\relax \@writefile{toc}{\contentsline {chapter}{\numberline {1}Time-discrete signals}{1}{}\protected@file@percent } \@writefile{lof}{\addvspace {10\p@ }} \@writefile{lot}{\addvspace {10\p@ }} \newlabel{eq:discretization}{{1.1}{1}} \@writefile{toc}{\contentsline {section}{\numberline {1.1}Sampling and the Dirac comb function}{1}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.1}{\ignorespaces A time-continuous function $f(t)$ gets sampled at discrete times $t=k\Delta t$, leading to samples $f_k$.}}{1}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.2}{\ignorespaces Multiplication of the original function $f(t)$ with a Dirac comb $\comb {\Delta t}(t)$ leads to a representation $f_R(t)$ of the sampled function that can be used to understand its spectral properties.}}{2}{}\protected@file@percent } \newlabel{fig:samplerepresentation}{{1.2}{2}} \newlabel{eq:combfunction}{{1.2}{2}} \newlabel{eq:samplingexpression}{{1.3}{2}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1.1}Spectral properties of sampled functions}{2}{}\protected@file@percent } \newlabel{eq:discreteFourier}{{1.6}{2}} \@writefile{lof}{\contentsline {figure}{\numberline {1.3}{\ignorespaces A Dirac comb $\comb _{\Delta t}(t)$ in time with a separation of $\Delta t$ between the peaks has a frequency spectrum that is also a Dirac comb, with a frequency separation $\omega _S$ between the different components.}}{3}{}\protected@file@percent } \newlabel{fig:diraccomb}{{1.3}{3}} \newlabel{eq:sampledspec1}{{1.11}{3}} \@writefile{lof}{\contentsline {figure}{\numberline {1.4}{\ignorespaces Fourier distributions $\tilde {f}(\omega )$ (or spectra) of typical signals, with a representative cutoff frequency $\omega _C$, indicating a region $-\omega _C\ldots \omega _C$ in which most of the signal is contained. The left sample indicates a realistic spectrum, the right side a symbolic distribution as often used when representing signals. The distributions are symmetric around $\omega =0$, a property of all real-valued signals $f(t)$. Both distributions would be a assigned a bandwidth $B=\omega _c/2\pi $ (when referenced in frequencies rather than angular frequencies).}}{4}{}\protected@file@percent } \newlabel{fig:baseband}{{1.4}{4}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1.2}Sampling theorem}{4}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.5}{\ignorespaces Spectrum $\tilde {f}_R(\omega )$ of the reconstructed sampled signal, sampled with $\omega _S$. Copies of the baseband spectrum $\tilde {f}(\omega )$ appear at integer multiples of $\omega _S$.}}{5}{}\protected@file@percent } \newlabel{fig:sampledspectrum}{{1.5}{5}} \@writefile{lof}{\contentsline {figure}{\numberline {1.6}{\ignorespaces Segmentation of a spectrum in Nyquist zones spaced by half the sampling frequency $\omega _S$. Copies of the original spectrum appear in the odd zones, whereas copies of mirrored original spectra appear in the even zones.}}{5}{}\protected@file@percent } \newlabel{fig:nyquistzones}{{1.6}{5}} \newlabel{eq:samplingtheorem}{{1.12}{5}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1.3}Nyquist zones}{5}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.7}{\ignorespaces A signal with a spectrum centered around a frequency $\omega _0$, when sampled with frequency $\omega _S$, leads to a reconstructed spectrum $|\tilde {f}_R(\omega )|$ with a frequency spectrum shifted by multiples of $\omega _S$. In the example shown above, the spectrum centered around $\omega _0$ in the 3. Nyquist zone gets moved to a new center frequency $\omega _0-\omega _S$ in the first zone.}}{6}{}\protected@file@percent } \newlabel{fig:freqshift}{{1.7}{6}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.1.4}Frequency shifting by sampling}{6}{}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {1.2}Time-discrete filters}{7}{}\protected@file@percent } \newlabel{eq:filteractioncont}{{1.15}{7}} \newlabel{eq:filteractionconvolut}{{1.16}{7}} \newlabel{eq:discretefiltertimedomain}{{1.22}{8}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2.1}Time delay blocks}{8}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.8}{\ignorespaces Storage element, implemented by a single register that stores a discrete signal $f_k$ each sampling cycle, leading to a delayed copy $g_k$. This can be represented in Fourier domain by multiplication with a complex value $z^{-1}$.}}{9}{}\protected@file@percent } \newlabel{fig:storageelement}{{1.8}{9}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2.2}Floating average filter}{9}{}\protected@file@percent } \newlabel{eq:transferaverage}{{1.28}{9}} \@writefile{lof}{\contentsline {figure}{\numberline {1.9}{\ignorespaces Filter transmission of a moving average filter with $N$ averaging points for a sampled signal, in linear and logarithmic scales. The filter transmission has several zeros, and is symmetric in the first and second Nyquist zone.}}{10}{}\protected@file@percent } \newlabel{fig:sincfilter}{{1.9}{10}} \newlabel{eq:discreteIFT}{{1.31}{10}} \@writefile{toc}{\contentsline {subsection}{\numberline {1.2.3}Filters with finite impulse response (FIR)}{11}{}\protected@file@percent } \@writefile{toc}{\contentsline {subsection}{\numberline {1.2.4}Filters with infinite impulse response (IIR)}{11}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.10}{\ignorespaces Symbolic implementation of a first order low pass filter as an example of an infinite impulse response (IIR) filter, with its associated symbolic signal flow scheme in the Fourier domain.}}{12}{}\protected@file@percent } \newlabel{fig:lowpass1scheme}{{1.10}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {1.11}{\ignorespaces Implementation of a first order low pass filter with coefficients $\epsilon =2^{-k}$. }}{12}{}\protected@file@percent } \newlabel{fig:lowpass1impl}{{1.11}{12}} \@writefile{lof}{\contentsline {figure}{\numberline {1.12}{\ignorespaces Bode diagram of the filter gain $\tilde {h}(\omega )$ of the first order low pass filter with feedback coefficients $\epsilon =2^{-k}$.}}{13}{}\protected@file@percent } \newlabel{fig:lowpass1gain}{{1.12}{13}} \@writefile{toc}{\contentsline {section}{\numberline {1.3}Time-discrete mixers}{13}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.13}{\ignorespaces Transformation of a spectrum $\tilde {f}(\omega )$ through multiplication of $f(t)$ with a local oscillator $m(t)$ at frequency $\omega _L$.}}{14}{}\protected@file@percent } \newlabel{fig:contmixspect}{{1.13}{14}} \newlabel{eq:localosc}{{1.45}{14}} \@writefile{lof}{\contentsline {figure}{\numberline {1.14}{\ignorespaces Sampled local oscillators $m(t)$ and $m'(t)$ at frequency $\omega _L=\omega _S/4$.}}{15}{}\protected@file@percent } \newlabel{fig:localosc1}{{1.14}{15}} \@writefile{lof}{\contentsline {figure}{\numberline {1.15}{\ignorespaces Transformation of a spectrum $\tilde {f}(\omega )$ by multiplying with a time-discrete local oscillator at a quarter of the sampling frequency $\omega _L$.}}{16}{}\protected@file@percent } \newlabel{fig:discmixspect}{{1.15}{16}} \@writefile{toc}{\contentsline {section}{\numberline {1.4}Decimation of time-discrete signals}{17}{}\protected@file@percent } \@writefile{lof}{\contentsline {figure}{\numberline {1.16}{\ignorespaces Decimating a time-discrete signal generates a set of copies of the original spectrum $\tilde {f}(\omega )$. Shown here the spectral change for decimating by $M=3$, i.e., $\omega '_S=\omega _S/3$.}}{18}{}\protected@file@percent } \newlabel{fig:downsampling}{{1.16}{18}} \@writefile{toc}{\contentsline {section}{\numberline {1.5}Noise sources in time-discrete systems}{18}{}\protected@file@percent } \@writefile{toc}{\contentsline {section}{\numberline {1.6}Noise propagation in time-discrete systems}{19}{}\protected@file@percent } \@setckpt{timediscrete/timediscrete}{ \setcounter{page}{20} \setcounter{equation}{56} \setcounter{enumi}{0} \setcounter{enumii}{0} \setcounter{enumiii}{0} \setcounter{enumiv}{0} \setcounter{footnote}{0} \setcounter{mpfootnote}{0} \setcounter{part}{0} \setcounter{chapter}{1} \setcounter{section}{6} \setcounter{subsection}{0} \setcounter{subsubsection}{0} \setcounter{paragraph}{0} \setcounter{subparagraph}{0} \setcounter{figure}{16} \setcounter{table}{0} \setcounter{parentequation}{0} }