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Fano resonance in excitation spectroscopy and cooling of an optically trapped single atom1

Chang Hoong Chow ,1 Boon Long Ng ,1 Vindhiya Prakash ,1 and Christian Kurtsiefer 1,2,*
2

1Center for Quantum Technologies, 3 Science Drive 2, Singapore 1175433

2Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 1175424
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Electromagnetically induced transparency (EIT) can be used to cool an atom in a harmonic potential close
to the ground state by addressing several vibrational modes simultaneously. Previous experimental efforts focus
on trapped ions and neutral atoms in a standing wave trap. In this work, we demonstrate EIT cooling of an
optically trapped single neutral atom, where the trap frequencies are an order of magnitude smaller than in an
ion trap and a standing wave trap. We resolve the Fano resonance feature in fluorescence excitation spectra and
the corresponding cooling profile in temperature measurements. A final temperature of around 6 µK is achieved
with EIT cooling, a factor of 2 lower than the previous value obtained using polarization gradient cooling.
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I. INTRODUCTION15

Single neutral atoms in optical dipole traps form a poten-16

tial basis for quantum information processing applications,17

including quantum simulation [1,2], computation [3,4], and18

communication [5,6]. Ideally, the atom can be prepared in an19

arbitrary quantum state and can be made to exchange quantum20

information coherently with a tightly focused optical mode. A21

prerequisite for an efficient coupling between a photon and22

an atom is minimizing the atomic position uncertainty, which23

requires the atom to be sufficiently cooled [7]. Furthermore,24

cooling of the atom can extend the coherence time of the25

qubit state [4,8,9] and allow for the manifestation of quantum26

mechanical properties of the atomic motion [10,11]. A lower27

atomic temperature can also improve the fidelity of one- and28

two-qubit gates, which is useful for the implementation of29

quantum computers and analog quantum simulators [12–14].30

Raman sideband cooling techniques [15–17] can be em-31

ployed to cool atoms to the motional ground state of the32

trapping potential. However, this method requires an iter-33

ation of the cooling process over several laser settings to34

address individual vibrational modes. Alternatively, cooling35

by electromagnetically induced transparency (EIT) is a sim-36

pler approach that can also help achieve ground state cooling.37

EIT cooling relies on suppression of diffusion when a38

three-level atom is transferred to a superposition of the ground39

states that is decoupled from the excited state (dark state).40

On probing the excitation spectrum of a � system with a41

strong field (coupler) and a weaker probe, the dark state is42

revealed via a reduction in fluorescence when the probe and43
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coupler are equally detuned from the excited state. This dip, 44

in combination with the fluorescence peak from the dressed 45

state, results in an asymmetric Fano profile [18]. When the 46

motional spread of the atomic wave packet in an external 47

conservative potential is taken into account, the dark state 48

becomes sensitive to the atomic position. Particularly, cooling 49

occurs when the dark state is decoupled from the excited 50

state at the carrier frequency but is coupled to the bright 51

(dressed) state at the red sideband [19]. For this, the system 52

simply needs to be engineered such that frequency difference 53

between the dark state and the bright dressed state matches the 54

vibrational mode spacing of the potential (see Fig. 1). 55

It is worth mentioning that gray molasses cooling is 56

another sub-Doppler cooling technique that relies on the sup- 57

pressed scattering from a dark state in a three-level system 58

[20–23]. However, this scheme requires three counterpropa- 59

gating and phase-stable pairs of probe and coupling beams 60

directed at the atom along the three coordinate axes as cool- 61

ing is achieved through a Sisyphus mechanism of the atom 62

traversing rising and falling potentials [20]. While it may be 63

well suited for cold clouds of high phase-space density, the 64

EIT cooling technique presented here is a simpler alternative 65

for single atoms as it requires only a pair of intersecting light 66

fields. 67

The Fano profile was first observed in the fluorescence 68

spectroscopy of a single barium ion [24,25], and a cooling 69

technique exploiting this effect was proposed 15 years later 70

[26]. Since then, this EIT cooling method has been imple- 71

mented in platforms such as trapped ions [27–29], neutral 72

atoms confined in standing wave traps [30], and quantum gas 73

microscopy setups [31]. 74

In this work, we investigate free-space EIT cooling of a 75

single neutral 87Rb atom in a mK deep far-off-resonant optical 76

dipole trap (FORT), where the trap frequencies are typically 77

around tens of kHz, one to two orders of magnitude smaller 78

than in typical standing wave traps and ion traps. A three- 79

level � system is realized using the magnetic sublevels in the 80

hyperfine manifolds of the ground and excited states. We first 81
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FIG. 1. Left: EIT cooling transition in a three-level � system. A
strong coupling beam forms new eigenstates |+〉 and |−〉 from the
bare atomic states |g′〉 and |e〉. Here n denotes the vibrational quan-
tum number for atomic motion in a harmonic trap with a frequency
of ωtrap. By choosing a suitable intensity for the coupling beam,
the scattering spectrum can be engineered such that the transition
|g, n〉 → |+, n − 1〉 is enhanced to achieve cooling. Right: spectral
profile of the dressed states. Scattering of a weak probe beam that
couples an atom prepared in ground state |g〉 to the dressed states
reveals two peaks corresponding to each of the dressed states and an
asymmetric-Fano profile due to the dark state.

resolve the Fano profile via excitation spectroscopy and then82

implement a cooling scheme on altering the configuration and83

detunings. We also explore the parameter space to identify84

detunings and intensities that minimize the temperature.85

II. THEORETICAL OVERVIEW86

Theoretical descriptions of the Fano spectrum and cooling87

by EIT have been extensively reported earlier [18,19,25,26].88

Here we summarize the results and extend some of the out-89

comes to describe our measurements. Consider a � system90

formed by two ground states |g〉 and |g′〉 as well as an excited91

state |e〉 that can decay to both ground states with a total decay92

rate �. A weak (strong) probe (coupling) field of frequency93

ωp (ωc) couples |g〉 (|g′〉) to |e〉 with a Rabi frequency �p (�c)94

and a detuning �p = ωp − ωeg (�c = ωc − ωeg′).95

In the limit of a weak probe driving field (�p � �c,�c),96

the ground state |g〉 remains an eigenstate with the eigenvalue97

λg = (�c − �p). The other two eigenstates |±〉 are associated98

with the two light-shifted resonances close to �p = 0 and99

�p = �c as the probe detuning �p is being varied. Their100

corresponding eigenvalues are λ+ = −δ − i�+/2 and λ− =101

�c + δ − i�−/2, respectively, with an associated light shift102

δ and radiative decays �± [25]. For a large detuning �c �103

�c, �, these can be obtained through a perturbative expansion104

of 1/�c:105

δ = �2
c

4�c
,

�+ = �
�2

c

4�2
c

,

�− = � − �+ = �

(
1 − �2

c

4�2
c

)
. (1)

For a larger �p, the probe-induced coupling between |g〉 and 106

|e〉 cannot be neglected and the light shifts and decay rates 107

have been obtained from the steady-state solution for the 108

three-level optical Bloch equation in the vicinity of �p = �c 109

[25]: 110

δ = �c

4�2
c + �2

(
�2

c − �2
p

)
,

�+ = �

4�2
c + �2

(
�2

c + �2
p

)
. (2)

The narrow resonance associated with λ+ is shown to ex- 111

hibit a Fano-shaped profile [18] and possess a spectral width 112

�+ � � for �c,�p � �c. The Fano-type profile manifests 113

in the excitation spectrum of the scattering rate |T |2 [18]: 114

|T |2 ∝ [2δ/�+ + 2(�p − �c − δ)/�+]2

1 + [2(�p − �c − δ)/�+]2
, (3)

which matches the form of a typical Fano profile [32]. 115

When including the atomic center-of-mass motion of the 116

atom to the description, the energy change due to recoil 117

from a scattering event should be considered. For an atom 118

confined in a harmonic potential of frequency ωtrap, when 119

the position uncertainty is much smaller than the wavelength 120

of light (Lamb-Dicke limit), the coupling between the mo- 121

tional states and internal energy levels is characterized by the 122

Lamb-Dicke parameter η = |�kp − �kc| cos (φ) a0. Here �kp and 123

�kc are the wave vectors of the probe and coupling beams, 124

φ is the angle between �kp − �kc and the motional axis, and 125

a0 = [h̄/(2mωtrap)]1/2 is the position uncertainty of the parti- 126

cle with mass m in the ground state of the harmonic oscillator 127

[26]. For an atom initially in the dark internal state and the 128

motional eigenstate |n〉, the momentum imparted by light 129

when |�kp − �kc| 	= 0 leads to coupling with the bright state |+〉 130

of neighboring motional modes |n ± 1〉. By choosing �p = 131

�c > 0 and a suitable �c such that δ = ωtrap, the scattering 132

spectrum can be tailored such that the transition probability of 133

the |g, n〉 → |+, n − 1〉 red sideband transition is greater than 134

the probability of the |g, n〉 → |+, n + 1〉 blue sideband tran- 135

sition. This results in effective cooling. A detailed quantitative 136

analysis of the cooling dynamics using a rate equation descrip- 137

tion is provided in [19,26]. 138

III. FANO SPECTRUM 139

To observe the Fano spectrum from a single 87Rb atom, we 140

consider a � system formed by the Zeeman sublevels |g〉 ≡ 141

|F = 2, mF = −2〉 and |g′〉 ≡ |F = 2, mF = 0〉 of the 5 2S1/2 142

F=2 hyperfine ground state and |e〉 ≡ |F ′ = 3, mF ′ = −1〉 of 143

the 5 2P3/2 F ′=3 excited state, subject to a pair of laser beams 144

with opposite polarizations [see Fig. 2(a)]. A stronger left 145

circularly polarized (σ−) coupling beam of Rabi frequency 146

�c couples |g′〉 to |e〉 with a detuning �c. A weaker right 147

circularly polarized (σ+) probe beam of Rabi frequency �p 148

and detuning �p drives the |g〉 ↔ |e〉 transition. 149

Figure 2(b) shows a schematic of our experimental setup. 150

We trap a single 87Rb atom at the focus of a pair of high 151

numerical-aperture (NA = 0.75) aspheric lenses in a far- 152

off-resonant dipole trap (FORT). The FORT is formed by 153

a linearly polarized Gaussian laser beam at 851 nm, tightly 154
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FIG. 2. (a) Energy levels and transitions in 87Rb used for ob-
serving the Fano scattering profile. (b) Experimental configuration
for Fano spectroscopy. The backscattered atomic fluorescence is
collected by a high numerical aperture lens and coupled to a single-
mode fiber connected to an avalanche photodetector. BS: beam
splitter; QWP: quarter-wave plate; PBS: polarizing beam splitter; IF:
interference filter; APD: avalanche photodetector; UHV: ultrahigh
vacuum; B : magnetic field.

focused to a waist of w0 = 1.1 µm. The aspheric lenses not155

only enable tight spatial confinement of the atom in the FORT,156

but also allow efficient collection of fluorescence from the157

atom. Refer to [33] for a complete description of our single158

atom trap.159

For driving the � system, the coupling and probe beams160

employed are generated from the same external cavity diode161

laser. This ensures a fixed phase relationship between the162

two driving fields. The light from this laser is split into two163

paths for the coupling and probe beams with the frequency of164

light independently controlled by an acousto-optic modulator165

(AOM) in each path. The two beams are then overlapped in a166

beam splitter (BS) and copropagate to the atom in this part of167

the experiment. The copropagating configuration minimizes168

the momentum transfer to the atom (��k = �kc − �kp = 0 and,169

equivalently, η = 0) via the two-photon process, thereby de-170

coupling the center-of-mass motion from the dynamics and171

allowing the Fano profile to be resolved.172

To prevent probe and coupling beams from entering the173

detection system, the atomic fluorescence is collected in the174

backward direction using a 90:10 BS. An interference filter175

(IF) prevents dipole trap radiation from reaching the detectors.176

Additionally, we employ a polarization filter consisting of177

a quarter-wave plate (QWP) and a polarizing beam splitter178

(PBS) to eliminate scattering from the |F = 2, mF = −2〉 →179

|F ′ = 3, mF ′ = −3〉 cycling transition induced by the strong180

coupling field.181

When a single 87Rb atom is loaded into the FORT, we182

apply 10 ms of polarization gradient cooling (PGC) to cool183

FIG. 3. Observation of Fano scattering profiles. Red dots: single
photon scattering detected in APDs from the two-photon process
for �c/2π = −80 MHz and �c = 1.4�, projected into the probe
polarization. Blue curve: fits to Fano profiles following Eq. (3). The
probe beam power increases from subplot (a) to (d) as indicated by
the Rabi frequency values. All plots show a clear suppression in
scattering around �p/2π = −80 MHz, where the atom is optically
pumped to the dark state. Error bars represent one standard deviation
due to propagated Poissonian counting statistics.

the atom to a temperature of 14.7(2) µK, as measured by the 184

“release-recapture” technique [34,35]. Then, a bias magnetic 185

field of 1.44 mT is applied along the FORT laser propagation 186

direction to remove the degeneracy of the Zeeman states. 187

Next, the single atom is illuminated with the pair of strong 188

coupling and weak probe beams for 3 ms. During this inter- 189

val, the atomic fluorescence is detected using an avalanche 190

photodetector (APD). The measurement is repeated for ap- 191

proximately 3000 runs for various values of �p as �p is tuned 192

across a range of ±2π × 6 MHz centered at �c. The coupling 193

beam parameters remain fixed at �c = −2π × 80 MHz and 194

�c = 1.4�. 195

Figure 3 shows a series of scattering spectra for increas- 196

ing probe powers. The detected photoevents shown here also 197

include the APD’s dark counts, which contribute to a back- 198

ground of around 300 events per second. Red points are 199

experimental data and blue lines are fits to Eq. (3). 200
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In all measurements, an asymmetrical Fano peak is ob-201

served with a linewidth smaller than the natural linewidth202

(� = 2π × 6 MHz). The asymmetry of the Fano profiles can203

be characterized by the Fano parameter q, given by q =204

2δ/�+ in our system [18,32]. The Fano parameters q extracted205

from the fits are all positive, indicating that the profiles are206

right skewed, with a decreasing q for increasing probe power207

[q = 2.4(2), 2.0(1), 1.21(6), and 0.72(3) for probe Rabi fre-208

quencies of �p = 0.7�, �, 1.4�, and 2�, respectively].209

The Fano linewidths extracted from the fits increase lin-210

early with the probe power [�+/2π = 350 (30), 410 (30),211

700 (40), and 1000 (50) kHz for saturation parameters of212

2�2
p/�

2 = 1, 2, 4, and 8, respectively]. Compared to the the-213

oretical predictions from Eq. (2) (yielding �+/2π ≈ 83, 100,214

132, and 201 kHz), the measured values are larger by a factor215

of 4.7(6). This discrepancy could be attributed to the presence216

of multiple Fano resonances resulting from other Zeeman217

sublevels. Specifically, there is a � configuration formed218

by the states |F = 2, mF = −1〉, |F ′ = 3, mF ′ = 0〉, and219

|F = 2, mF = 1〉, as well as another � configuration formed220

by the states |F = 2, mF = 0〉 (|g′〉), |F ′ = 3, mF ′ = 1〉, and221

|F = 2, mF = 2〉. The coupling strengths are quite different222

for these � configurations, which leads to distinct values for223

shifts and linewidths in the Fano resonances. Consequently,224

the scattering profiles for these three sets of � configurations225

would overlap and distort the total scattering rate, causing the226

apparent broadening in the excitation spectrum (refer to the227

Appendix A for more discussion).228

Furthermore, the energy of the dark state indicated by the229

dip in the scattering spectra should ideally remain fixed at230

�p = �c = 2π × −80 MHz, independent of the Rabi fre-231

quencies �c and �p of the driving fields. However, we232

observe that the minimum of the scattering spectra shifts to233

a larger detuning for increasing �p. It seems likely that this234

is because the probe field �p also drives the transition be-235

tween the state |g′〉 = |F = 2, mF = 0〉 and the excited state236

|F ′ = 3, mF ′ = 1〉, which is not taken into account in the237

three-level model. This coupling introduces an additional light238

shift on the |g′〉 state, leading to a shift in the scattering239

spectrum for increasing probe field strength.240

IV. COOLING OF ATOMIC MOTION241

Having developed a better understanding of the absorption242

profile, we now turn to the cooling of atomic motion. In order243

to utilize the sensitivity of the internal dark state to the spatial244

gradient of the electric fields, we require a configuration245

in which the momentum transferred by light to the atom is246

nonzero (��k = �kc − �kp 	= 0). For this, the direction of the247

probe beam is altered such that it is sent orthogonal to the248

coupling beam in a top down direction, polarized parallel to249

the bias magnetic field to excite π transitions (see Fig 4).250

The � configuration is now realized with a σ− polarized251

coupling light connecting the |g′〉 ≡ |F = 2, mF = −1〉252

sublevel of the 5 2S1/2 F = 2 hyperfine ground state and253

the |e〉 ≡ |F ′ = 2, mF ′ = −2〉 sublevel of the 5 2P3/2 F ′ = 2254

hyperfine excited state, and a π polarized probe light255

connecting sublevel |g〉 ≡ |F = 2, mF = −2〉 of the 5 2S1/2256

F = 2 hyperfine ground state to |e〉. Both coupling and257

probe are blue-detuned from their respective transitions by258

FIG. 4. (a) Experimental configuration for the off-resonant EIT
cooling process. The probe beam propagates orthogonally to the
optical axis to allow for motional coupling. (b) Energy levels and
transitions in 87Rb used in the cooling experiment.

�c = �p = 2π × 94.5 MHz ≈ 16�. With this detuning, 259

we are able to satisfy the condition of forming a narrow 260

Fano resonance that preferentially drives the red motional 261

sideband transition, as described in the last paragraph 262

of Sec. II. 263

Our FORT traps the atom in a 3D harmonic oscilla- 264

tor with radial (ωx/y) and axial (ωz) trapping frequencies 265

(ωx/y, ωz ) = 2π × [73(2), 10(1)] kHz, deduced from a para- 266

metric excitation measurement [36]. Accordingly, the asso- 267

ciated Lamb-Dicke parameters (ηx, ηz), which quantify the 268

motional coupling, are estimated to be (0.23, 0.61) for our EIT 269

cooling beam geometry. 270

Similar to the experimental sequence described in the pre- 271

vious part, we start with 10 ms of PGC to cool the atom 272

upon successful loading, followed by a bias magnetic field 273

of 1.44 mT along the FORT laser propagation direction to 274

remove the degeneracy of the Zeeman states. We then apply 275

EIT cooling on the � system by switching on the coupling 276

beam and probe beam for 20 ms, a duration chosen to be 277

sufficiently long to ensure that the system reaches a steady 278

state. During this cooling process, a weak repumper beam 279

resonant to the D1 line at 795 nm between 5 2S1/2 F = 1 280

and 5 2P1/2 F ′ = 2 is also switched on to transfer the atom 281

back into the F = 2 hyperfine ground state if it spontaneously 282

decays into the F = 1. 283

Following that, we employ a “release and recapture” 284

method [34,35] to quantify the temperature of the single 285

atoms. During this process, the EIT cooling beams are 286

switched off and the atom is released from the trap for an 287

interval τr by switching off the FORT beam. Subsequently, 288

the FORT is switched on to recapture the atom and we 289

observe atomic fluorescence by switching on the MOT’s 290

cooling and repumping beams to check the presence of the 291

single atom. We repeat each experiment around 200 times 292

to obtain an estimate of the recapture probability. We then 293

infer the atomic temperature by comparing the experimentally 294

obtained recapture probability at τr to Monte Carlo simula- 295

tions of recapture probabilities for single atoms at various 296

temperatures [34]. 297

In the first part of the thermometric experiment, we inves- 298

tigate the capability of the two-photon process to either cool 299

down or heat up the single atoms. We apply EIT cooling by 300

varying �p and �c over a range of ±2π × 1 MHz while fixing 301

�c and �p to 2π × 5.2 MHz and 2π × 2.0 MHz, respectively. 302

We choose �c = 2π × 5.2 MHz because this parameter is 303

expected to give a Fano resonance shift coinciding with the 304
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FIG. 5. (a) Atomic temperature for various probe and coupling
field detunings, inferred from release and recapture measurements
after 20 ms of EIT cooling. The antidiagonal blue band indicates dark
state resonance, which has the highest cooling efficiency. (b) EIT
cooling profile in atomic temperature as a function of probe detuning
�p for a fixed coupling detuning [here �c = 2π × 94.5 MHz as
indicated by the boxed region in (a)] also shows an asymmetric
Fano feature. The area shaded in gray represents the range of probe
detunings where an effective cooling is observed.

trap frequency [δ = ωx/y following Eq. (1)] that leads to op-305

timal cooling. Here, we fix the release interval to τr = 30 µs,306

empirically determined to yield the largest signal contrast for307

recapturing measurements from which the temperature can be308

inferred.309

The resulting atomic temperature is shown in Fig. 5(a).310

Cooling and heating effects close to the dressed states for the311

two-photon process are significantly visible. We observe an312

effective cooling in the antidiagonal stripe where �p = �c,313

in agreement with the theoretical prediction. Heating occurs314

most dominantly around �p = �c + 2π × 250 kHz, where315

the blue sideband transitions have a larger probability. For316

frequencies far away from the Fano resonance, the single317

atom undergoes incoherent scatterings of the pump and probe318

beams. In this process, the atom experiences recoil heating319

which raises the atomic temperature to about 40 µK.320

In the following parts, we maintain �c to be fixed at321

2π × 94.5 MHz. To obtain a more accurate estimation of322

the atomic temperature, we now deduce a temperature value323

based on a series of recapturing probabilities for 12 different324

release intervals, ranging from 1 to 80 µs. We vary the probe325

detuning �p around �c, as shown in Fig. 5(b). We observe326

the typical asymmetric Fano profile also in the temperature of327

the atoms, with the lowest temperature of 5.7(1) µK measured328

at �p = �c.329

FIG. 6. (a) Atomic temperature at �p = �c = 2π × 94.5 MHz
for varying �c. We observe an effective cooling for s = 2�2

c/�
2

between 0.5 and 3, with the optimal cooling around s = 1.42(3)
(cooling duration fixed to 20 ms). The dotted line indicates the
initial atomic temperature after PGC of 14.7 µK. Error bars repre-
sent standard error of binomial statistics accumulated from around
200 repeated runs. (b) Atomic temperature measured after different
cooling durations. A cooling time of 2.1(3) ms and final temperature
of 5.9(2) µK are extracted from the exponential fit.

We expect optimal cooling to be achieved when the dressed 330

state energy shift δ caused by the coupling beam is equal 331

to the trap frequency, δ = ωx/y, as it maximizes the ab- 332

sorption probability on the red sideband transition [19]. To 333

confirm this behavior, we record the atomic temperature us- 334

ing the same “release and recapture” scheme for different 335

coupling beam powers, keeping �c = �p = 2π × 94.5 MHz 336

and �p = 2π × 2.0 MHz fixed. The results are shown as a 337

function of the saturation parameter s = 2�2
c/�

2 in Fig. 6(a). 338

Cooling is observed for s between 0.5 and 3, with the low- 339

est temperature obtained at an optimal cooling parameter of 340

s = 1.42(3) [or �c = 2π × 5.06(5) MHz]. This corresponds 341

to a dressed state energy shift of δ = �2
c/(4�c) ≈ 2π × 342

68(1) kHz, as introduced in Eq. (2), which is comparable with 343

the radial trap frequency ωx/y in our system. 344

We then extract the cooling rate by measuring the atomic 345

temperature after a variable time of of EIT cooling, as shown 346

in Fig. 6(b). Here, we apply the optimal cooling param- 347

eters (�c = �p = 2π × 94.5 MHz, �c = 2π × 5.06 MHz, 348

and �p = 2π × 2.0 MHz) to the pair of coupling and probe 349

beams. From an exponential fit to the experimental data, we 350

deduce a 1/e cooling time constant of 2.1(3) ms and a steady- 351

state temperature of around 5.9(2) µK. 352

V. DISCUSSION AND CONCLUSION 353

By applying EIT cooling optimized for the radial direc- 354

tions, we have successfully cooled the atom to a temperature 355

of 5.7(1) µK. This is 2.5 times lower than the temperature 356

of 14.7 µK typically achieved with conventional PGC. We 357

note that our temperature measurement predominantly reveals 358
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the temperature along the radial direction due to the limita-359

tion of the “release and recapture” technique. Particularly, a360

Gaussian optical dipole trap typically has a much smaller361

spatial confinement in the radial direction than in the axial di-362

rection. Consequently, it is much easier for the atom to escape363

the trap in the radial direction during the release interval.364

From the measured atomic temperature, we infer a mean365

phonon number of 〈nx/y〉 = 1.18(5). This is higher than the366

theoretical value of 0.002 expected for our parameters from367

the rate equation described in [26]. Additionally, we also368

observe that the measured cooling time constant is about 10369

times longer than the expected value of 0.2 ms estimated from370

the same theoretical work. These discrepancies are possibly371

due to unaccounted heating effects originating from scattering372

of the strong coupling beam which is red-detuned from the373

|F = 2, mF = −2〉 ↔ |F ′ = 3, mF ′ = −3〉 cycling transition.374

In the absence of the EIT cooling, this scattering process alone375

would impose a lower limit on the energy reached to be in376

the order of ∼h̄�, which is ∼100 µK in temperature. Further-377

more, there is also heating due to the occasional repumping378

process. We speculate that the observed minimum temperature379

of 5.7 µK is a consequence of a steady state between the EIT380

cooling and these two scattering processes.381

In addition, the cooling time would also be limited by the382

high probability (50%) of an atom in the state |e〉 of 5 2P3/2383

F ′ = 2 to decay into the 5 2S1/2 F = 1 hyperfine level, which384

is decoupled from the pair of EIT cooling beams. Despite the385

use of a repump light to transfer the atom back to the F = 2386

state, this process introduces a delay as well as heating. In387

comparison, EIT cooling is 1.9 times slower than the conven-388

tional PGC, which has a typical 1/e cooling time constant of389

1.1(1) ms [35].390

Although prior work with EIT cooling has demonstrated391

approximate ground state occupation, the temperature of392

5.7(1) µK achieved here is comparable to the 7 µK (or a mean393

phonon number of 0.78) obtained previously in a standing394

wave optical trap of [30] and an order of magnitude lower than395

the temperatures achieved in an ion trap [27]. Our demon-396

stration could be extended to lower temperatures further by397

adding a second stage of EIT cooling that targets cooling398

along the axial direction with δ matched to the axial trap399

frequency spacing ωz. Exploring strategies to mitigate heating400

caused by scattering in a multilevel atom could improve the401

cooling even further.402

In conclusion, we have demonstrated electromagnetically403

induced transparency (EIT) cooling for a single neutral atom404

confined in a shallow optical dipole trap and have resolved405

the signature Fano profiles in the excitation spectrum due to a406

large solid angle for fluorescence collection. A final temper-407

ature of less than 6 µK has been reached with EIT cooling, a408

factor of 2 below the value obtained by polarization gradient409

cooling in the same system.410

Technologically, the use of magnetic sublevels to realize411

the � scheme is convenient as it requires only a small fre-412

quency difference (on the order of MHz) between the pump413

and coupling fields, which allows simple frequency shifting414

from the same laser to provide both components. This cooling415

scheme therefore can diversify the spectrum of techniques for416

manipulation of atomic motion of ultracold atoms in optical417

tweezer arrays.418
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APPENDIX: OVERLAP OF MULTIPLE 423

FANO RESONANCES 424

In our experiment, we assume to dominantly keep atoms 425

only in one � system. However, different � configurations 426

in the atomic level structure might be involved in the two- 427

photon process as well. Apart from the �(0) system formed 428

by |g〉 = |F = 2, mF = −2〉, |e〉 = |F ′ = 3, mF ′ = −1〉, and 429

|g′〉 = |F = 2, mF = 0〉, there are the �(1) and �(2) systems 430

with the respective mF , mF ′ of the states increased by 1 and 2 431

(see Fig. 7). 432

The pair of probe and coupling fields drives each � sys- 433

tem according to their respective dipole transition elements. 434

By referring the two Rabi frequencies in �(0) as �p for the 435

mF = mF ′ − 1 leg and �c to the other one, the corresponding 436

Rabi frequencies for �(1) and �(2) are �(1)
p = √

3�p, �(1)
c = 437√

3�c, �(2)
p = √

6�p, and �(2)
c = �c/

√
6, respectively. Fol- 438

lowing Eq. (2), the spectral linewidth for these three Fano 439

resonances are 440

�
(0)
+ = �

4�2
c + �2

(
�2

c + �2
p

)
,

�
(1)
+ = �

4�2
c + �2

(
3�2

c + 3�2
p

)
,

�
(2)
+ = �

4�2
c + �2

(
6�2

c + �2
p/6

)
. (A1)

Furthermore, to simplify the analysis, we consider the 441

same Rabi frequencies for the probe and coupling field in the 442

�(0) configuration (�p = �c = �), in line with the parame- 443

ters in the Fano spectrum experiment. We then obtain �
(2)
+ = 444

3.08�
(0)
+ and �

(1)
+ = 3�

(0)
+ , resulting in a Fano linewidth larger 445

by a factor of 3. Additionally, aside from the difference in 446

linewidths, the Fano peaks for the three � configurations will 447

also exhibit distinct resonance shifts due to the difference in 448

coupling strengths and also in Zeeman shifts. We expect the 449

combination of these features contribute to the discrepancy of 450

4.7 between observed and expected Fano linewidth. 451

FIG. 7. Three possible � configurations involved in the two-
photon process.
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