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Chapter 1

Time-discrete signals

Time-discrete signals are typically used to approximate time-continuous signals, and are
commonly found in modern digital signal handling.

Typically, a time-continuous signal f(t) is sampled at discrete, equally spaced times t
that are separated by a fixed sampling interval ∆t:

f(t)→ fk = f(t = k∆t) , k ∈ Z . (1.1)

The signal is now represented by a discrete sequence of numbers fk, that map the original
function in are “reasonable” manner. Intuitively, if the interval ∆t is chosen small enough,
the features in the original signal f(t) is captured sufficiently well. The sequence of
numbers fk is an infinite set of numbers, in the same way as the time argument t in the
original function is not limited.

1.1 Sampling and the Dirac comb function

A useful concept to formalize this transition from a continuous to a sampled signal makes
use of an array of delta functions spaced in equal time intervals ∆t. We refer to this as

fk−1 fk+1
fk+2

t∆k

t∆

fk

t

f(t)

Figure 1.1: A time-continuous function f(t) gets sampled at discrete times t = k∆t,
leading to samples fk.
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Figure 1.2: Multiplication of the original function f(t) with a Dirac comb ∆t(t) leads to
a representation fR(t) of the sampled function that can be used to understand its spectral
properties.

the Dirac comb function

∆t(t) =
∞∑

k=−∞
δ(t− k∆t) . (1.2)

To represent the time-discrete sampled signal in a time-continuous way, we can use a
similar concept to the comb function above, but modify the weight of each δ peak. This
can be done by simply multiplying f(t) by the comb function ∆t(t),

fR(t) = f(t) · ∆t(t) =
∞∑

k=−∞
fkδ(t− k∆t) , (1.3)

as the Kronecker-δs in ∆t(t) sample the original function at the correct positions (see
Fig. 1.2).

This new function fR(t) has, for T � ∆t and for a sufficiently smooth original function
f(t), approximately the same integral over T as the original function:

T∫
0

f(t)dt ≈
T∫

0

fR(t)dt =

T∫
0

∞∑
k=−∞

fkδ(t− k∆t)dt ≈ ∆t

T/∆t∑
k=0

fk . (1.4)

1.1.1 Spectral properties of sampled functions

To understand quantitatively the effect of sampling, it is helpful to compare the spectral
content of fR(t) to the one of the continuous signal f(t), given by the Fourier-transformed
signal:

f̃(ω) = F [f(t)] =

+∞∫
−∞

f(t)e−iωt dt . (1.5)

The Fourier transformation of fR(t) can then be calculated (see details in appendix A.2):

f̃R(ω) =

∞∑
k=−∞

fk e
−iω∆t·k , (1.6)
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Figure 1.3: A Dirac comb ∆t(t) in time with a separation of ∆t between the peaks has
a frequency spectrum that is also a Dirac comb, with a frequency separation ωS between
the different components.

This is a continuous function in ω, even though the underlying time series fk is discrete;
this is referred to as a Fourier series. As such, f̃(ω) is a periodic function:

f̃(ω) = f̃(ω + k · 2π/(∆t)) for k ∈ Z . (1.7)

A special case of such a Fourier series is one where fk = 1 for all k, corresponding to
fR(t) = ∆t(t), the Dirac comb. In this case, the result is

F [ ∆t(t)] =
∞∑

k=−∞
e−iω∆t·k (1.8)

The Dirac comb function can be represented by a Fourier series,

∆t(t) =
∞∑

k=−∞
δ(t− k∆t) =

1

∆t

+∞∑
n=−∞

ei
2π
∆t
nt , (1.9)

so the Fourier transform of the Dirac comb function is again a Dirac comb. Proper care
of pre-factors (see appendix B) gives

F [ ∆t(t)] = ωS

∞∑
k=−∞

δ(ω − kωS) with ωS =
2π

∆t
. (1.10)

This allows for a useful interpretation of the spectral content of a sampled system
presented in (1.6), making use of convolution theorem (C.2):

f̃R(ω) = F [f(t) · ∆t(t)] = f̃(ω) ∗ F [ ∆t(t)](ω)

=

∞∫
−∞

f̃(ω′) · F [ ∆tt)](ω − ω′)dω′

=

∞∫
−∞

f̃(ω′)

[
ωS

∞∑
k=−∞

δ(ω − ω′ − kωS)

]
dω′

= ωS

∞∑
k=−∞

f̃(ω − kωS) (1.11)
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Figure 1.4: Fourier distributions f̃(ω) (or spectra) of typical signals, with a representa-
tive cutoff frequency ωC , indicating a region −ωC . . . ωC in which most of the signal is
contained. The left sample indicates a realistic spectrum, the right side a symbolic distri-
bution as often used when representing signals. The distributions are symmetric around
ω = 0, a property of all real-valued signals f(t). Both distributions would be a assigned a
bandwidth B = ωc/2π (when referenced in frequencies rather than angular frequencies).

This means that the spectrum f̃R(ω) of a (reconstructed) sampled signal contains a su-
perposition of copies the original signal spectrum, f̃(ω), shifted by integer multiples of the
sampling (angular) frequency ωS . This has two important consequences, namely a rela-
tionship between useful bandwidth of a signal and the sampling frequency, and a method
of shifting frequency components simply by sampling.

1.1.2 Sampling theorem

We first return to the intuitive insight that, in order to capture the essential features
of a continuous signal f(t) in a sampling process, the sampling time interval ∆t has to
be significantly shorter than the time scale of changes in the original signal f(t). To
quantify the smoothness of the original signal, we assume that the spectral amplitudes
f̃(ω) decrease significantly above a certain frequency ωC , referred to as a cutoff frequency
or the bandwidth of a signal. Such a situation is e.g. found in the range of audible signals,
where the bandwidth corresponds to a few kHz, but just about any signal that is processed
in some way has such an upper frequency ωC .

We now consider a situation where a bandwidth-limited signal f(t) is sampled with
a time interval ∆t. The condition of sampling with a sufficiently high rate compared to
the time scale of changes in f(t) is reflected in a condition ωS � ωC , where ωS = 2π/∆t
is the sampling (angular) frequency, and ωC a cutoff frequency (or bandwidth) of the
bandwidth-limited signal.

The resulting spectrum of the reconstructed sampled signal fR(t) through (1.11) now
is a sum of copies of the original spectrum f̃(ω), separated by multiples of the sampling
frequency ωS (see Figure 1.5).

To reconstruct the original spectrum f̃(ω) from f̃R(ω), a low pass filter can be applied
to the sampled spectrum to remove the higher order copies of the baseband spectrum.
This works as long as spectral components of the first order copy around ωS does not
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Figure 1.5: Spectrum f̃R(ω) of the reconstructed sampled signal, sampled with ωS . Copies
of the baseband spectrum f̃(ω) appear at integer multiples of ωS .
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Figure 1.6: Segmentation of a spectrum in Nyquist zones spaced by half the sampling
frequency ωS . Copies of the original spectrum appear in the odd zones, whereas copies of
mirrored original spectra appear in the even zones.

overlap with the baseband spectrum. Quantitatively, this means that

ωC < ωS/2 , (1.12)

or in other words, the highest frequency ωC in the signal has to be smaller than half
the sampling frequency ωS in order to be uniquely reconstructible. This relationship is
referred to as the sampling theorem or Nyquist theorem. An example is the time-discrete
sampling of an audio signal in the CD standard, which uses ωS = 2π · 44.1 kHz, which in
theory would be able to reproduce audio signals with an upper frequency around 20 kHz,
the perception limit of most (young) humans.

1.1.3 Nyquist zones

For a given sampling frequency ωS , the whole spectrum can be segmented into different
zones, separated by multiples of half the sampling frequency (see Figure 1.6). Then, the
sampling theorem states that in order for a sampled signal to be uniquely reconstructible,
its spectrum has to reside in the first “Nyquist” zone. Higher order zones, e.g. the second
zone covering the interval [ωS/2, ωS ] and its negative counterpart [−ωS ,−ωS/2] contain
copies of the original signal spectrum. For even zones, they contain the mirrored original
spectrum, while the odd zones contain the original spectrum.
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Figure 1.7: A signal with a spectrum centered around a frequency ω0, when sampled with
frequency ωS , leads to a reconstructed spectrum |f̃R(ω)| with a frequency spectrum shifted
by multiples of ωS . In the example shown above, the spectrum centered around ω0 in the
3. Nyquist zone gets moved to a new center frequency ω0 − ωS in the first zone.

1.1.4 Frequency shifting by sampling

The appearance of several copies of the original spectrum f̃(ω) in a sampled signal at
multiples of the sampling frequency can be conveniently used to shift the signal of a
spectral band. Modern software-defined radio receivers and similar signal processors make
extensively use of this idea, as a narrow spectral segment at a high carrier frequency can
be converted to a lower frequency band by adequate sampling.

If the spectrum of a real-valued signal f(t) is contained in a small band around a
carrier frequency ω0, its Fourier transform is actually non-zero in two bands at positive
and negative frequencies. The sampling process then generates multiple copies of both
bands at positive and negative frequencies (see figure 1.7).

Now, the condition for unique reconstructability requires that the signal has to be
contained in a single Nyquist zone to avoid overlap with other mirrored or displaced
copies of the spectrum generated in the sampling process.

A restriction of the reconstructed sampled signal to the first Nyquist zone, as an
appropriate filtering of a time-discrete filtering will provide, will lead to a spectrum of
the reconstructed sampled signal f̃R(ω) that is frequency-shifted from its original center
frequency by multiples of the sampling frequency.

When the shifting is from an even Nyquist zone to the first one, the frequency content
gets mirrored. There, higher frequency components in the sampled signal closer to a
multiple of the sampling frequency will be transferred closer to frequency 0, i.e., to lower
frequencies. When the shifting is from an odd Nyquist zone to the first zone, the complete
spectrum is just shifted by multiples of ωS .

To come back to the practical application of a higher-order Nyquist sampling in a
software-defined radio, the sampling of the original signal should happen in a way that is
well-represented by a multiplication of the original signal by a Dirac δ function according
to (1.3). In practice, this means that the sampling mechanism should be significantly
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shorter than the sampling interval ∆t.
A consequence of this process is that, if a time-continuous signal f(t) has spectral

components in higher Nyquist zones, their spectral content will be mapped into the first
Nyquist zone, and interfere with the spectral content there. Therefore, contributions form
other Nyquist zones than that of interest need to be suppressed before sampling.

1.2 Time-discrete filters

Filters are among the most important signal processing elements. To formally describe
these elements for time-discrete signals, it is useful to recall how conventional (i.e., time-
continuous) filters are described. Filters transform a signal f(t) into another signal g(t).
They are are typically time-invariant in their action,

f(t+ T )→ g(t+ T ) for all T , (1.13)

linear in their response,
a · f(t)→ a · g(t) , (1.14)

which implies that sums of signals are transformed into the sum of their filtered versions,
and can most conveniently described as a multiplication with a frequency-dependent gain
h(ω) in the Fourier domain:

g̃(ω) = h̃(ω) · f̃(ω) . (1.15)

Using the convolution theorem, the filter action can also be written as

g(t) = h(t) ∗ f(t) =

∞∫
−∞

h(t− t′) · f(t′)dt′ , (1.16)

with h(t) = F−1[h̃(ω)] referred to the impulse response of the filter. It is also referred to
as the Green function of a filter.

Even for real-valued signals f(t) leading to real-valued results g(t), the filter gain h̃(ω)
can be complex-valued. However, the impulse response must obey

h̃∗(ω) = h̃(−ω) . (1.17)

Another common property of filters implemented in real time is causality, namely, that
the response of the filter at any given time can not depend on signals in the future, the
impulse response can only have contributions for positive times:

h(t) = 0 for t < 0 . (1.18)

To describe filters for time-discrete signals, one one can simply replace the time-
continuous signals f(t) and g(t) in the expressions above with weighted Dirac combs (1.3).
As the Fourier transforms f̃(ω), g̃(ω) are then periodic in ω, the filter gain h̃(ω) must be
as well,

h̃(ω + kωS) = h̃(ω) , k ∈ Z , (1.19)
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but the filter action description (1.15) remains unchanged. The periodicity of h̃(ω) implies
that the impulse response h(t) of the filter can also represented by a time-discrete stream
hk,

h(t) =
∞∑

k=−∞
hkδ(t− k∆t) . (1.20)

In time domain, the action of a filter on a can be described as

g(t) = h(t) ∗ f(t) =

∞∫
−∞

h(t− t′) · f(t′)dt′

=

∞∫
−∞

[ ∞∑
k=−∞

hkδ(t− t′ − k∆t)

]
·

[ ∞∑
l=−∞

flδ(t
′ − l∆t)

]
dt′

=
∞∑

k=−∞

∞∑
l=−∞

hkflδ(t− (l + k)∆t)

=
∞∑

k=−∞

∞∑
u=−∞

hkfu−kδ(t− u∆t)

=
∞∑

u=−∞

∞∑
k=−∞

hkfu−k︸ ︷︷ ︸
=:gu

δ(t− u∆t) . (1.21)

So the convolution for time-discrete signals takes simply the form of a sum,

gk =
∞∑

l=−∞
hlfk−l . (1.22)

For causal filters, h(l < 0) = 0, so that the summation only need to be carried out over
positive l.

This form also suggests to distinguish two classes of filters. If the sum in (1.22) has to
be carried over all l, the filter shows an infinite impulse response. If coefficients hl vanish
for some index l > L, the filter has a finite impulse response.

1.2.1 Time delay blocks

A basic element for implementing time-discrete filters is a storage element. It is typically
implemented by a register, clocked by the sampling frequency. It’s action on the discrete
input stream fk can be described as

gk = fk−1 . (1.23)
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Figure 1.8: Storage element, implemented by a single register that stores a discrete signal
fk each sampling cycle, leading to a delayed copy gk. This can be represented in Fourier
domain by multiplication with a complex value z−1.

Its action in Fourier domain can simply be calculated from this defining expression:

g̃(ω) =

∞∑
k−=−∞

gke
−iω∆tk =

∞∑
k−=−∞

fk−1e
−iω∆tk

=

∞∑
k−=−∞

fk−1e
−iω∆t(k−1)e−iω∆t

= z−1 · f̃(ω) , with z = eiω∆t (1.24)

A time delay by ∆t, here one sampling cycle, can be represented by a filter function
h̃(ω) = z−1, a pure phase factor with a phase linear in ∆t. This is exactly the same filter
function that represents a time delay in time-continuous signals. As the corresponding
impulse response in time domain is

hk = δk,1 (1.25)

the delay element belongs to the class of finite impulse response filters.

1.2.2 Floating average filter

Another building block consists of a floating average filter. For an averaging over N
samples, its formal defining action can be written as

gk =
1

N

N−1∑
n=0

fk−n , (1.26)

corresponding to its impulse response function

hk =

{
1/N, 0 ≤ k < N ,

0 otherwise.
(1.27)

The frequency-dependent filter gain h̃(ω) can be directly calculated from this by Fourier
transformation,

h̃(ω) =
N−1∑
n=0

1

N
eiω∆tn =

1

N

1− e−iω∆t·N

1− e−iω∆t
, (1.28)
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Figure 1.9: Filter transmission of a moving average filter with N averaging points for a
sampled signal, in linear and logarithmic scales. The filter transmission has several zeros,
and is symmetric in the first and second Nyquist zone.

were the key step is simply using an expression for a geometric sum. It is instructive to
re-write this expression:

h̃(ω) =
1

N
e−iω∆t(N−1)/2 sin(ω∆TN/2)

sin(ω∆T/2)
. (1.29)

A global phase factor, linear in frequency, corresponding to a time delay of half of the
averaging time, followed by a real-valued ration of two sine functions in frequency. The
latter provides strict zeros at frequencies ωz = 2πk/(N · ∆t) for k > 0. In the limit of
∆t → 0, the latter ratio converges against a sinc function, as expected for the Fourier
transformation of a square pulse. The frequency response of the modulus of the filter is
shown in figure 1.9. The filter gain h̃(ω) has the characteristic of a low pass filter, reflecting
the intuitive impression that averaging over several samples suppresses faster changes in
the sampled signal.

Using the notation z = eiω∆t, the transfer function can also be written in a compact
form that is often found in signal processing literature:

h̃(ω) =
1

N

N−1∑
n=0

z−n =
1

N

1− z−N

1− z−1
(1.30)

In principle, the discrete coefficients hk of the impulse response of a filter with a desired
frequency-dependent gain h̃(ω) could be obtained by an inverse Fourier transformation of
the periodic h̃(ω):

hk =
1

2π

ωS/2∫
ωS/2

h̃(ω)eikω∆t , for k ∈ Z . (1.31)

However, such a filter is not automatically causal, nor has it a finite impulse response.
Even the standardized filters (see ...) have an infinite response.
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1.2.3 Filters with finite impulse response (FIR)

Implementing a filter numerically through direct convolution of a signal with a impulse
response through (1.22) requires a finite length L,

gk =
L−1∑
l=−∞

hlfk−l . (1.32)

Finding a finite set {hl} for a desired filter characteristic is a complex process, and can
often be only solved numerically and approximately.

One consideration is that coefficients hl obtained by (1.31) are typically symmetric
around l = 0. Truncating the impulse response to −L/2 < k < L/2 still results in an
acausal filter, so the impulse response function typically gets shifted by L/2, corresponding
to a time delay of L∆t/2.

(More to come...)

1.2.4 Filters with infinite impulse response (IIR)

A filter with infinite impulse response that is very easy to implement is a first order low
pass filter with a cutoff frequency ωC , with a transfer function

h̃(ω) =
1

1 + iω/ωC
(1.33)

with impulse response for a continuous time filter

h(t) =

{
e−ωCt , t > 0 ,

0 , t ≤ 0
. (1.34)

When sampled at intervals t = k∆t, the response function becomes a geometric series,

hk ∝ ak , with a = e−ωC∆t = e
−ωC 2π

ωS for k > 0 . (1.35)

Such a response can be easily implemented by subtracting a fraction of the content of a
register from itself every time step ∆t, with an iteration rule hk = a · hk−1. The iteration
rule can be easily expanded to add a sampled signal ft, leading to a recursion relation
implementing the complete filter:

gk = a · gk−1 + fk , with 0 < a < 1 (1.36)

For small cutoff frequencies ωC � ωS , a = 1 − ε is close to 1, with ε ≈ 2πωC/ωS . This
recursion relation can be properly normalized to a unit stationary gain:

gk = a · gk−1 +
1

1− a
fk = (1− ε)gk−1 + εfk . (1.37)

A formal implementation, and its Fourier domain signal flow, is shown in figure 1.10.
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Figure 1.10: Symbolic implementation of a first order low pass filter as an example of an
infinite impulse response (IIR) filter, with its associated symbolic signal flow scheme in
the Fourier domain.

Such a filter is particularly efficient to implement for coefficients ε = 2−k, as multipli-
cation by such a coefficient can be implemented by a simple bit shift (see figure 1.11). The
implementation requires only bit shifts (a cheap resource), two additions, and a register.
The normalizing factor in figure 1.11 has been moved to the output, but can be omitted
when working with integers. As the output is extracted after the storage element, it also
adds an additional delay by one sampling time. The nominal cutoff frequency is

ωC = −ωs
2π

ln(1− 2−k) ≈ 2−k

2π
ωS . (1.38)

The exact filter gain h̃(ω) for such a time-discrete filter can be obtained from the
recursion equation in the Fourier domain from figure 1.10:

g̃ = (1− ε) · z−1g̃ + εf̃ , or h̃(ω) =
ε

1− (1− ε) · z−1
with z−1 = e−iω∆t (1.39)

The filter gain and phase for a few values of k is shown in a Bode plot figure 1.12. While
for the lower frequency parts, the filter gain is very similar to a corresponding continuous
time first order low pass filter, with a unity gain at low frequencies, and a slope in the
stop band of 6 dB/octave. However, there are a few notable differences:

• The gain magnitude is minimal at half of the sampling frequency, and increases again
in the second Nyquist zone. This is reflecting the periodicity in the filter gain h̃(ω).

+

fS

−2−k

gkfk reg −k2

Figure 1.11: Implementation of a first order low pass filter with coefficients ε = 2−k.
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Figure 1.12: Bode diagram of the filter gain h̃(ω) of the first order low pass filter with
feedback coefficients ε = 2−k.

If the gain is plotted linear in frequency, it appears mirrored at half the sampling
frequency.

• The phase lag of the filtered signal behaves significantly different from its continuous-
time counterpart: the phase shift becomes exactly zero at half of the sampling
frequency, and then reverses sign in the second Nyquist zone. This is because the
second Nyquist zone reflects the negative frequency part of the first zone, where the
phase shift changes sign. And unless the cutoff frequency is significantly smaller
than the sampling frequency, it does not reach the asymptotic high frequency limit
of -90◦.

(More to come on higher order filters)

1.3 Time-discrete mixers

In time-continuous signal processing, the frequency spectrum of a signal f(t) can be shifted
by multiplying a signal with a “local” harmonic oscillation at a frequency ωL:

g(t) = f(t) ·m(t) with m(t) = cos(ωLt) (1.40)

The effect of this process on the spectrum can be understood by directly calculating the
spectrum of the product using the convolution theorem:

g̃(ω) = F [g(t)] = F [f(t) ·m(t)] =
1

2π

[
f̃(ω) ∗ m̃(ω)

]
. (1.41)
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Figure 1.13: Transformation of a spectrum f̃(ω) through multiplication of f(t) with a
local oscillator m(t) at frequency ωL.

With the spectrum of the “local oscillator”,

m̃(ω) = F
[

1

2
(eiωLt + e−iωLt)

]
= π (δ(ω − ωL) + δ(ω + ωL)) , (1.42)

this results in a simple expression for the spectrum of the product,

g̃(ω) =
1

2π

[
f̃(ω) ∗ π (δ(ω − ωL) + δ(ω + ωL))

]
=

1

2

(
f̃(ω − ωL) + f̃(ω + ωL)

)
, (1.43)

which is just a sum of two copies of the original spectrum, displaced by the local os-
cillator frequency ωL in each direction. For signal of limited spectral distribution, this
transformation is visualized in Figure 1.13.

For a time-discrete signal fk, the mechanism works in exactly the same way, as the
derivation of the spectrum g̃(ω) just uses the convolution theorem. However, the spectrum
of a time-discrete signal contains periodic copies of the spectral component of interest,
with a period of the sampling frequency ωS . The spectrum of the product and the local
oscillator contains more components that need to be taken care of.

For the simplest case, consider a local oscillator frequency that is a quarter of the
sampling frequency, ωL = ωS/4. This has the advantage that the time-domain signal of
the local oscillator has a very simple form. Possible choices (shown in figure 1.14) are:

mk =


+1 if k mod 4 = 0

−1 if k mod 4 = 2

0 otherwise

or m′k =

{
+1 if k mod 4 = 0, 1

−1 if k mod 4 = 2, 3
(1.44)

This first signal corresponds to a sampled version of a cosine function,

m(t) = cos(ωLt) · ∆t(t) =

∞∑
k=−∞

mkδ(t− k ·∆t) , (1.45)
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Figure 1.14: Sampled local oscillators m(t) and m′(t) at frequency ωL = ωS/4.

the second one to a sampled cosine function with a phase shift:

m′(t) =
√

2 cos(ωLt−
π

4
) · ∆t(t) =

∞∑
k=−∞

m′kδ(t− k ·∆t) (1.46)

The corresponding spectrum of the local oscillator can directly be obtained from (1.45):

m̃(ω) = F [cos(ωLt) · ∆t(t)]

=
1

2π
(π(δ(ω − ωL) + δ(ω + ωL))) ∗

(
ωS

∞∑
k=−∞

δ(ω − kωS)

)

= ωS

∞∑
k=−∞

1

2
(δ(ω − kωS + ωL) + δ(ω − kωS − ωL)) , (1.47)

which is a Dirac comb in frequency with peaks at odd multiples of ωL. The expression for
the resulting spectrum is again obtained by convolution of the local oscillator spectrum
with the signal spectrum:

g̃(ω) = f̃(ω) ∗ m̃(ω) =

∞∫
−∞

f̃(ω − ω′) · m̃(ω′)dω′

=

∞∫
−∞

f̃(ω − ω′) ·

[
ωS

∞∑
k=−∞

1

2

(
δ(ω′ − kωS + ωL) + δ(ω′ − kωS − ωL)

)]
dω′

= ωS

∞∑
k=−∞

1

2

(
f̃(ω + ωL − kωS) + f̃(ω − ωL − kωS)

)
(1.48)

The multiplication of the time-discrete signal fk with the local oscillator mk then
generates copies of the original spectrum, displaced by ±ωL. Assuming that the original
signal has its spectral content in a small band around the local oscillator frequency, that
band will be moved to frequency 0 (baseband), and another copy of it around 2ωL =
ωS/2, just at the border between Nyquist zones 1 and 2 (see figure 1.15). The spectrum

15
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Figure 1.15: Transformation of a spectrum f̃(ω) by multiplying with a time-discrete local
oscillator at a quarter of the sampling frequency ωL.

g̃(ω) is again a series of small spectral bands as f̃(ω), but this time appearing at even
multiples of ωL. This looks like a spectrum that could be sampled at half the sampling
frequency, without loosing any information contained in the product spectrum, as long as
the interesting bandwidth in the original spectrum is narrower than ωL. Such a process is
called decimation. If the original sampling rate is to be retained, the contributions near
ωS/2 have to be suppressed by proper filtering.

The original signal spectrum in a practical system f̃(ω) will also contain components
near ω = 0, be it a simple constant offset, or very slowly varying contributions to the
sampled signal. These undesired spectral components will be moved to regions around
ωL+kωS , and −ωL+kωS for all integer k ∈ Z, populating regions at odd multiples of ωL.
Therefore, appropriate filtering techniques have to be applied in order to suppress these
contributions.

So far, a mixing scenario was considered with a local oscillator frequency ωL = ωS/4.
This results in the largest bandwidth that can be transferred to the baseband, and is
particularly easy to implement numerically, as the multiplication process is restricted to
values of mk = ±1, which just requires a sign change. However, if other frequencies are
desired, other sinusoidal local oscillator values mk can be used in a similar way. Alterna-
tively, other local oscillator waveforms, e.g. rectangular signals with different frequencies
with values mk ± 1 can be used. Such approaches can be useful to implement lock-in
amplifiers or receiver designs where the mixing process is carried out numerically at a
fixed sampling rate in a signal processor for different target frequencies. The derivation
of the resulting spectral shift can be carried out in the same way, with a local oscillator
spectrum m̃(ω) that may contain higher harmonics of ωL.
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1.4 Decimation of time-discrete signals

If the information of a time-discrete signal fk is contained in a sufficiently small spectral
band in f̃(ω), there is a redundancy in the samples. This suggests that only a subset
of the samples need to be taken. In the following, we consider to a situation where the
sampling rate is reduced by a factor of M by keeping only every M -th sample, and skipping
the M − 1 samples in between. The decimated time-discrete signal f ′k will have a new
sampling frequency ω′S = ωS/M , resulting in a more densely spaced spectrum, with a
lower periodicity:

f̃ ′(ω) = f̃ ′(ω + k · ωS/M) , k ∈ Z (1.49)

The sampling can be understood by introducing a decimating signal dk:

f ′k = fk · dk , with dk =

{
1 for k mod M = 0 ,

0 otherwise .
(1.50)

This decimating signal dk can be expressed through its discrete Fourier transformation,

dk =
1

M

M∑
l=0

e2πi l
M , (1.51)

which can be used to evaluate the spectrum of the decimated signal:

f̃ ′R(ω) =
∞∑

k=−∞
f ′ke
−iω∆tk =

∞∑
k=−∞

fkdke
−iω∆tk

=

∞∑
k=−∞

fk
1

M

M∑
l=0

e2πi l
M e−iω∆tk

=
1

M

M∑
l=0

∞∑
k=−∞

fke
−i(ω−ωS

M
l)∆tk

=
1

M

M∑
l=0

f̃R(ω − ωS
M
l) (1.52)

The reconstructed spectrum of the decimated signal f ′k is M copies of the spectrum f̃R(ω)
of the original signal, displaced by the multiples of the new sampling frequency ωS/M . As
the size of the Nyquist zones are reduced, an issue arises when some spectral content of
the original stream overlaps with the new Nyquist zones corresponding to the decimated
sampling frequency, leading to undesired artifacts in the decimated stream. Therefore, the
spectral content of the original signal in these areas needs to be reduced with an adequate
low pass filter to acceptable levels, in the same way as sampling time-continuous signals
in the first place.
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Figure 1.16: Decimating a time-discrete signal generates a set of copies of the original
spectrum f̃(ω). Shown here the spectral change for decimating by M = 3, i.e., ω′S = ωS/3.

1.5 Noise sources in time-discrete systems

Noise on a signal is refered to a part of the signal that is not reproducible (or correlated
with any useful signal part). A noisy signal is treated as the sum of a clean signal f(t),
and a stochastical noise function n(t):

fN (t) = f(t) + n(t) (1.53)

The stochastic nature of the noise means requires that an ensemble average has to be
carried out for the noise part. Noise is then characterized by statistical properties, such
as a standard deviation, and a mean. Typically,

〈n(t)〉 = 0 , 〈n2(t)〉 =: σ2
n 6= 0 . (1.54)

Here, 〈·〉 indicates an ensemble average over different noise possibilities, and σn is the
standard deviation of the noise amplitude.

For a mathematical description, consider first the definition of a power P contained in
a continuous-time signal f(t), or discrete time sampled fk,

P =
1

T

T∫
0

f2(t)dt and P =
1

N

N−1∑
k=0

f2
k (1.55)

for some averaging time intervall T or sample number N . This corresponds to the “root
mean square” of the signal function f(t) or time-discrete set fk. For a noise signal n(t),
this quantity can also be evaluated:

P =
1

T

T∫
0

〈
n2(t)

〉
dt = σ2

n (1.56)
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1.6 Noise propagation in time-discrete systems
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Appendix A

Fourier transformation convention

Fourier transformations come with a variety of normalizations. This appendix lines out
the definitions/conventions used in this text.

The Fourier transformation F

ã(ω) = F [a(t)] :=

∞∫
−∞

a(t)e−iωtdt (A.1)

converts a time-domain function a(t) into a frequency domain function ã(ω). The tilde
above the function symbol is used to indicate a function that depends on a frequency (or
angular frequency ω).

The inverse Fourier transformation F−1is defined in the following way:

a(t) = F−1[ã(ω)] :=
1

2π

∞∫
−∞

ã(ω)eiωtdω (A.2)

With this combination, the forward and backward transformation reverse each other:

F−1 [F [a(t)]] = a(t) and F
[
F−1[ã(ω)]

]
= ã(ω) (A.3)

A common convention used in signal processing is to replace the integration over
angular frequencies ω = 2πf by integration over frequencies f . Then, the Fourier trans-
formation and its inverse look more symmetric:

ã(f) = F [a(t)] =

∞∫
−∞

a(t)e−2πiftdt (A.4)

a(t) = F−1[ã(f)] =

∞∫
−∞

ã(f)e2πiftdf (A.5)

However, the values ã(ω) and ã(f = ω/2π) are the same.
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A.1 Fourier-transformations of real-valued signals

Most signals are real-valued functions of time, following the identity

f(t) = f∗(t) , (A.6)

where the asterisk ∗ denotes the complex conjugate. This leads to a simple relation for
the Fourier transformation:

f(−ω) =

∞∫
−∞

e+iωtf(t)dt =

 ∞∫
−∞

e−iωtf∗(t)dt

∗ = f̃∗(ω) , (A.7)

This means that the Fourier transformation of real-valued functions have always positive
and negative frequency components of the same magnitude.

A.2 Fourier-transformation of time-discrete signals

To obtain the Fourier transformation of a time-discrete signal, the conventional definition
(A.1) can be used, replacing the continuous time-domain function by a weighted Dirac
comb

a(t) =
∞∑

k=−∞
akδ(t− k∆t) . (A.8)

Then, the integration can be carried out:

ã(ω) = F [a(t)] =

+∞∫
−∞

a(t)e−iωt dt

=

+∞∫
−∞

∞∑
k=−∞

akδ(t− k∆t) e−iωt dt

=
∞∑

k=−∞
ak

+∞∫
−∞

e−iωtδ(t− k∆t)dt , t′ = t− k∆t

=

∞∑
k=−∞

ak e
−iωk∆t

+∞∫
−∞

e−iωt
′
δ(t′)dt′

=
∞∑

k=−∞
ak e

−iω∆t·k. (A.9)

The Fourier transformation is periodic with a period of the sampling frequency ωS :

ã(ω) = ã(ω + k · 2π/∆t) = ã(ω + k · ωS) for k ∈ Z . (A.10)
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The inverse Fourier transformation for time-discrete signals makes use of the periodicity
in the Fourier domain:

a(t) = F−1[ã(ω)] =
1

2π

∞∫
−∞

ã(ω)eiωt dω

=
1

2π

∞∑
k=−∞

ωS/2∫
−ωS/2

ã(ω)ei(ω+kωS)tdω

=
1

2π

ωS/2∫
−ωS/2

ã(ω)

[ ∞∑
k=−∞

eikωSt

]
eiωtdω

=
1

2π

ωS/2∫
−ωS/2

ã(ω)eiωt

[ ∞∑
k=−∞

δ(t− k∆t))

]
dω

=

∞∑
k=−∞

δ(t− k∆t))
1

2π

ωS/2∫
−ωS/2

ã(ω)eiωk∆tdω

︸ ︷︷ ︸
=:ak

(A.11)

The last line makes use of a representation of the sampled function, and can be read as a
definition of the time-discrete inverse Fourier transform:

ak =
1

2π

ωS/2∫
−ωS/2

ã(ω)eiωk∆tdω with k ∈ Z . (A.12)

A.3 Parseval’s theorem, power and total energy of signals

For square-integrable functions f(t), g(t), i.e., functions that do not have an infinite extent,
Parseval’s theorem states

∞∫
−∞

|f(t) · g∗(t)| dt =
1

2π

∞∫
−∞

f̃(ω) · g̃∗(ω)dω , (A.13)

This allows to define a total energy E of a signal,

E =

∞∫
−∞

∣∣f(t)2
∣∣ dt =

1

2π

∞∫
−∞

∣∣∣f̃2(ω)
∣∣∣ dω . (A.14)

The integrand in the second integral can be interpreted as a spectral power density.
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For time-discrete signals, Parseval’s theorem reads

∆t

∞∑
k=−∞

fkg
∗
k =

1

2π

ωS/2∫
−ωS/2

f̃(ω) · g̃∗(ω)dω . (A.15)

One can again define a total signal energy,

E = ∆t
∞∑

k=−∞

∣∣f2
k

∣∣ =
1

2π

ωS/2∫
−ωS/2

∣∣∣f̃2(ω)
∣∣∣ dω . (A.16)

The quantity E in this expression has the ugly property that for continuous signals, it is
not finite. A connection to concepts of power and spectral power density becomes then
painful.

This can be addressed by introducing a time-continuous window function ΠT (t), or its
time-discrete equivalent ΠT,k for a large time window T

ΠT (t) =

{
1 , −T/2 < 2 < T/2

0 otherwise
, ΠT,k =

{
1 , −T/2∆t < 2 < T/2∆t

0 otherwise
. (A.17)

Its Fourier tranform in time-continuous and time-discrete versions are

F [ΠT (t)] =

∞∫
−∞

ΠT (t)e−iωtdt =

T/2∫
−T/2

e−iωtdt = T · sinc

(
ωT

2

)
(A.18)

and

F [ΠT,k] =

∞∑
k=−∞

ΠT,ke
−iω∆tk =

T/(2∆t)∑
k=−T/(2∆t)

e−iω∆tk

= eiωT/2
T/∆t∑
k=0

e−iω∆tk

= eiωT/2
1− e−iωT

1− e−iω∆t

= eiω∆t/2 sinωT/2

sinω∆t/2
(A.19)
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Appendix B

Dirac comb properties

The definition of a Dirac comb of a certain separation ∆t in time,

∆t(t) :=

∞∑
k=−∞

δ(t− k∆t) , (B.1)

deserves some clarification on the notation. The definition above includes a timing scale ∆t
as an index of the function. Without an index, it is supposed to be one, or dimensionless:

(x) :=
∞∑

k=−∞
δ(x− k) . (B.2)

The relationship between the indexed and non-indexed comb function are determined by
the scaling property of the Dirac function:

∆t(t) =
1

∆t

(
t

∆t

)
(B.3)

The Dirac comb can be represented as a Fourier series,

∆t(t) =
∞∑

k=−∞
δ(t− k∆t) =

1

∆t

+∞∑
n=−∞

ei
2π
∆t
nt , (B.4)

Result where I want to get:

F̃ (ω) = F [ ∆t(t)] (ω) =
2π

∆t

∞∑
k=−∞

δ(ω − k 2π

∆t
) = ωS

∞∑
k=−∞

δ(ω − kωS) (B.5)
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Appendix C

Convolution of two functions

A very useful operation is the convolution (or convolution product) of two functions. For
two functions a(t) and b(t), the convolution function is defined as

c(t) = a(t) ∗ b(t) :=

∞∫
−∞

a(t′)b(t− t′)dt′ =
∞∫
−∞

a(t− t′)b(t′)dt′ . (C.1)

The last identity indicates that the convolution is a commutative operation.
The convolution theorem makes a statement about the Fourier transformation of the

convolution of two functions:

F [a(t) ∗ b(t)] = ã(ω) · b̃(ω) (C.2)

This means that the Fourier transformation of the convolution of two functions is the
direct product of the Fourier transformations of each function.

This can be shown by explicit calculation and making use of a property of the Kronecker
delta:

1

2π

∞∫
−∞

eiωtdt = δ(ω) (C.3)

Using the convention of Fourier transformations, the convolution of two functions in
the frequency domain leads to

F−1[ã(ω) ∗ b̃(ω)] = 2π a(t) · b(t) (C.4)

or equivalently

a(t) · b(t) = F−1

 1

2π

∞∫
−∞

ã(ω′)b̃(ω − ω′)dω′
 (C.5)

When using the convention of integration over frequencies rather angular frequencies, both
relations become more symmetric again:

F [a(t) ∗ b(t)] = ã(f) · b̃(f) (C.6)

F−1[ã(f) ∗ b̃(f)] = a(t) · b(t) (C.7)
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