.
Wiggly blue and red arrows indicate generated Stokes and
anti-Stokes fields. Black dots indicate initialization of atoms
in the F = 1 hyperfine ground state. (b) Schematic of
experimental setup. The pumping and coupling beams have
a waist of ∼ 0.85 mm. The collection spatial mode is focused
on the atomic ensemble with a waist of 175 µm. Channels
1 and 2 analyze the Stokes field, and Channels 3 and 4
the anti-Stokes fields in a Hanbury-Brown-Twiss like setup.
λ/2: Half waveplate, λ/4: quarter waveplate, PBS: polarising
beamsplitter, Ch: channel, APD: avalanche photodiode.

II. EXPERIMENTAL SETUP

Our scheme is based on SFWM using a double-Λ
configuration of energy levels in a cold cloud of 87Rb
atoms, similar to the systems reported in [28, 42].
The SFWM process is driven by a weak cw pump
(of frequency ωp) detuned by ∆p from |5S1/2, F =
1⟩ → |5P3/2, F = 2⟩ and a strong cw coupling laser
(of frequency ωc) resonant to the |5S1/2, F = 2⟩ →
|5P1/2, F = 2⟩ transition. The Stokes photons are
generated at a frequency ωs close to the |5P3/2, F =
2⟩ → |5S1/2, F = 2⟩ transition and the anti-Stokes
photons have a frequency ωas resonant to the |5P1/2, F =
2⟩ → |5S1/2, F = 1⟩ transition (refer Fig.1(a)). The
fields are circularly polarized, orthogonal to each other,
and are directed at an elongated magneto-optical trap
(MOT) of cold 87Rb atoms, along the long axis in
a counter-propagating configuration (Fig.1 (b)). The
SFWM process is precluded by initializing atoms in
the MOT to the |5S1/2, F = 1⟩ hyperfine ground state
via optical pumping. The MOT trapping beams are
switched off during the SFWM measurement. The



3

−20 0 20 40 60 80 100

Delay Time τ (ns)

1

2

3

4

5

6

7
g

(2
)

a
s-

s
(τ

)

1

2
Stokes

−50 −25 0 25 50

τ (ns)

1

2
Anti-Stokesg

(2
)

a
u

to
(τ

)

FIG. 2. Normalized second-order correlation. (a) The Stokes-
anti-Stokes cross-correlation as a histogram of coincidences for
various delays τ , normalized by the Stokes and anti-Stokes
singles rates for a 2 ns bin size and an integration time of
150 s. Results averaged over 17 measurements. Oscillations
of periodicity 18 ns are caused by the Rabi frequency
of the coupling field. Insets: Unheralded autocorrelation

measurements of Stokes photons g
(2)
s,s(τ) (blue) and anti-

Stokes photons g
(2)
as,as(τ) (red) (jointly labeled g

(2)
auto(τ)).

optical depth (OD) of the atomic cloud is ∼ 30.
The spatial modes for collection the Stokes and anti-
Stokes photons are focused on the atomic ensemble
with a waist of 175 µm. The collection modes are
at an angle of 1◦ to the pump and coupling fields, to
reduce background scattering. Polarization filters and
temperature controlled etalon filters (bandwidth ∼ 100
MHz) are implemented in both Stokes and anti-Stokes
collection arms to suppress unwanted photons. The
photons collected in the Stokes and anti-Stokes arms are
split using 50:50 fiber beamsplitters (BS) and detected
using avalanche photodiodes (APDs). A timestamp card
with 2 ns timing resolution records the photon arrival
times in each of these four channels. Second, third and
fourth-order field correlations are analyzed using this
data.

III. RESULTS

A. Second-Order Correlation

We measure the second-order intensity correlations
as a first step towards characterizing the statistical
properties of the generated fields. The normalized
second-order correlation between stationary fields Êi in
mode i, detected at time ti, and Êj detected at time
tj = ti + τji is [43]

g
(2)
ji (τji) =

⟨Ê†
i (ti)Ê

†
j (ti + τji)Êj(ti + τji)Êi(ti)⟩

⟨Ê†
j (ti + τji)Êj(ti + τji)⟩⟨Ê†

i (ti)Êi(ti)⟩
,

(2)
where i, j ∈ {s, as} for the Stokes (s) and anti-Stokes
(as) modes.

The second-order autocorrelations g
(2)
s,s (τ), g

(2)
as,as(τ)

and cross-correlation g
(2)
s,as(τ) were measured for pump

and coupling powers of about 800 µW and 10 mW
respectively and a pump detuning of ∆p = 40 MHz.

From the g
(2)
s,as(τ) results shown in Fig.2 we infer a

correlation time of around ∆t = 16 ns between the
Stokes and anti-Stokes photons. The oscillations in the
coincidences are due to the strong coupling beam which
leads to an oscillation of population between energy
levels |2⟩ and |3⟩ at an effective Rabi frequency of
2π×55MHz[28]. The pair generation rates inferred from
these measurements are given in section III E.
The Stokes and anti-Stokes modes independently

display thermal statistics as seen from their intensity
autocorrelation at τ = 0 (inset in Fig.2). We measure

g
(2)
s,s (0) = 2.07±0.02 for the Stokes mode and g

(2)
as,as(0) =

2.02± 0.07 for the anti-Stokes mode.

B. Triple Coincidences

We analyze the temporal distribution of coincidences
involving more than two detections, to determine the
ratio of correlated double-pairs to two independent pairs
detected together by chance. Both these scenarios
lead to states containing multiples of Stokes-anti-Stokes
pairs and there is no physical mechanism that generates
states involving three photons. Thus, a measurement
of triplet coincidences involving two Stokes and one anti-
Stokes photons or two anti-Stokes and one Stokes photon
provides similar information to a four-fold coincidence
measurement of two anti-Stokes and two Stokes photons,
while being simpler to acquire and visualize.
The normalized third-order correlation between the

Stokes and anti-Stokes modes from two anti-Stokes
detections at times t3 and t4 and a Stokes detection at
time ts is

g(3)as,as,s(t3, t4, ts) =

⟨Ê†
s(ts)Ê

†
as(t3)Ê

†
as(t4)Êas(t4)Êas(t3)Ês(ts)⟩

⟨Ê†
s(ts)Ês(ts)⟩⟨Ê†

as(t3)Êas(t3)⟩⟨Ê†
as(t4)Êas(t4)⟩

(3)

where the numerator gives the triple-coincidence rate

G
(3)
as,as,s(t3, t4, ts). This can be expressed in terms of

second-order correlations as shown in Eq.A7.

Fig.3 shows g
(3)
as,as,s for triplets from an anti-Stokes

detection each in channels 3 (at t3) and 4 (at t4) and a
Stokes detection in either of channels 2 or 1 (at ts), where
the measurement was performed for the same conditions
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FIG. 3. Normalized third-order correlation. (a) Normalized

triple coincidences g
(3)
as,as,s for various delays τ3s and τ4s

between a detection in Ch3 and Ch4 respectively and a
heralding Stokes photon in either of Ch1 or Ch2. Coincidences
analyzed from data acquired over a measurement duration
Tm of 0.7 h, normalized by the accidental triplet rate
RsR3R4δt

2Tm, where the time bin δt = 2 ns and Ri is

the singles count in channel i. The g
(3)
as,as,s peak value of

18 indicates strongly correlated triplets. (b) Comparison of

the vertical ridge with g
(2)
as,s. Red dots: Mean normalized

triplet count, averaged over τ4s from 20 ns to 60 ns. Solid

line: normalized cross-correlation function g
(2)
as,s(τ3s) between

Stokes and Ch3. (c) Ratio of normalized triple coincidence
peak value with the average value along the vertical ridge
away from the peak. Blue dots: Triple coincidences at τ3s = 8
ns divided by mean triple coincidences at τ3s = 8 ns and
τ4s = 20 − 60 ns. The peak is approximately 4 times the
value in the ridge.

as in section IIIA. The results are represented in terms
of relative delays τ3s = t3 − ts and τ4s = t4 − ts. The
technique used to identify triplets from pair coincidences
is described in the Appendix B.

The features in Fig. 3 can be intuitively understood
by analyzing Eq.A7 over various delays. For a coherence
time ∆t for the Stokes and anti-Stokes photons, when
τ3s, τ4s, τ34 ≫ ∆t, the triplet rate reduces to the
background accidental rate R3(0) which is normalized
to 1 here. When τ3s, τ4s,≫ ∆t and τ34 <∼ ∆t, the
autocorrelation in the anti-Stokes mode dominates the
result (g

(3)
as,as,s(τ3s, τ4s, τ34) → g

(2)
as,as(τ34)). In this

case, the triplets are caused by the combination of an
accidental click in the Stokes mode with a bunched
thermal state in the anti-Stoked mode, forming the
moderately bright diagonal in Fig. 3.

For τ3s, τ34 ≫ ∆t but τ4s <∼ ∆t (horizontal ridge)
or when τ4s, τ34 ≫ ∆t but τ3s <∼ ∆t (vertical ridge)
the cross-correlation between anti-Stokes (in Ch4 or Ch3
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FIG. 4. Quadruple-coincidence detection. Each slice shows
unnormalised four-fold coincidences from a detection in each
of Ch1 to Ch4 for a fixed delay τ12 with a 2 ns time bin,
and a range of delays τ31 and τ41. Data acquired over a
measurement duration of 0.7 hr. The coincidences are peaked
for τ12 = 0± 2 ns and τ31 and τ41 = 8± 2 ns.

respectively) and Stokes photon-pairs are the dominant
contributions. Here, the triplets are formed by a
combination of a correlated Stokes-anti-Stokes pair with
an uncorrelated photon in the other anti-Stokes channel.
Thus, the maximum mean value in the horizontal and

vertical ridges is equal to g
(2)
s,as(0) as seen in Fig. 3 (b).

In the region where τ3s, τ34, τ4s <∼ ∆t the coincidences

increase several-fold. From Eq.A7, using g
(2)
as,as(0) =

2, the theoretical peak value of the normalized triplet

rate is g
(3)
as,as,s(0, 0, 0) = 4g

(2)
as,s(0) − 2 ≈ 4g

(2)
as,s(0) when

g
(2)
as,s(0) ≫ 1, a condition true for highly non-classical
pair sources. Thus, theoretically the peak is 4 times the
maximum in either of the horizontal or vertical ridges
when the output contains highly correlated four-photon
states. When the output contains fewer correlated
four-photons and more uncorrelated double-pairs from
multiple SFWM events, the triplet peak at zero delays
would arise from the overlapping of the ridges and would
be closer to 2 times the maximum in either of the
horizontal or vertical ridges.
Due to the long coherence time of the Stokes and anti-

Stokes photons, our triplet measurement is not limited
by averaging effects due to detector resolution, which
would have otherwise reduced the maximum of the triple-
coincidence peak. We see from Fig.3 (c) that in our

measurement, the g
(3)
as,as,s peak is 18 and is about four

times the mean along the vertical ridge (outside the
central 20 ns window). Thus, we verify that the output of
the SFWM process contains strongly correlated double-
pairs, that contribute to the high three-fold coincidences
in the triplet measurement.

C. Quadruple coincidences

We search for four-fold coincidences between
detections of two photons in the anti-Stokes mode
and two photons in the Stokes mode to obtain the
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double-pair generation rate and to directly verify
the generation of correlated double-pairs from our
SFWM source. The quadruplet rate for four-fold
coincidences from two Stokes detections at times t1 and
t2 respectively and two anti-Stokes detections at time
t3 and t4 respectively is described by the correlation
function

G(4)
s,s,as,as(t1, t2, t3, t4) =

⟨Ê†
as(t4)Ê

†
as(t3)Ê

†
s(t2)Ê

†
s(t1)Ês(t1)Ês(t2)Êas(t3)Êas(t4)⟩.

(4)
The normalized fourth-order cross-correlation is

g(4)s,s,as,as(t1, t2, t3, t4) =

⟨Ê†
as(t4)Ê

†
as(t3)Ê

†
s(t2)Ê

†
s(t1)Ês(t1)Ês(t2)Êas(t3)Êas(t4)⟩

⟨Ê†
s(t1)Ês(t1)⟩⟨Ê†

s(t2)Ês(t2)⟩⟨Ê†
as(t3)Êas(t3)⟩⟨Ê†

as(t4)Êas(t4)⟩
.

(5)

G
(4)
s,s,as,as(t1, t2, t3, t4) can be expressed in terms of the

first-order auto and cross-correlations between the modes
as shown in Appendix A.

We search for four-fold coincidences for detections
at times t1 to t4 in channels 1 to 4, under the same
conditions as in section IIIA, within a window of 100 ns.
We represent the data as sliced density plots where each
slice shows quadruplets for a fixed delay τ12 and various
relative delays τ31 and τ41. We see the maximum density
of quadruplets clustered around τ12 = 0 ± 2 ns and τ31
and τ41 = 8 ± 2 ns. Outside a 20 ns window centered
at (τ12, τ31, τ41) = (0 ns, 8 ns, 8 ns) the quadruplet count
drops significantly to the background level indicating
the presence of highly-correlated quadruplets within 20
ns. Every slice contains bright horizontal and vertical
ridges from four-fold coincidences between accidentals
and a correlated pair between Ch4-Ch1 or Ch3-Ch1
respectively. A relatively dull diagonal due to four-fold
coincidences between accidentals and thermally bunched
photons in Ch3-Ch4 can also be seen.

D. Detection Rates

From the data, we obtain singles rates in each channel
(Ri, i ∈ {1, 2, 3, 4}) and singles in the Stokes (anti-
Stokes) modes as Rs(as) = R1(3) +R2(4). From the pair,
triplet and quadruplet coincidence measurements we
obtain the measured pair rate as Rp = R13+R14+R23+
R24 (Rij is the rate for coincidences between channels
i and j), triplet rate Rt = R134 + R234 + R123 + R124

(Rijk is the rate for coincidences between channels i,
j and k), and quadruplet rate (Rq) defined within a
tc = 20 ns coincidence window, without subtraction of
accidentals. tc of 20 ns is appropriate as the detection
of correlated double-pairs is peaked within this window
as seen from sections III B and III C. Fig.5 shows the
singles, pairs, triplets and quadruplet rates as functions
of pump power. The production of photon pairs and
quadruplets saturates at pump powers over a mW. At
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FIG. 5. Detection rates as a function of pump power
(a) Single count rates (left axis) in Stokes (blue dots) and
anti-Stokes channels (red dots) and correlated photon pair
rate (green dots, right axis) as functions of pumping field
power. (b) Correlated photon triplet rates across three
detector channels (magenta dots, left axis) and correlated
photon quadruplet rate (grey dots, right axis) as functions
of pumping field power. The detuning of the pumping field
is 40 MHz, while the coupling field is resonant with a fixed
power of 10 mW. The atomic cloud has OD ≃ 30.

low pump powers (approximately < 200 µW) the pair
rate scales linearly with the pump power while the triplet
and quadruplet rate scales quadratically with the pump
power.

This is better visualized in Fig.6, where the pair, triplet
and quadruplet rates are shown relative to singles rates in
the Stokes and anti-Stokes modes, with axes in log scale.
Rp scales approximately linearly with Rs and Ras, with
fitted slope parameters of 0.86 ± 0.02 and 0.95 ± 0.03,
respectively. The slopes of Rt and Rq relative to Rs

are 1.87 ± 0.02 and 2.11 ± 0.03, respectively, while the
slopes of Rt and Rq relative to Ras are found to be
1.97 ± 0.04 and 2.34 ± 0.03, respectively. The slopes of
Rt and Rq are both close to 2 which is expected from
the fact that triplet and quadruplet photons originate
from the same physical processes. Furthermore, these
measurements indicate that the rate at which double-
pairs are detected scales close to quadratically with the
rate of detecting correlated photon-pairs, which shows
that the photons in the double-pairs are produced from
a higher-order process in frequency conversion. However,
we note that for a more accurate relationship between
the probability of generating states with four photons
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FIG. 6. Ratio of pairs, triplets and quadruplets to singles.
The photon pair rate Rp (green dots), photon triplet rate Rt

(magenta dots), and photon quadruplet rate Rq (black dots)
from Fig. 5 represented in log-scale relative to the singles
count rate Rs in Stokes mode (a) and singles count rate the
anti-Stokes Ras (b). Both axes are plotted on a logarithmic
scale. The variation in the single count rates is achieved by
varying the pump power while keeping all other parameters
constant.

and states with pairs of photons, we need to correct
for accidentals and factor losses from inefficient optical
paths, photon collection and detection in each channel.

E. Accidental corrected detection rates and
generation rate

At fixed pump and coupling powers of 800µW and 10
mW respectively, and ∆p = 40 MHz, the mean value of
singles ratesRs is (1.04±0.07)×106 cps andRas is (1.10±
0.06)×106 cps. To determine the rates of truly correlated
pairs, triplets and quadruplets from the detected pair,
triplet, and quadruplet rates, we performed accidental
correction as described in the Appendix E. This gives a
correlated pair detection rate cp = (4.8± 0.3)× 104 cps.

As we can see in Appendix E, the correction of
accidentals for triplets depends on which mode is used as
the herald. Thus, we report channel-specific accidental-
corrected triplet rates. The corrected rate of detected
photon triplets consisting of one Stokes photon and one
anti-Stokes photon each in Ch3 and Ch4 is c134 + c234 =
(251 ± 10) cps, while the rate for triplets consisting of
a Stokes photon each in Ch1 and Ch2 and one anti-
Stokes photon is c123 + c124 = (246 ± 7) cps. Here
cijk is the rate of correlated triplets between channels
i, j and k. The correlated photon quadruplet rate after
accidental-subtraction, for a detection in each of the four
channels, is found to be cq = (2.9 ± 0.4) cps. The total
transmission and detection probability in each channel
k ∈ {1, 2, 3, 4}, which includes transmission of the
collection and filtering setup, splitting efficiency of the
fiber-based 50:50 beamsplitter and quantum efficiency of
the detector in the respective channel is denoted by ηk.

Following the procedure in Appendix C to estimate the
losses in each channel, we find the total efficiencies to be
η1 = 0.022 and η2 = 0.023 for channels 1 and 2 pertaining
to the Stokes modes, and η3 = 0.025 and η4 = 0.021 for
channels 3 and 4 of the anti-Stokes mode.
We infer the generation rates of pairs gp and double-

pairs gq from detected accidental-corrected rates of pairs,
triplets and quadruplets by factoring in the channel losses
as described in D. Based on this, we report a double-
pair generation rate of gq = 2.5(4) × 106 cps and a pair
generation rate of gp = 1.3(3)×107 cps at a pump power
of 800 µW.

IV. CONCLUSION

�

Appendix A: Double, Triple and Quadruple
Coincidences

Here we express the double, triple and quadruple
coincidence rates in terms of the phase sensitive first-
order cross-correlation,

C(τij) = ⟨Êi(t+ τij)Êj(t)⟩ (A1)

and the first-order autocorrelation

R(τij) = ⟨Ê†
i (t+ τij)Êj(t)⟩ (A2)

where {i, j} ∈ {s, as} to represent the Stokes or anti-
stokes modes or {i, j} ∈ {1, 2, 3, 4} to represent one of the
four detection channels. Note, R(0) is the pair generation
rate.
It is well known that when the state under

consideration is the output of a parametric photon-
pair production such as SPDC or SFWM, the Gaussian
moment factoring theorem can be applied to the intensity
correlations in Eq.2 to give the following expression for
the normalized intensity cross-correlation [44]

g(2)s,as(τ) = 1 +
|C(τs,as)|2

|R(0)|2
, (A3)

and the normalized intensity autocorrelation as

g
(2)
i,i (τ) = 1 +

|R(τi,i)|2

|R(0)|2
(A4)

The triple-coincidence rate G
(3)
as,as,s for two anti-Stokes

detections and a single Stokes detection,

G(3)
as,as,s(t3,t4, ts) =

⟨Ê†
s(ts)Ê

†
as(t3)Ê

†
as(t4)Êas(t4)Êas(t3)Ês(ts)⟩

(A5)
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can be similarly expanded and expressed in terms of
relative delays to give [23, 24]

G(3)
as,as,s(τ3s, τ4s, τ34) =R(0)[R(0)2 + |R(τ34)|2]

+R(0)[|C(τ3s)|2 + |C(τ4s)|2]
+ 2Re{C(τ3s)C

∗(τ4s)R(τ34)}.
=R(0)3g(2)as,as(τ34) +R(0)3g(2)as,s(τ3s)

+R(0)3g(2)as,s(τ4s)− 2R(0)3

+ 2R(0)3
√

g
(2)
as,s(τ3s)− 1√

g
(2)
as,s(τ4s)− 1×

√
g
(2)
as,as(τ34)− 1.

(A6)
This equation shows that accidental triplet events are a
sum of four contributions: accidental singles detected in
each of the three channels, a correlated pair between the
Stokes mode and Ch3 (Ch4) with an accidental in Ch4
(Ch3) and thermally bunched photons in the anti-Stokes
(causing coincidences in Ch3 and Ch4) with an accidental
single in the Stokes mode (Ch1 or Ch2). The normalized
third-order correlation can be expressed in terms of the
normalized intensity auto and cross correlations using A4
and A3 as

g(3)as,as,s(τ3s, τ4s, τ34) =
G

(3)
as,as,s(τ3s, τ4s, τ34)

R(0)3

= g(2)as,as(τ34) + g(2)as,s(τ3s)

+ g(2)as,s(τ4s)− 2

+ 2

√
g
(2)
as,s(τ3s)− 1

√
g
(2)
as,s(τ4s)− 1

×
√
g
(2)
as,as(τ34)− 1.

(A7)

Similarly, the quadruplet rate for detecting two Stokes
photons at times t1, and t2 and two anti-Stokes photons
at times t3 and t4 is given in Eq.A8, where the moment
factoring theorem was applied to obtain the following

expression in terms of relative delays.

G(4)
s,s,as,as(τ34, τ24,τ14, τ23, τ21, τ13) = R(0)4

+R(0)2[|R(τ43)|2 + |R(τ21)|2]
+R(0)2[|C(τ23)|2 + |C(τ24)|2]
+R(0)2[|C(τ13)|2 + |C(τ14)|2]
+ 2R(0)Re{R(τ34)C

∗(τ24)C(τ23)}
+ 2R(0)Re{R(τ34)C

∗(τ14)C(τ13)}
+ 2R(0)Re{R(τ21)C

∗(τ14)C(τ24)}
+ 2R(0)Re{R(τ21)C

∗(τ13)C(τ23)}
+ |R(τ43)|2|R(τ21)|2

+ |C(τ13)|2|C(τ24)|2 + |C(τ14)|2|C(τ23)|2

+ 2Re{C∗(τ24)C
∗(τ13)C(τ14)C(τ23)}]

+ 2Re{R(τ34)R(τ12)C
∗(τ24)C(τ13)}

+ 2Re{R(τ34)R(τ21)C(τ23)C
∗(τ14)}

(A8)
From the 17 terms that sum up to give Q in Eq A8,

all terms other than the last three are contributions due
to accidentals. Terms 2-7, are due to two accidentals
combined with either a correlated Stokes-anti-Stokes pair
or bunched photons in one of the Stokes or anti-Stokes
modes. Terms 8-11 are caused by an accidental combined
with a correlated triplet in three channels. Term 12 is
from bunching in both the Stokes and anti-Stokes modes.
Terms 13 and 14 are correlated pairs from separate
SFWM events contributing to four-fold coincidences.
Terms 15, 16 and 17 are due to correlated double-pairs
from the same SFWM event.

Appendix B: Event searching algorithms

The search for multiple coincidences over timestamp
data of four channels is a computationally resource
intensive task. We employ the following strategy to
simplify the search. We first identify pair coincidences
at various relative delays for each pair from the following
possible pairs of Stokes-anti-Stokes channels 1-3, 1-4, 2-
3 and 2-4. The triplet coincidences are then identified
based on the pair detections that share a photon arrival
timestamp. Quadruplet events are identified from triplet
detections that share a common timestamp with a pair
detection.
For example, to identify triplet events involving Ch1,

Ch3, and Ch4, we compare the timestamps of pairs
between Ch1 and Ch3 detected at timestamps t1 and t3
with pairs between Ch1 and Ch4 detected at timestamps
t′1 and t4. Pair events that share a common timestamp
in Ch1 i.e. t1 = t′1, are taken to form the triplet event
(t1, t3, t4). This information can be used to identify
quadruplets between the four channels. For this we
compare pair events between Ch2 (at t2) and Ch4 (at
time t∗4) with the previously identified triplet event with
times t1, t3, t4. When t4 = t∗4, the events are combined
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to form a quadruplet detection with the timestamp
t1, t2, t3, t4. Thus, we can efficiently search for pair,
triplet, and quadruplet events from timestamp data and
plot the temporal distribution of these coincidences.

Appendix C: Channel Losses

We characterize the losses in each channel to
estimate the rate of correlated pairs and double-pairs
directly generated from the SFWM process. The
total transmission and detection probability in each
channel k ∈ {1, 2, 3, 4}, which includes transmission
of the collection and filtering setup, splitting efficiency
of the fiber based 50:50 beamsplitter and quantum
efficiency of the detector in the respective channel is
denoted by ηk. The optical losses in each channel
are determined by measuring the transmission of a
laser beam (at the target wavelength) from outside
the vacuum chamber to just before the detector in
each channel. We measure transmissions of ≈ 11.5%
each for Ch1 and Ch2 and 12.5% each for Ch3 and
Ch4, which include the contributions from the filter-
Etalon and fiber beamsplitter. Including the quantum
efficiencies of APDs in each channel (about 60-70% per
APD), the measured efficiencies (η′k) for each channel
are 0.078, 0.083, 0.080, and 0.067 for channels 1,2,3 and
4 respectively. These values provide an estimate of the
upper bound for effective efficiencies, as they do not
account for absorption in the atomic ensemble or spatial
mode mismatch between the photons and the collection
optics.

Since we expect additional losses that are frequency
specific to the Stokes and anti-Stokes modes, we define
ηi = ηsη

′
i for i ∈ {1, 2} and ηj = ηasη

′
j for j ∈ {3, 4}. We

then use equations D2 and D1 to estimate ηs and ηas. We
infer additional losses that are 1− ηs = 19% for channels
in the Stokes arm and 1 − ηas = 8% for the anti-Stokes
channels, which we attribute to a combination of above
mentioned factors. Taking into account these additional
losses, the total efficiencies are η1 = 0.022 and η2 = 0.023
for channels 1 and 2 pertaining to the Stokes modes, and
the total efficiencies are η3 = 0.025 and η4 = 0.021 for
channels 3 and 4 of the anti-Stokes mode.

Appendix D: Generation Rates from Detection
Rates

We infer the generation rates of pairs gp and double-
pairs gq from the detected accidental-corrected rates of
pairs, triplets and quadruplets by factoring in the channel
losses as follows. cq, the accidental-corrected quadruplet
rate, is solely contributed to by generated double-pairs
as well. There are four possible combinations by which
the two Stokes photons reach Ch1 and Ch2 each and the
two anti-Stokes photons reach Ch3 and Ch4 each. This

gives,

cq = 4gqη1η2η3η4. (D1)

Similarly, double-pair generations are the sole
contributors to accidental-corrected triplet coincidences.
A triplet between channels 1, 3 and 4 occurs from
two possible combinations by which the two anti-Stokes
photons reach one of Ch3 and Ch4 each (leading to the
factor 2η3η4) combined with the probability that at least
one of the two Stokes photons reaches Ch1 (leading to
the factor 1− (1− η1)

2 where (1− η1)
2 is the probability

that neither of the two Stokes photons reaches channel 1).
Applying this to all combinations of triplet detections,

c123 = 2gqη1η2(2− η3)η3

c124 = 2gqη1η2(2− η4)η4

c134 = 2gqη3η4(2− η1)η1

c234 = 2gqη3η4(2− η2)η2.

(D2)

We use this to estimate mean values of gq. Since we
have non-number-resolving detectors, both pairs and
double-pairs from the SFWM process contribute to pair
coincidence detections. A coincidence between channels
1 and 3 can be caused by a generated pair where the
Stokes photon is detected in Ch1 and the anti-Stokes is
detected in Ch3 (η1η3) or the probability that at least
one of two Stokes and two anti-Stokes photons from a
double-pair reach Ch1 and Ch3 respectively ((1 − (1 −
η1)

2)(1− (1− η3)
2) = η1η3(2− η1)(2− η3)). This gives,

c13 = η1η3(gp + gq(2− η1)(2− η3))

c14 = η1η4(gp + gq(2− η1)(2− η4))

c23 = η2η3(gp + gq(2− η2)(2− η3))

c24 = η2η4(gp + gq(2− η2)(2− η4))

(D3)

where cij is the accidental-corrected pair rate between
channels i and j.

We use measured accidental-corrected pair, triplet and
quadruplet rates to obtain values for gp and gq, and the
mean values are reported in section III E.

Appendix E: Accidental Correction Procedure

Correction must be performed to eliminate
contributions from accidental coincidences between
uncorrelated events from different channels. This can be
visualized as the relative probability of two independent
events falling within the same coincidence time window
tc (i.e. random chance), yielding the accidental rate
tcRiRj for singles rates Ri and Rj in channels i and j.
Excess coincidence events after correction can then only
be attributed to actual correlations between channels:
in the case of two channels i and j with an observed pair
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rate of Rij , the correlated pair rate c12 is given by

cij = Rij − tcRiRj .

The total correlated pair rate is cp =
∑

i,j cij for {i, j} ∈
{{1, 3}, {1, 4}, {2, 3}, {2, 4}}.

These correlated pairs (and separately, accidentals)
can be modeled as a separate stream of events that factor
into the calculation of higher-order accidentals, e.g. 3-
fold accidentals between channels i, j and k occur due
to accidental coincidences across the individual channels
{Ri, Rj , Rk}, as well as pairs with the remaining channel
{cij , Rk}, {cik, Rj} and {cjk, Ri}. For instance, in Fig.
3) these correspond to the general background horizontal,
vertical ridges and diagonal ridges when {i, j, k} =
{s, 3, 4}.

The correlated triplet rate is thus

cijk = Rijk − tc (cijRk + cjkRi + cikRj)− t2cRiRjRk

given an observed triplet rate of Rijk.
It can be seen that each of the individual terms

contributing to the n-fold coincidences correspond to a
possible partitioning of the set of all channels, with the
total number of partitions given by Bell’s number Bn

(i.e. B2 = 2, B3 = 5, B4 = 15). We write out explicitly

the exhaustive 14-term correction performed for 4-fold
coincidences,

c1234 = R1234

− tc (c12c34 + c13c24 + c14c23)

− tc (c123R4 + c124R3 + c134R2 + c234R1)

− t2c (c12R3R4 + c13R2R4 + c14R2R3)

− t2c (c23R1R4 + c24R1R3 + c34R1R2)

− t3cR1R2R3R4.

We also make a small note that this correction slightly
overestimates the actual accidental rate [45] due to
the n-fold coincidence calculation method containing
an implicit ordering of events that introduces excess
accidentals. This overcompensation is minimized by
using a small 20 ns coincidence window, yielding a raw
quadruplet rate of 20.5 cps and lower bound correlated
quadruplet rate of 3 cps with the experimental settings. . .
Most of the accidentals are dominated by pair-pair
accidentals (5.5 cps), followed by pair-acc-acc (5.6 cps)
and triplet-acc (4.8 cps). These numbers need to be
updated based on actual calculations
Code for the accidental correction as well as the

corresponding datasets can be found in. . .
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