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Polarization gradient cooling of single atoms in optical dipole traps2
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We experimentally investigate σ+-σ− polarization gradient cooling (PGC) of a single 87Rb atom in a tightly
focused dipole trap and show that the cooling limit strongly depends on the polarization of the trapping field.
For optimized cooling light power, the temperature of the atom reaches 10.4(6) μK in a linearly polarized trap,
approximately five times lower than in a circularly polarized trap. The inhibition of PGC is qualitatively explained
by the fictitious magnetic fields induced by the trapping field. We further demonstrate that switching the trap
polarization from linear to circular after PGC induces only minor heating.
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Single neutral atoms in tightly focused optical traps are1 15

a promising platform for quantum information processing,16

quantum simulation, and to act as nodes in quantum net-17

works [1–5]. Many of these applications require the atom to18

be sufficiently cooled in order to reduce the spatial spread [6],19

increase the coherence time [7,8], or use quantum mechanical20

properties of the atomic motion [9]. Optically confined atoms,21

as free atoms, can be cooled to sub-Doppler temperatures22

by polarization gradient cooling (PGC) [10–12]. Efficient23

PGC enables further cooling to the vibrational ground state24

by Raman sideband cooling [13–15]. However, despite its25

practical relevance, the influence of the optical trap on the26

efficiency of PGC is relatively unexplored; for example,27

reported temperatures for the commonly used atomic species28

87Rb vary by an order of magnitude for similar experimental29

configurations [8,13,16]. In this article, we experimentally30

address this topic and investigate PGC of single atoms in a mK-31

deep far off-resonant optical dipole trap (FORT). In particular,32

we consider the configuration of counterpropagating beams of33

opposite circular polarizations, referred to as σ+-σ− PGC, and34

explore the dependency of the cooling limit on the polarization35

of the trapping field.36

Shortly after the initial demonstrations of σ+-σ− PGC, it37

became clear that, while this cooling technique is in general38

robust against small variations of the experimental parameters,39

it is very sensitive to magnetic fields [17–22]. The reason40

for the detrimental effect of magnetic fields is that σ+-σ−
41

PGC is based on velocity-selective Raman transitions, which42

redistribute population within the spin states of the ground-43

state manifold. The associated Zeeman effect shifts the Raman44

resonance, and thus the atoms are no longer cooled toward45

zero velocity but to a finite velocity at which the Doppler shift46

compensates the Zeeman shift.47

Similarly, the energy levels of the cooling transition are48

shifted for an atom in a FORT. In our experiment, σ+-σ−
49

PGC of 87Rb atoms is performed on the closed 5S1/2, F = 250

to 5P 3/2, F = 3 transition near 780 nm. Figure 1(a) shows51

the calculated light shifts for a linearly π -polarized and52

circularly σ+-polarized FORT operating at 851 nm with a53

trap depth of U0 = kB × 1 mK [23,24]. In a π -polarized trap,54

all spin states within the ground-state 5S1/2, F = 2 manifold55

are shifted equally as the tensorial shift is negligible for56

far off-resonant trapping fields [25–27]. This degeneracy is57

lifted in a σ+-polarized trap, where the trapping field acts58

as a “fictitious magnetic field” pointing in the direction of 59

propagation [28]. Both π - and σ+-polarized light lifts the 60

degeneracy of the Zeeman manifold in the excited state 5P 3/2, 61

F = 3. 62

To qualitatively understand the effect of the light shifts 63

on PGC, we calculate the force an atom of fixed velocity 64

experiences when traveling across a σ+-σ− PGC field in 65

the FORT. We use a semiclassical description which de- 66

fines the force F on an atom as the expectation value of 67

the quantum mechanical force operator, F = −〈∇Ĥ 〉 [29]. 68

The total Hamiltonian Ĥ = Ĥ0 + Ĥint consists of two parts: 69

(1) a spatially independent Hamiltonian Ĥ0 which contains 70

the energy levels of the cooling transition including the light 71

shifts induced by the trap, and (2) a Hamiltonian which 72

describes the interaction with the near-resonant PGC field, 73

Ĥint = − h̄
2 [�+(�r)Â+ + �−(�r)Â− + �π (�r)Âπ ] + H.c., where 74

�+, �−, and �π are the spatially dependent Rabi frequencies 75

for σ+-, σ−-, and π -polarized light, with Â+, Â−, and Âπ as 76

the atomic lowering operators for the respective polarizations. 77

For a given atomic velocity, we solve the corresponding master 78

equation ρ̇ = − i
h̄

[ρ,Ĥ ] + L[ρ] by the matrix continued frac- 79

tion method (L[ρ] is the Lindblad superoperator accounting 80

for spontaneous emission) [30–32]. We then compute the 81

steady-state force averaged over the travel through one cycle 82

of the light. 83

For a free atom, the simulation shows a steep slope of the 84

force around zero velocity, which is a hallmark of sub-Doppler 85

cooling [Figs. 1(b)–1(e), black dashed line]. For an atom 86

confined in a FORT, the force depends strongly on the trap 87

polarization and the angle between the trapping beam and 88

the PGC field. Figures 1(b)–1(e) show the force for two 89

polarizations, linear π along the x axis and circular σ+, 90

as well as two directions for the PGC beams, parallel and 91

perpendicular to the trapping beam. In the π -polarized trap 92

[Figs. 1(b) and (d)], the persisting steep slope of the force 293

around zero velocity indicates that the PGC is little affected 94

by the trap, aside from a narrowing of the sub-Doppler feature 95

due to the increased detuning from the cooling transition. 96

The σ+-polarized trap exhibits five resonances when the PGC 97

field is perpendicular to the trapping beam [Fig. 1(c)]. These 98

velocity-selective resonances correspond to Raman transitions 99

between ground- state sublevels, known from PGC cooling 100

in strong transverse magnetic fields [20]. For a PGC field 101

parallel to the trapping beam, only one Raman transition 102
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FIG. 1. (a) Energy-level scheme for the 5S1/2, F = 2 to 5P 3/2, F = 3 transition near 780 nm of a 87Rb atom in a π -polarized (parallel
to the x axis) and a σ+-polarized FORT. The inset illustrates the geometrical arrangement: The trapping beam propagates along the z axis.
(b)–(e) Calculated force on an atom of fixed velocity moving through a σ+-σ− PGC field for different axes and FORT polarizations. Both
beams of the PGC field have a Rabi frequency � = �0/2 and are red-detuned from the natural transition frequency by � = −3�0, where
�0 = 2π × 6.07 MHz is the natural linewidth. Black dashed and blue solid lines indicate the force for a free and a trapped atom, respectively.
(b) π -polarized trap, PGC field along the x axis. (c) σ+-polarized trap, PGC field along the x axis. (d) π -polarized trap, PGC field along the z

axis. (e) σ+-polarized trap, PGC field along the z axis.

can be brought into resonance by the motion of the atom103

[Fig. 1(e)]—a situation which resembles PGC in longitudinal104

magnetic fields [19]. Although this simple one-dimensional105

(1D) model of the force cannot predict the final temperatures106

in the actual experiment, it indicates that PGC works in107

π -polarized traps, but is strongly compromised in mK-deep108

σ+-polarized traps.109

Our experiment starts with a magneto-optical trap (MOT)110

from which we load a single 87Rb atom into a red-detuned111

FORT by light-induced collisions [33,34]. The dipole trap112

is formed by 851-nm light that is focused to a waist w0 ≈113

1.4 μm by a high numerical aperture lens (NA = 0.75, focal114

length f = 5.95 mm; see Fig. 2), resulting in a trap depth115

of U0 = kB × 1.88(1) mK, with radial frequencies ωr/2π =116

113(1) kHz, ωr ′/2π = 98(1) kHz, and an axial frequency117

ωz/2π = 12.6(1) kHz [6,35]. The large beam waist ensures118

that the variation of the polarization near the focal spot is119

insignificant [13,14,36]. Part of the atomic fluorescence is120

collected by the high numerical aperture lens and coupled to a121

single-mode fiber connected to an avalanche photodetector.122

We use the same light for the MOT and PGC, provided123

by three circularly polarized beams, which are retroreflected124

with opposite polarization. Two of these beams B1,B2 are125

nonorthogonal, and have a propagation component along the126

direction of the trapping beam to ensure cooling along that127

axis. The third beam B3 is orthogonal to these two beams128

and carries twice as much power. We modulate the mirror129

position of the cooling beams with an amplitude of 1 μm at130

100 Hz to average the interference pattern of the cooling light131

over the atom position [13]. The frequency of the cooling132

light is red-detuned from the natural transition frequency by 133

typically � = −3�0. In addition, all beams carry repumping 134

light nearly resonant with the D1 line at 795 nm to clear out 135

the 5S1/2, F = 1 population. Residual magnetic fields are 136

compensated to approximately 4 μT at the position of the 137

atom. 138

FIG. 2. Optical setup for trapping, polarization gradient cooling,
and fluorescence detection of a single atom. APD: avalanche
photodetector; DM: dichroic mirror; λ/4: quarter-wave plate; λ/2:
half-wave plate; B: beam consisting of 780-nm cooling light and
795-nm repumping light with a waist of 1 mm. B3 is perpendicular
to B1 and B2.
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FIG. 3. Temperature of the atoms after PGC over the total cooling
beam power in B1, B2, and B3. Error bars represent statistical
uncertainty (one standard deviation). Systematic uncertainties, caused
by errors in the determination of trap frequencies and the beam waist,
are smaller than the statistical uncertainties.

Once an atom is trapped, we turn off the magnetic139

quadrupole field and apply PGC for 10 ms. Subsequently,140

we use a “release and recapture” method to measure the141

temperature of the atoms [16]: The cooling and repumping142

light is switched off and the atom is released from the trap143

for an interval tr by interrupting the trapping beam. We144

detect the atomic fluorescence by switching back on cooling145

and repumping light to determine whether the atom was146

recaptured. For a set of 11 different release intervals tr, we147

repeat each experiment several hundred times to obtain an148

estimate of the recapture probability. Finally, we extract the149

temperature by comparing the recapture probabilities to a150

Monte Carlo simulation [16].151

We compare PGC in a π -polarized (parallel to beam B3)152

trap with that in a σ+-polarized trap. To optimize the cooling153

parameters to reach the lowest temperatures, we adjust the154

cooling beam power and frequency (Fig. 3). We observe155

the typical PGC behavior of lower temperatures for larger156

detunings of the cooling beam and an optimal cooling power157

below which the temperature increases sharply [37,38]. This158

behavior is more pronounced in the π -polarized trap than in159

the σ+-polarized trap. The lowest temperature is achieved in160

the π -polarized trap at 10.4(6) μK, which is approximately161

five times lower than the lowest temperature observed in the162

σ+-polarized trap at 49(3) μK. Figure 4 shows the temperature163

of the atoms after a variable time of PGC, measured with the164

respective optimal cooling beam power. In the π -polarized165

trap, the atom is quickly [1/e-time constant of 1.1(1) ms]166

cooled to low temperatures, whereas in the σ+-polarized trap167

PGC is inhibited and the atom remains close to the initial168

temperature.169

To test how sensitive the cooling in the π -polarized170

trap is to imperfections of the polarization, we deliberately171

introduce a slight ellipticity. The quality of the polariza-172

tion here is quantified as the polarization extinction ratio173

ε = 10 dB log10(Pmax/Pmin), where Pmax and Pmin are the174

FIG. 4. Temperature of the atoms after PGC for a varying cooling
duration. Optimal cooling beam power is used respectively for both
the π -polarized trap (red square) and the σ+-polarized trap (blue
circle). Solid lines are fits to exponentials. Error bars represent one
standard deviation.

maximum and minimum transmitted power through a rotating 175

film polarizer. As shown in Fig. 5, we find a high sensitivity 176

of the PGC to the purity of the linear polarization. Already 177

at ε = 32 dB, the temperature 13(1) μK is notably higher 178

compared to 10.4(6) μK at ε = 35 dB. We do not expect 179

much lower temperatures for polarization extinction ratios 180

above ε = 35 dB because for our lowest observed temperature 181

of 10.4(6) μK, the mean phonon number of the radial mode 182

n̄r = (eh̄ωr/kBT − 1)−1 = 1.5(1) is close to the theoretical limit 183

of n̄ ≈ 1 [39,40]. Recently, a similar value for the mean phonon 184

number has also been observed for PGC of trapped ions [41]. 185

Finally, we demonstrate that switching the trap polarization 186

from linear to circular after PGC induces only minor heating. 187

The polarization switch is implemented with a free-space 188

transverse electro-optical polarization modulator. Insertion 189

of the polarization modulator and additional wave plates 190

FIG. 5. Temperature of the atoms after PGC in a π -polarized
trap depending on the polarization extinction ratio. The cooling beam
power is optimized for the highest value of ε. Error bars represent
one standard deviation.
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compromises the purity of the π -polarization, leading to a191

polarization extinction ratio ε = 33 dB. Consequently, we192

find a slightly increased temperature of 13.1(9) μK after193

PGC cooling in the π -polarized trap. Next, we switch the194

polarization after PGC and perform the release-recapture195

experiment in the σ+-polarized trap. We observe a marginally196

increased temperature to 13.8(7) μK, which is likely caused197

by an approximately 1% change in dipole trap power after198

the switching. Nevertheless, the achieved temperature is a199

significant improvement over PGC in a σ+-polarized trap.200

In summary, we demonstrated that σ+-σ− polarization201

gradient cooling in a linearly polarized dipole trap leads to202

a lower atom temperature compared to a circularly polarized203

trap. The cooling limit shows a strong sensitivity on the purity204

of the linear polarization; we measure a temperature increase205

from 10.4(6) to 13(1) μK when we reduce the polarization206

extinction ratio from 35 to 32 dB. Our results agree with the207

review article [42], published almost two decades ago, stating208

“...linearly polarized light is usually the right choice for a209

dipole trap....” However, in practice, the choice of the trap 210

polarization is often set for other reasons than to optimize 211

the PGC. For example, in experiments testing the interaction 212

of atoms with tightly focused light employing copropagating 213

FORT and probe light, a circularly polarized trap is necessary 214

to efficiently drive the strong cycling transition [5]. Such 215

experiments can benefit from dynamical control of the trap 216

polarization, i.e., performing PGC in a linearly polarized trap 217

before conducting the experiment in a circularly polarized 218

trap [6]. 219
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