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Abstract: Long qubit coherence and efficient atom-photon coupling are essential for advanced
applications in quantum communication. One technique to maintain coherence is dynamical
decoupling, where a periodic sequence of refocusing pulses is employed to reduce the interaction
of the system with the environment. We experimentally study the implementation of dynamical
decoupling on an optically-trapped, spin-polarized 87Rb atom. We use the two magnetic-sensitive
5(1/2 Zeeman levels, |� = 2, <� = −2〉 and |� = 1, <� = −1〉 as qubit states, motivated by
the possibility to couple |� = 2, <� = −2〉 to 5%3/2 the excited state |� ′ = 3, <′

�
= −3〉 via a

closed optical transition. With more refocusing pulses in the dynamical decoupling technique, we
manage to extend the coherence time from 38(3) `s to more than two

:::::
around

:::::
seven

:
milliseconds.

We also observe a strong correlation between the motional states of the atom and the qubit
coherence after the refocusing, which can be used as a measurement basis to resolve trapping
parameters.

© 2020 Optical Society of America

1. Introduction

Quantum memories for efficient retrieval of a photonic qubit and long-lived storage are important
building blocks for future applications of quantum communication [1, 2]. Strong light-atom
interaction is essential to accomplish a substantial information exchange between photons and
atomic systems, or to implement an atom-mediated interaction between flying photonic qubits [3].
One approach to realize such a quantum interface considers strong focusing of the optical mode
onto a confined atom [4–8].
In our experiment, we optically trap a single neutral atom at the focus of a high numerical

aperture lens for an incoming probe mode to achieve efficient light-atom coupling. The clean
energy level structure of a neutral atom and the trapping in ultra-high vacuum permits deriving
the interaction strength with minimal assumptions.
In this work, we probe the lifetime of a coherent superposition of the 5(1/2 ground state

Zeeman levels, |� = 2, <� = −2〉 ≡ |↑〉 and |� = 1, <� = −1〉 ≡ |↓〉 as our qubit states. The |↑〉
state can be coupled to an auxiliary state 5%3/2, |� ′ = 3, <′ = −3〉 via a closed optical transition,
opening a possible path to protocols originally developed for solid state quantum systems to
be implemented in an atomic system. This includes schemes for the generation of time-bin
atom-photon entanglement and the sequential generation of an entangled photonic string [9, 10],
which are crucial resources for quantum computations.

However, dephasing could lead to loss of information, reducing the fidelity of these entangled
states. In comparison to other qubit configurations for neutral atoms, our interface based on
the stretched states is more susceptible to noise such as magnetic field fluctuations. In earlier
experiments, we have shown that a linearly polarized dipole trap can significantly reduce atomic
motion-induced qubit dephasing without impacting the light-atom coupling [11]. One approach
to further suppress decoherence is to apply dynamical decoupling (DD) techniques [12–19].
We

::::
Early

:::::
work

:::
has

:::::::::::
demonstrated

::
a
::::::::
coherence

::::
time

:::
of

::::::
around

:::
one

:::::::
hundred

:::::::::::
milliseconds

::
for

::
a
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Fig. 1.
::
(a):

:
Setup for probing light-atom interaction in free space. APD: avalanche

photodetectors, UHV: ultra-high vacuum chamber, IF: interference filter cen-
tered at 780 nm, _/2: half-wave plate, _/4: quarter-wave plate, PBS: polarizing
beam splitter, BS: beam splitter, B: magnetic field.

::
(b):

:::::::
Energy

::::
level

:::::::
scheme.

:::::::
Stretched

::::
state

::
(s)

:::::::::::::::::::
|� = 2, <� = −2〉 ≡ |↑〉,

::::::::::::::::::
|� = 1, <� = −1〉 ≡ |↓〉

:::
and

:::::
clock

:::
state

::
(c)

:::::::::::::
|� = 2, <� = 0〉,

:::::::::::::
|� = 1, <� = 0〉

:::
are

::::
used

::
as

::
the

:::::
qubit

::::
states.

::::
The

:::
|↑〉

:::
state

:::
can

::
be

::::::
coupled

::
to

::::::::::::::::::
5%3/2 |� = 3, <� = −3〉

:::
via

:
a
:::::
closed

::::::
optical

:::::::
transition.

:

:::::
single

::::::
neutral

::::
atom

:::
in

:::
the

:::::::
magnetic

::::::::::
insensitive

:::::::::::
basis [20, 21].

:::::
With

:::
the

:::::::::::::
implementation

::
of

::::
DD

::
on

:::
the

:::::
same

:::::
basis,

:::
the

:::::::::
coherence

::::
time

:::
has

:::::
been

::::::::
extended

::
by

::
a
:::::
factor

::
of

::
3
:::
(to

::::::
around

:::::::
300ms)

::::
[22].

::::
On

:::
the

:::::
other

:::::
hand,

:::::::::
dephasing

:::::::::::
suppression

::::
with

::::
DD

:::
for

:::
the

::::::::
magnetic

:::::::
sensitive

::::::
states,

:::::
which

:::::
allows

::::::::::
interfacing

::::
with

:::::::
time-bin

:::::::
photonic

::::::
qubits

::::
with

:
a
::::::
closed

::::::
optical

::::::::
transition,

:::::::
remains

:::::::
relatively

::::::::::
unexplored.

:::::
Here,

:::
we

:
demonstrate that DD is efficient in mitigating the dephasing of

the atomic
:::::::
magnetic

::::::::
sensitive

::::::
ground

::::
state qubit. The experimental setup and the state readout

procedure is described in Sec. 2. We first characterize our qubit system by performing Rabi
spectroscopy (Sec. 3), and carry on with applying various types of DD (Sec. 4). From the result,
we analyze the dephasing mechanisms and tailor the refocusing sequence such that the coherence
is optimally preserved (Sec. 5).



2. Experimental setup

Our experiment starts with a single 87Rb atom trapped in a red-detuned far off-resonant dipole
trap (FORT) that is loaded from a magneto-optical trap (MOT). This dipole trap is formed
by a linearly polarized Gaussian laser beam (wavelength 851 nm) that is tightly focused by a
pair of high numerical aperture lenses (NA = 0.75, focal length 5 = 5.95mm) to a waist of
F0 = 1.4 `m [11,23]. Part of the atomic fluorescence is collected through the same lenses and
coupled into single mode fibers that are connected to avalanche photodetectors (APD).

Once an atom is trapped, we apply 10ms of polarization gradient cooling to reduce the atomic
motion to a temperature of 14.7(2) `K [24]. Our dipole trap has an axial trap frequency of
12 kHz, which correspond to motional ground state temperature of about 0.6 `K. This infer that
our atom is not close to it motional ground state. Then, a bias magnetic field of 1.44mT is
applied along the FORT laser propagation direction to remove the degeneracy of the Zeeman
states, and the atom is optically pumped into 5(1/2 |� = 2, <� = −2〉 ≡ |↑〉. We implement a
lossless state-selective detection method [25,26] by sending light resonant to the 5(1/2, � = 2 to
5%3/2, �

′ = 3 transition onto the atom for 600 `s and collect the fluorescence light from atom
within this time window. Theatomic

:::
The

::::::
atomic state can be inferred from the photodetection

events recorded at the APDs.
The detection fidelity is characterized by first preparing the atom in a particular state and

then performing a state detection. When the atom is prepared in the |↑〉 state, the detectors
record a mean of photon number =↑ = 11.7(1). For atom in the |↓〉 state, we expect the atom to
scatter almost no photons due to the hyperfine splitting of 6.8GHz. However, we find that in the
experiment, the detectors occasionally register one or two events during the detection window
(mean of photon number =↓ = 0.36(1)).

We repeat this procedure for 2800 times. The histogram of =↑ and =↓ is shown in Figure 2. From
this histogram, we can choose a threshold photon number =Cℎ that maximizes the discrimination
between the two states. Using =Cℎ = 3, the probabilities of a state assignment error are b↑ =
4.4(4)% and b↓ = 0.8(2)% for atoms prepared in states |↑〉 and |↓〉, respectively. With this, we
achieve a detection fidelity of � = 1 − (b↑ + b↓)/2 =97.4(2)%.

:::
The

:::::::::::
high-fidelity

:::::::::
single-shot

::::::
readout

:::::::::
potentially

:::::::
enables

:::::::
quantum

::::
state

:::::::::::
manipulation

:::::::
without

::::::
further

:::::::::
averaging.

3. Rabi spectroscopy

Atoms in the |↑〉 state are coupled to |↓〉 by applying a microwave field resonant to this transition
using a pair of log-periodic antennae. We then use this field to drive Rabi oscillations and
perform Ramsey and various dynamical decoupling sequences to characterize the atomic
coherence [27–31]. The Rabi oscillation in Figure 3 (top), exhibits a Rabi frequency of
Ω<F = 2c × 76.78(3) kHz with a visibility of 0.837(7). The maximum visibility is related
to state detection fidelity through +<0G = 1 − 2(1 − �), so +<0G of 0.948(4) can be achieved
assuming there is no other source of error. The Rabi oscillation shows little decay within the
first 60 `s, implying that the reduced visibility is most likely due to imperfections in the state
preparation process. As shown in Figure 3 (top), the probability of the atom in � = 2 does not go
near to zero imply that there is non-zero probability the atom is in other zeeman states that do not
couple to the microwave field.

:::
The

:::::::
reduced

::::::::
visibility

::
of

:::
the

::::
rabi

::::::::
oscillation

:::::
could

:::
be

::::::::
explained

::
by

:::::::::
occupation

::
of

:::::
other

:::::
states

:::
due

::
to

::::::::
imperfect

:::::
state

::::::::::
preparation.

:::::
From

:::
the

:::::::
detection

:::::::
fidelity,

:::
the

:::::::::
population

::
of

:::
the

::::
atom

::::::::
prepared

::
in

:::
|↑〉

::::
state

:
is
:::::::
inferred

::
to

:::
be

:::::::::
88.3(8)%.

To determine the dephasing time of the qubit system, we carry out a Ramsey experiment where
we apply two c/2-pulses (Cc/2 = c/(2Ω)) with a free evolution time g in between the two pulses
to the atoms in the |↑〉 state. We repeat the experiment for different g and fit an exponential decay
to the Ramsey contrast, which results in dephasing time )∗2 = 38(3) `s (Fig. 3 (bottom)).

Next, we apply standard spin echo sequences [32, 33], which add an extra c-pulse (Cc = c/Ω)
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Fig. 2. Histogram of photon detection probability for atoms prepared in � = 1, |↓〉
(blue) and � = 2, |↑〉 (red) of the ground state manifold, respectively.

in the middle of the free evolution window g. These sequences help to refocus the atomic state
and reverse the inhomogeneous dephasing during the free evolution time, resulting in a much
slower decay of the Ramsey contrast. With these sequences, we obtain )2 = 480(21) `s for the
stretched state of our qubits.

In order to compare the coherence in this qubit with other systems [29,34,35], we perform a spin
echo on the transition betweenmagnetically insensitive Zeeman states, 5(1/2, |� = 1, <� = 0〉 ↔
|� = 2, <� = 0〉 of our qubits asmost of the other experimentswere also probing thismagnetically
insensitive Zeeman state coherence. Using the same procedure, we find the coherence time of
the magnetically insensitive qubit to be )2,2 = 9.5(6)ms, which is 20 times longer compared to
the stretched state coherence (Fig. 3). This observation is consistent with previous experiments
with the superposition of magnetically insensitive Zeeman state in a red detuned dipole trap,
which has a typical coherence time of 10ms. It has been shown that the coherence time can be
improved to tens of milliseconds by reducing the trap depth [29, 35]. The coherence time on
the order of hundreds of milliseconds has also been demonstrated by reducing the differential
light shift with a magic-intensity trapping technique [21]. We suspect that the fluctuations in
dipole beam intensity gives rise to the differential light shift that limits our coherence time in the
magnetic insensitive

::::::::::
magnetically

:::::::
sensitive

:
states. To confirm our hypothesis, the coherence time

for magnetic insensitive
::::::::::
magnetically

::::::::
sensitive states is calculated analytically-following [29].

For the inhomogeneous dephasing caused by atom temperature dependent differential light
shift, )∗2 = 0.97(2*0)/(X:�)0C><) ' 1.4ms, with trap depth *0 = :� × 0.88mK, maximum
differential light shift X ' 2c×13 kHz for our 851-nm FORT. An irreversible dephasing dominated
by intensity fluctuations of the dipole laser gives )2 = 1/(Xf�) ' 20ms with f� = 0.06 % the
measured Allan deviation of dipole power, following the definition in [29].

4. Periodic DD

In the previous section, we showed that the spin-echo technique, as the simplest example of DD
with one single c-pulse, can already improve the coherence time. To understand the effect of more
complex DD on coherence, we adapt a semiclassical picture in the context of nuclear-magnetic-
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Fig. 3. Top: Rabi oscillation between |↑〉 and |↓〉. Solid line is a fit to an exponentially
decaying cosine function to extract the Rabi frequency, Ω<F = 2c × 76.78(3) kHz.
Bottom: Ramsey and spin-echo when the atom is initially prepared in |↑〉 (s) or
|� = 2, <� = 0〉 (c). We fit a decaying exponential to the Ramsey signal and a
decaying Gaussian to the spin-echo signal to extract their respective 1/4 time constants;
)∗2,B = 38(3) `s, )2,B = 480(21) `s, and )2,2 = 9.5(6)ms.



resonance (NMR) systems, which classifies decoherence processes into two classes: longitudinal
energy relaxation and transverse dephasing, due to random fields imparted by the environment.
The longitudinal relaxation process, described by a characteristic energy relaxation time )1,
is generally much slower than the transverse dephasing in our system. Transverse dephasing
involves the accumulation of random phases, which is the dominant factor that decreases the
state coherence, (g) = 4−j (g) after a duration g [36].
Applying the control c-pulses flips the sign of the accumulated random phases in different

periods alternatively. To qualitatively understand the efficiency of multipulse sequences on
dephasing suppression, we focus on the change in the state coherence integral j(g). For a state
initialized in the equatorial plane of the Bloch sphere, we can write

j(g) = 2
c
g2

∫ ∞

0
((l)6# (l, g)3l , (1)

where 6# (l, g) can be viewed as a frequency-domain filter function of the random phases
for a refocusing sequence consisting of # c-pulses, and ((l) is the power spectral density
of environmental noise in the semiclassical picture, representing ensemble-averaged phase
accumulated between the qubit states. Figure 4 illustrates the filter properties of function 6# (l, g)
for the Uhrig dynamical decoupling (UDD) sequence and periodic dynamical decoupling (PDD)
sequence. For a fixed free evolution time g, the filter function’s peak frequency shifts higher as
# increases, leading to a reduction of integrated low-frequency noise. The filter function gets
narrower and is centered closer to l = #c/g as # increases.

As a proof of concept, we first apply the simplest pulsed DD scheme, PDD sequence. Figure 5
shows the coherence evolution of the qubit system under the PDD sequence. In contrast to a
monotonic decaying profile, we observe that the decaying envelopes contain collapses which
always occur at the same partition period g/# for various # . This can be explained by the atomic
motion in the dipole trap, which has also been observed in previous studies [37, 38]; we discuss
this further in the next section.
To compare various decaying envelopes, we define the coherence time )2 as the time for the

state coherence to decay by a factor of 1/4. This is consistent with the usual definition in a bare
two-level system. Figure 6 shows the coherence time as a function of number of c-pulses. The
coherence time increases with the number # of c-pulses in a sequence. Our measurements
suggest that the noise follows a 1/lU spectrum with U > 0. The dependence of )2 on # suggests
that )2 can potentially be further improved by using additional refocusing pulses. A similar trend
has been observed in other qubit systems, including single silicon-vacancy centers [39], single
nitrogen-vacancy centers [19], and single 43Ca+ ion system [40]. In our system, we are currently
limited to pulse sequences with # ≤ 20 as the contrast of the coherence evolution drops as #
increases. This is because pulse imperfections including errors in the flip angles and finite pulse
width introduce dephasing to the qubit, as discussed in [41].

:::
We

:::::::
attribute

:::
the

:::::
main

:::::
source

:::
of

::::
pulse

::::::::::::
imperfections

::
in

:::
our

::::::
system

::
to
:::
be

:::
the

::::::
inexact

:::::::
c-pulse

::::::
timing.

::::
We

:::::::
estimate

:::
the

::::::::::
uncertainty

::
of

:::::::
c-pulse

::::::
timing

::
to

::
be

::::
1%

:::::
from

:::
the

::::
Rabi

::::::::
constrast

:::
for

::::::
various

:::::::
number

::
#

::
of

::::::::
c-pulses.

:::::
With

:::
the

:::::::::
multipulse

::::
DD

:::::::::
sequences,

:::
this

:::::
small

::::::::
deviation

:::::
from

::
the

:::::
exact

::
c
:::::::
rotation

::
in

:::
the

::::::
Bloch

:::::
sphere

:::::
gives

::
a
:::::::::
cumulative

:::::
error

::
in

:::
the

:::::::
results.

:
More robust

pulse sequences with pulse phases that are shifted appropriately can be applied to mitigate the
pulse errors. Nevertheless, the preliminary refocusing strategy here has offered us an insight into
the dephasing mechanism of a magnetic-sensitive qubit state.
In fact, the physical bound is )2 ≤ )1 with the energy-relaxation time )1 determined to be on

the order of a second in our system.
To validate our findings, we simulate j(g) under a simple noise model consisting of a 1/lU

and a Gaussian centered at the axial trap frequency l0 = 2c × 12.0 kHz. The 1/lU spectrum
represents the noise floor produced by ambient magnetic field fluctuations and power fluctuations
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of the dipole light field. The Gaussian spectrum represents the differential light shift due to
the atomic motion in an inhomogenous dipole light field. Our heuristic noise model is able to
predict the recurring features as shown in Figure 5. We further test our model by comparing
the coherence time )2 for different numbers # of c-pulses (Figure 6). Again, the model is in
excellent agreement with the experimental data.
The qubit’s sensitivity to the external magnetic field is 21GHz/T at low fields. Due to the

high magnetic sensitivity of the qubit states, fluctuations in magnetic fields can be the dominant
factor in the dephasing mechanism. To verify this, we have measured a r.m.s. magnetic field
fluctuations of 19 nT dominated by components at 50Hz

:::
due

::
to

:::
the

:::::::::
alternating

:::::::
current

::
of

:::
the

:::::
power

:::
line

:
using a fluxgate magnetometer. We describe the accumulated phase due to magnetic

noise during the free evolution of the Bloch vector as

Φ(g, q) =
g∫

0

`

ℏ
�q (C)3C, (2)

with �q (C) modelled as a 50Hz sinuisoidal function with a phase q. The coherence , =

〈cosΦ(g, q)〉q following [29], corresponds to a Ramsey coherence time)∗2 of 43 `s, in agreement
with our observation.

Dynamical decoupling is also implemented in the field of magnetometry to reconstruct the
noise spectrum [42,43]. We manipulate the band-pass filter properties of 6# (l, g) function to
characterize the noise spectrum [44,45]. Knowing that the filter function behaves as periodic
sinc-shaped peaks at frequency l; ' (2; + 1)l with l ' #c/g, we probe the noise spectral
density by varying # and g.

Figure 7 shows the noise spectra probed experimentally when the dipole beam power is being
varied. The reconstruction of noise spectral density ((l) follows [44, 45]. The frequency range
is determined by the choice of free evolution time g. We observe the maximum noise density
around 10.4 kHz, 16.7 kHz, and 20.8 kHz for dipole trap with trap depth of 0.88mK, 1.04mK,
and 1.41mK, respectively. As the dipole beam power increases, the maximum noise density
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shifts to higher frequencies. The noise peaking at the axial trap frequency can be explained by
the polarization gradients of a tightly focused FORT following [46]. Around the focal plane, the
tight focusing of FORT results in a spatially varying vector light shift of the qubit states. As the
trap frequency along axial direction lI =

√
2*0/(<I2') increases along with the trap depth*0,

the light shift noise due to oscillatory atomic motion shifts to higher frequencies.
We also observe recurring peaks in the noise spectra at lower frequencies. These peaks are the

feature of the filter function 6# (l), determined by the DD sequence. We numerically construct
the noise spectral density modulated by the filter function with our heuristic noise model and find
that the simulation predicts the recurring features well. By using the higher harmonics of the
filter function, the trap frequency can be resolved with higher precision. We can use this as a
basis for the precision measurement of trap parameters.

Another observation is that the width of the Gaussian noise in our model is much narrower than
the noise spectral density modulated with a filter function. This is because the bandwidth of the
filter function is inversely proportional to # . In our experiment, the number of refocusing pulses
# used is less than 20, yielding a bandwidth that is comparable to the width of the Gaussian
noise which we would like to resolve. It is possible to improve the resolution of the noise
spectral density by increase

::::::::
increasing the number of c-pulses #; however, there is a trade-off

for increasing noise due to pulse errors.
Aside from the peak features, we notice that the background noise floor does not vary with

dipole beam power. We measure the intensity fluctuation of the dipole beam and find that it only
corresponds to noise spectral density of 0.5Hz/

√
Hz. This suggests that the background could be

due to stray magnetic field fluctuation.

5. DD benchmarking

We also apply Uhrig DD (UDD) protocols [47] to suppress dephasing in our qubit system. The
UDD sequence has been analytically shown to provide strong suppression of phase accumulation
when the noise environment contains a high-frequency component and a sharp high-frequency
cutoff. The c-pulse sequence and the characteristics of the filter function 6# (l, g) for UDD
are shown in Figure 4. A feature of UDD is the lack of higher harmonics but more side lobes.
Compared with the PDD protocol having the same number of c-pulses # , UDD produces a pass
band with a larger width peaking at a lower frequency. This indicates that UDD could perform
worse under a broadband noise spectrum.

Figure 8 shows the UDD coherence evolution of a single atom qubit. Again, the simulation
with our heuristic noise model introduced in Sec. 4 predicts the wiggles qualitatively in the
|↑〉 population as the total free evolution time g varies. However, the simulation falls short in
predicting the magnitude of the wiggles. This is most likely due to the simplified formulation for
the filter function 6# (l, g) that assumes an instantaneous c-pulse.
We also look at the 1/4 coherence time under the UDD protocol for a free evolution time g

larger than 500 `s to minimize the influence from the wiggles. We observe a coherence time of
926 `s and 1285 `s for # = 3 and # = 5 c-pulses, respectively. Compared with the coherence
time obtained using PDD with the same number of c-pulses (764 `s for # = 3 and 1060 `s for
#=5), we observe an improvement of 21.2% on the coherence time, consistent for both # = 3
and # = 5. We also notice that PDD and UDD sequences perform quite similarly because in
general a DD sequence requires a rather distinctive noise spectrum to outperform the others.
For most applications in quantum information processing, we aim to preserve coherence

maximally for a given duration. We demonstrate the optimization protocol with # = 5 c-pulses.
As shown in Figure 9 (a), we impose a fixed free evolution time g and reflection symmetry as
constraints to reduce the number of free parameters from 6 to 2. To better understand the effect
of the noise on the qubit coherence, we numerically calculate the dynamics of the qubit state
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Fig. 8. Implementing Uhrig dynamic decoupling (UDD). Top: UDD with 3 c-pulses,
)2 = 926 `s. Bottom: UDD with 5 c-pulses, )2 = 1285 `s. Solid lines are numerical
simulations using our heuristic noise model with the same parameters implemented in
section 4. Error bars represent standard error of binomial statistics accumulated from
300 repeated sequences.

using our heuristic noise model introduced in previous sections, following Eqn. (1).
We find a good agreement between the observed coherence and the model for the same

parameters used in the previous section. The maximum coherence is obtained with the protocol
that follows ( g0

g
,
g1
g
,
g2
g
) = (11.2 %, 19.2 %, 19.6 %). This optimal sequence matches well with

the Carr-Purcell (CP) sequence, which is widely used in the field of NMR and is constructed
with the first and last precession periods are half of the duration of the interpulse period, e.g.
( g0
g
,
g1
g
,
g2
g
) = (10 %, 20 %, 20 %) [48].

:::::::
Inspired

::
by

:::
the

:::::
results

::::::
above,

::
we

:::::
apply

:::
the

:::
CP

:::::::
sequence

::
to

:::
our

::::::
system

::
to

:::::::
prolong

::
the

:::::::::
coherence

::::
time

::
)2.:::

As
::::::
shown

::
in

::::::
Figure

::
10,

:::
we

:::::::
observe

:
a
:::::::::
coherence

::::
time

::
of

:::::::
1017 `s

:::
and

:::::::
1274 `s

:::
for

:::::
# = 3

:::
and

:::::
# = 5

:::::::::
c-pulses,

::::::::::
respectively.

::::::::::
Compared

::
to

:::
the

:::::::::
coherence

::::
time

::::::::
obtained

:::::
using

:::
the

:::::
PDD

:::::::
protocol

::
in

::::::
Figure

::
6,

::::
there

::
is

::
an

::::::::::::
improvement

::
in

::
)2::

of
::::::
33.1%

::::
and

::::::
20.2%

:::
for

:::::
# = 3

:::
and

::::::
# = 5

:::::::
c-pulses

::::::::::
respectively,

::::::
which

::::::
agrees

::::
with

:::
the

:::::::::::
optimization

::::::
results

:::
in

:::::
Figure

:::
9.

:::::::::
However,

:::
the

:::::::::::
improvement

::
in

:::::::::
coherence

::::
time

::::
halts

::
at
::::::
larger

::
# .

:::::::::::
Particularly,

::::
the

::::::::
coherence

:::::
time

::::::::
decreases

::::
after

:::::::
# ≥ 15,

:::
due

::
to

::
the

::::
drop

::
in

:::::
signal

:::::::
contrast

::::::
caused

::
by

:::
the

:::::::::::
accumulation

::
of

::::
pulse

::::::::::::
imperfections.

::
In

:::::
order

::
to

:::::
tackle

::::
this

:::::::
problem,

:::
we

:::::
apply

:::
the

::::::::::::::::::::::
Car-Purcell-Meiboom-Gill

::::::::
(CPMG)

::::::::
sequence

::
to

:::
our

:::::
qubit

::::::
system,

::::::
which

:::
has

:::::
been

:::::::::::
demonstrated

::
to

:::
be

::::
able

::
to

:::::::
migitate

:::::
pulse

::::::::::::
imperfections

::
for

:::
the

:::::::::::
preservation

::
of

::
a

:::::::
quantum

:::::
state

::::
[49].

:::::
The

::::::::
interpulse

::::::
period

:::
for

:::
the

::::::
CPMG

:::::::
scheme

::
is

::
the

:::::
same

:::
as

:::
the

:::
CP

:::::::
scheme,

::::::
except

::::
that

:::
the

:::::::::
refocusing

:::::::::
microwave

:::::
pulse

::
is

::::
90◦

:::::
phase

::::::
shifted
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Fig. 9. Optimization with five c-pulses for a fixed free evolution time g = 900 `s
and g = 1500 `s. (a): Schematic representation of the DD sequence, satisfying
g0 + g1 + g2 = 0.5g. (b-d): Population of � = 2 state at the end of refocusing. For
both g = 900 `s and g = 1500 `s, the maximum fidelity is not given by standard
DD sequences such as UDD (g1/g =18.3%, g2/g =25.0%) or PDD (g1/g =16.7%,
g2/g =16.7%), the maximal point locates at g1/g =19.2%, g2/g =19.6% in the
simulation.
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::
(a):

:::::::::
Schematic

:::::::::::
representation

::
of

:::
the

:::
CP

:::
and

::::::
CPMG

::::::::
sequence.

:::
In

:::
both

::::::::
sequences,

:::
the

::::
qubit

::::
state

::
is
::::::::
initialized

::
in

:::
the

:::
|↑〉

::::
state

:::
and

::::
then

::
is
::::::
brought

::
to
:::
the

::::::::::
superposition

:::
state

::::::::::::
( |↑〉 + 8 |↓〉)/

√
2
::::
with

:
a
::::::::
c/2-pulse.

::
In
:::
CP,

:::
we

::::
apply

:::
odd

::::::
number

::
of

::::::
c-pulses

:::
that

::::
have

::::
same

:::::
phase

::
as

:::
the

::::::::
c/2-pulse,

::::::
denoted

::
as

:::
cG .:::::

While
::
in

::::::
CPMG,

::
we

::::
apply

::::
even

::::::
number

::
of

::::::
c-pulses

::::
that

:::
have

:::::::::
orthogonal

::::
phase

::
as
:::
the

::::::::
c/2-pulse,

::::::
denoted

:
as
:::
cH .:::::::::

Afterward,
:::
the

::::
atom

:
is
:::::
bring

::::
back

:
to
:::::
initial

::::
state

::
by

::::::::
c/2-pulse

:::
and

::::::::
3c/2-pulse

:
in
:::
CP

:::
and

::::::
CPMG

:::::::
sequence

:::::::::
respectively.

::::
(b):

::::::::
Coherence

::::
time

::
)2::

as
:
a
:::::::
function

::
of

::
the

:::::
number

::
#
::
of
:::::::
c-pulses

::
for

:::
CP

:::
and

::::::
CPMG

:::::::
sequence.

:



::::
from

:::
the

:::::::::
c/2-pulse

:::::
which

::::::::
prepares

:::
the

:::::::::::
superposition

:::::
state.

::::
We

:::::::
compare

:::
the

::::::::::::
improvement

::
in

::::::::
coherence

::::
time

:::::
under

:::
the

::::::
CPMG

::::::::
protocol

::
to

:::
the

:::
CP

:::::::
protocol

::
in

::::::
Figure

:::
10.

:::
For

:
a
:::::
small

:::::::
number

::
of

::::::::
c-pulses,

:::
the

:::::::::::
performance

:::
of

:::
the

::::::
CPMG

::::::::
protocol

::
is

::::::::
identical

::
to

:::
the

:::::::::::
performance

:::
of

:::
the

::
CP

::::::::
protocol.

:::::::::
However,

::::
with

:::
the

:::::::
CPMG

::::::::
sequence,

:::
we

::::
can

:::::
apply

::
up

:::
to

::::::
# = 50

::::::::
c-pulses

::::
with

:::::::::
reasonably

::::
high

:::::
signal

:::::::
contrast

:::
and

::::::::
therefore

:::::::
achieve

:
a
:::::::::
coherence

::::
time

::
of

:::::::
6.8ms,

:::::
which

::
is

:::
3.7

::::
times

::::::
longer

::::
than

:::
the

:::::::
optimal

:::::::::
coherence

::::
time

:::::::
obtained

:::::
with

:::
the

::::
PDD

::::::::
protocol.

::::
We

::::
have

::::
also

::::::
applied

:::::
other

:::::::
variants

::
of

:::
the

::::::
CPMG

::::::::
protocol,

::::
such

:::
as

:::
the

:::
XY

::::::::
schemes

::::
[50]

:
,
:::
and

:::
we

:::::::
observe

::::::
similar

::::::::
coherence

:::::::::::
performance.

:

We would like to point out that in this discussion we are only looking at the coherence
of one single state possessing a particular phase. For an arbitrary state on the Bloch sphere,
more robust sequences such as KDDG and KDDGH are more effective in preserving the qubit
coherence [41, 51].

:::::::::::
Concatenated

:::
DD

:::::::::
sequences

::
in

:::::
which

::::::
phases

:::
are

:::::::
changed

::::::::::
recursively

:::
are

::::
some

:::::
other

::::::::::
alternatives

::
of

:::::::::
preserving

:::::::
arbitrary

::::
spin

:::::
states

:::::::
[52, 53].

:

6. Conclusion

We have presented a detailed experimental study of the implementation of dynamical decoupling
(DD) in a single neutral atom qubit system. In addition to the performance comparison between
two

::::::
among standard DD protocols , periodic DDand

:::::::
including

::::::::
periodic

:::
DD,

:
Uhrig DD,

::
CP

::::
DD,

:::
and

::::::
CPMG

::::
DD, we find an improvement in the coherence time )2 by two orders of magnitude

from )∗2 . The observed coherence time of 2
::
6.8ms is sufficient to facilitate the high-fidelity

transfer of quantum states between quantum repeater nodes separated by hundreds
::::::::
thousands

of kilometers [1]. In particular, we characterized the noise spectrum of an optically trapped
Rubidium atom. We demonstrated that the CP

::::::
CPMG

:
sequence performs the best in the longer

timescale.
Future experiments will explore lowering the noise floor and motion-dependent dephasing.

Improvements will extend the coherence times and hence open up new possibilities for the
implementation of more robust free-space neutral atom quantum memories for future quantum
repeater networks [54]. A better understanding of the qubit response to noise may also help to
develop a broadband single-atom sensor which would allow to image magnetic fields with a
spatial resolution at atomic length scales.
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