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Abstract. We adapt an algorithmic approach to the problem of local realism in

a bipartite scenario. We assume that local outcomes are simulated by spatially

separated universal Turing machines. The outcomes are calculated from inputs

encoding information about a local measurement setting and a description of the

bipartite system sent to both parties. In general, such a description can encode some

additional information not available in quantum theory, i.e., local hidden variables.

Using the Kolmogorov complexity of local outcomes we derive an inequality that

must be obeyed by any local realistic theory. Since the Kolmogorov complexity is

in general uncomputable, we show that this inequality can be expressed in terms of

lossless compression of the data generated in such experiments and that quantum

mechanics violates it. Finally, we confirm experimentally our findings using pairs of

polarisation-entangled photons and readily available compression software. We argue

that our approach relaxes the i.i.d. assumption, namely that individual bits in the

outcome bit-strings do not have to be independent and identically distributed.

PACS numbers: 03.67.-a, 03.65.Ta, 42.50.Dv, 89.20.Ff
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1. Introduction

In a standard Bell scenario [1] Alice and Bob share a bipartite system and each of

them performs a randomly chosen local measurement on their subsystems. Then, they

evaluate correlations between their outcomes. A violation of a suitable correlation-based

Bell inequality refutes local realism.

The correlations are obtained by repeating the measurements on independent

and identically distributed (i.i.d.) pairs and estimating the statistical frequencies

p(x, y|a, b) = N(x, y|a, b)/N(a, b), where N(x, y|a, b) is the number of times outcomes x

and y are obtained for measurement settings a and b, and N(a, b) is the total number

of measurements with settings a and b.

An interesting information theoretic approach to Bell inequalities was proposed in

the 80’s by Braunstein and Caves [2]. They constructed a test of local realism using

the conditional Shannon entropy H(a|b) = H(a, b) − H(b), where H(x) = −
∑

i p(x =

xi) log2 p(x = xi). This is a measure of how much information about Alice’s outcomes is

contained in Bob’s outcomes. Although these inequalities are not tight, their immediate

advantage is that they can be applied to experiments with more than two outcomes

without any modifications. The simplest information-theoretic Bell inequality is

H(a0|b1) ≤ H(a0|b0) +H(b0|a1) +H(a1|b0) , (1)

which holds for local realism, but it is violated by quantum physics.

Although the method of Braunstein and Caves offers a conceptually new approach,

it requires the estimation of probabilities p(x, y|a, b) in an experiment. Therefore, actual

implementations of such information-theoretic Bell tests are akin to the standard ones,

and require a similar statistical analysis of the data strings obtained by Alice and Bob’s

measurement outcomes.

The Shannon entropy of a data string generated by an i.i.d. source has an important

operational meaning: it tells us how much such a data string can be maximally

compressed without losses [3]. However, Shannon’s source coding theorem does not

give a prescription for how to achieve this maximum compression.

For most data strings it is hard or impossible to prove that a compression algorithm

is optimal. However, this does not stop us from introducing the concept of a best possible

compression algorithm for a given data string x. This is exactly the idea behind the

Kolmogorov complexity. More formally, the concept of Kolmogorov complexity requires

a reference to a universal model of computation, for example a universal Turing machine

(UTM). In this case the Kolmogorov complexity K(x) of a data string x is the length

l(Λ) of the shortest program Λ, which, when fed into a UTM, produces an output string

x. In general, K(x) is uncomputable. However, realistic compression algorithms can

bound K(x) from above [4]. Formally, this means K(x) ≤ C(x), where C(x) is the

length of the compressed string. A notable property of compression algorithms is that

they can be applied to data strings that are generated by non-i.i.d. sources.

In this paper, we show that one can observe violations of local realism by studying

the compression ratio of realistic compression algorithms, applied to outcomes of Bell
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tests, and derive a compression-based Bell inequality. We then test this inequality in

a real experiment measuring polarizations of pairs of entangled photons, and find a

violation of the compression-based inequality for properly chosen local measurement

settings, and a properly chosen compression algorithm. We note that our approach is

related to an earlier one by Fuchs [5], and that an alternative approach to non-i.i.d.

sources was discussed by Gill [6].

2. Algorithmic approach to Bell scenario

The core of any test for local realism is to acquire some information about possible

hidden variables from measurement outcomes. The standard approach for Bell tests is

based on the statistical inference of correlations between measurements. This implies

repeating an experiment many times, sorting the results according to the measurement

basis, and estimating the probability of each possible outcome from the observed

frequencies. The algorithmic approach we present instead considers the output of a

long sequence of measurements, the strings x and y, as primitives. The analysis of these

strings, combined with the sequence of measurement bases, relies on their complexity,

not on the statistics of the individual measurements outcomes.

This algorithmic model of a Bell test can be designed, in its most general form, in

terms of input programs, UTMs, and their corresponding outputs. We can describe the

sequence of measurement results of each party, independently, as the output of a UTM to

which, in addition to the sequence of basis settings, the program Λ has been supplied, as

shown in the top part of figure 1. We are interested in detecting any correlation between

two parties, so we introduce two spatially separated UTMs: UTMA and UTMB, with

the corresponding outputs, x and y. We assume that the two machines are supplied with

a common input program Λ that can encode the physical description of the test system,

and additional programs for each UTM encoding the sequence of local measurement

settings aj and bk (j, k = 0, 1). The spatial separation of the two parties ensures that

aj and bk are only accessible to their corresponding UTM. This situation is depicted in

the lower part of figure 1.

The Church-Turing thesis, in the Deutsch formulation, states that a universal

computing device can simulate every physical process [7]. If there is a local hidden

variable theory that describes the outputs of the test system above, it can be encoded

in the program Λ. An experimental result that cannot be simulated by a our UTMs

would therefore falsify any local realistic description of that process.

2.1. Analysis of the outcome strings

Similarly to a standard Bell test, we sort the bits of x and y into four pairs of strings,

based on the corresponding measurement basis: {x0, y0}, {x0, y1}, {x1, y0} and {x1, y1}.
To quantify how much information is shared between the strings of each pair we use the

Normalized Information Distance (NID) introduced in [8]. This distance, based on the
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Figure 1. Measurement: N particles enter a measuring device characterized by two

polarizer settings a0 and a1 generating N -outcome bit strings. A Universal Turing

machine (UTM) fed with a program Λi and information about the settings a0 and a1
can reproduce the string of length N. The bottom part shows a model to reproduce

correlated strings x and y generated from measurements on a bipartite system with

local UTMs and a common program Λ.

Kolmogorov complexity, compares two strings x and y without any knowledge about

their origin, and is a metric up to a correction (log2N)/N , where N is the length of

strings x and y. The NID is defined as

NID(x, y) =
K(x, y) − min{K(x), K(y)}

max{K(x), K(y)} , (2)

where K(x, y) is the Kolmogorov complexity of the string obtained by concatenating

x and y. In general, K(x, y) ≤ K(x) + K(y), and 0 ≤ NID(x, y) ≤ 0. If both strings

are the same (i.e., x = y), K(x, y) = K(x) = K(y) and consequently NID(x, y) = 0.

On the other hand, if x and y are completely independent, K(x, y) = K(x) +K(y), so

NID(x, y) = 1.
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2.2. Algorithmic Bell inequality

We now use the metric properties of NID to construct a Bell inequality, similar to the

approach used before in [9, 10, 11, 12]. The NID obeys the triangle inequality

NID(x, y) + NID(y, z) ≥ NID(x, z) , (3)

where we use the the result strings for different settings on each side:

NID(x0, y0) + NID(y0, y1) ≥ NID(x0, y1) . (4)

However, NID(y0, y1) cannot be determined experimentally because the strings y0
and y1 cannot be obtained at the same time since they come from incompatible

measurements. Thus, we follow a standard reasoning used in the derivations of all

known Bell inequalities, referred to as counterfactual definiteness, which states that it is

admissible to consider outcomes of unperformed experiments. We apply it to our case,

assuming that it is possible to associate a definite Kolmogorov complexity to a string that

has not been generated. Using a second triangle inequality NID(x1, y0) +NID(x1, y1) ≥
NID(y0, y1) , and combining it with (4), we get

NID(x0, y0) + NID(x1, y0) + NID(x1, y1) ≥ NID(x0, y1) . (5)

As mentioned above, the NID is only approximately a metric, therefore the above

inequality holds only up to a term (log2N)/N . For convenience, we further introduce a

parameter S ′ that quantifies the violation of inequality (5):

S ′ = NID(x0, y1)− NID(x0, y0)− NID(x1, y0) − NID(x1, y1) ≤ 0. (6)

A violation of the local realism hypothesis occurs if S ′ is positive.

Before moving on to testing the positivity of S ′, we have to address a problem

that also appears in standard Bell scenarios: every time the experiment is carried out

(with all N particles and settings) with the same preparation, the resulting local strings

xj and yk will be different. We therefore assume uniform complexity: for every two

repetitions of the experiment i and i′, the complexity of the generated strings remains

the same: Ki(xj) = Ki′(xj) and Ki(xj, yk) = Ki′(xj, yk), up to a term (log2N)/N . It

follows that if inequality (6) is violated, either local realism or uniform complexity are

invalid. This is especially relevant for experimental verifications where the bases {aj, bk}
for each particle are not chosen randomly. It is worth noting that i.i.d. implies uniform

complexity, as can be seen by segmenting a long string from a stream of i.i.d. particles.

Therefore, the class of models rejected by inequality (6) is at least as large as the one

rejected by standard Bell tests. We expect that it is possible to find non-i.i.d. systems

with uniform complexity and, consequently, a violation of inequality (6) would reject a

larger class of models.

3. Estimation of the Kolmogorov complexity of a string

In general, the Kolmogorov complexity of a string cannot be evaluated, but it can be

estimated. One can adopt two conceptually different approaches. The first one, based
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on statistics, results in an inequality similar to (1). We will briefly discuss it, however

our main focus is the algorithmic approach.

3.1. Statistical estimation

For an ensemble X of strings, and assuming i.i.d., the expected Kolmogorov complexity

for each string is equal to the Shannon entropy H(X) [13]. In experiments, the value

of H(X) can be inferred by repeated measurements, and a statistical derivation of the

probability distribution leading to H from the frequency of measurements outcomes.

Replacing the Kolmogorov complexity with Shannon entropy, we obtain a measurable

expression for NID:

〈NID(x, y)〉 = H(x, y)−min{H(x), H(y)}
max{H(x), H(y)} . (7)

Assuming the probability distributions of standard quantum mechanics (QM), it is

straightforward to show that for maximally entangled polarization states of two photons

and linear polarizers, inequality (5) becomes an entropic Bell inequality similar to (1).

The conditional Shannon entropy only depends on the angle θ between measurement

directions a and b [2]: HQM(x|y) = HQM(y|x) ≡ H(θ). From Bayes’s theorem,

H(x, y) = H(x|y)+H(y) = H(y|x)+H(x), hence HQM(x) = HQM(y). By substitution,

we obtain 〈NID(x, y)〉 = H(θ). Braunstein and Caves showed that for coplanar

measurements satisfying ~a0 ·~b1 = cos 3θ and ~a0 ·~b0 = ~a1 ·~b0 = ~a1 ·~b1 = cos θ, inequality (1)

is violated for an appropriate range of θ. We can directly calculate the expected value of

S ′ as a function of θ for the case of maximally polarization entangled photon pairs. We

plot S ′ in figure 2(a) as a benchmark for the experimental values. Under this geometry,

we find a maximal violation of S ′ = 0.24 for θ = 8.6◦.

3.2. Algorithmic estimation

It is possible to avoid a statistical estimation: the Kolmogorov complexity can be well

approximated by compression algorithms [4]. For a string x, we define C(x) as the

length of the string resulting from the compression of x.

Following [4], we introduce the Normalized Compression Distance (NCD):

NCD(x, y) =
C(x, y)−min{C(x), C(y)}

max{C(x), C(y)} . (8)

Replacing NID with NCD in inequality (6) leads to a new inequality:

S ′ → S = NCD(xa0 , yb1)− NCD(xa0 , yb0)

− NCD(xa1 , yb0)− NCD(xa1 , yb1) ≤ 0 . (9)

This expression can be tested in a real experiment because the NCD is operationally

defined. Moreover, it was shown in [4] that NCD is also a metric up to a term (log2N)/N ,

therefore inequality (9) holds up to the same term.
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Figure 2. Plots of S versus angle of separation θ. (a) Result obtained from Eq. (7),

(b) result obtained from using the LZMA compressor on numerically generated data,

(c) measurement of S in the experiment shown in figure 5, and (d) longer measurement

at the optimal angleθ = 8.6◦.

4. Choice of compressor

Most compression algorithms use some prediction about the data composition. If

it matches this prediction, the compression can be done efficiently. To conduct an

experiment we need to ensure the suitability of the compression software we use to

evaluate the NCD. For this, we numerically simulate the outcome of an experiment

based on a distribution of results predicted by quantum physics.

In order to evaluate the NCDs of the binary strings, we need to choose a compression

algorithm that performs close to the Shannon limit [3]. This is necessary to ensure that

the NCD is a good approximation of the NID, and that it does not introduce any

unintended artifacts that lead to an overestimation of the violation. Preferably we want

to work in the regime where the obtained NCDs always underestimate the violation.

For this purpose, we characterized four compression algorithms implemented by freely

available compression programs: LZMA [14], BZIP2 [15], GZIP [16] and LZW [17]. To

eliminate the overhead associated with the compression of ASCII text files, we save data

in binary format.

For this characterization, and the following simulation of the experiment, we need

to generate a “random” string of bits (1, 0) or pairs of bits (00, 01, 10, and 11) of

various length with various probability distributions. We generate these strings using

theMATLAB [18] function randsample() that uses the pseudo random number generator
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Figure 3. Comparison of the compression overhead Q obtained using four different

compression algorithms on pseudo- random strings of varying lengths. The expected

value for an ideal compressor is 0. From this characterization we can exclude LZW as

a useful compressor for our application.

mt19937ar with a long period of 219937 − 1. It is based on the Mersenne Twister [19],

with ziggurat [20] as the algorithm that generates the required probability distribution.

The complexity of this (deterministic) source of pseudorandom numbers should be high

enough to not be captured as algorithmic.

The first part of this characterization involves establishing the minimum string

length required for the compression algorithms to perform consistently. We start by

generating binary strings, x, with equal probability of 1’s and 0’s, i.e. random strings,

of varying length. For each x, we evaluate the compression overhead Q as

Q =
C(x)−H(x)

l(x)
. (10)

For a good compressor, we expect Q to be close to 0. From figure 3, it can be seen that

for all the compressors, Q starts to converge after about 105 bits, setting the minimum

string length required for the compressors to work consistently.

In the second part of this characterization, test the compressors with strings with

a known amount of correlation. We generate a random string x of length 107 using the

same technique already described. We then generate a second string y of equal length

and with probability p of being correlated to x. For p = 0 the two strings are equal, i.e.

perfectly correlated. For p = 0.5 they are uncorrelated. Strings x and y are combined

to form the string xy. To avoid artifacts due to the limited data block size of the

compression algorithms, the elements of x and y are interleaved: for example, for string
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Figure 4. Compression overhead Q for the string xy as a function of the probability

of pairwise correlation p between the bits of the generating strings x and y for three

different compressors: BZIP2, GZIP, and LZMA.

x = (0, 0, 0) and y = (1, 1, 1), the resulting concatenated string is xy = (0, 1, 0, 1, 0, 1).

The same interleaving procedure is also implemented for the strings generated in the

experiment, as described later on. We then compress xy and evaluate the compression

overhead Q as a function of p. The results for different compressors are shown in figure 4.

Although there are ranges of p where BZIP2 and GZIP perform better than LZMA, the

latter shows a more uniform performance over the entire interval of p. On the other

hand, LZW performs poorly in all respects. It is reasonable to assume that the use of

LZMA should reduce the possibility of artifacts in the estimation of the NCD also for

the data obtained from the experiment.

In general, our method can be used for data from any source by finding a suitable

compression algorithm [4]. Thus, we are not limited to i.i.d. sources, as it is commonly

assumed in standard statistical ensemble-based experiments, like, for instance, Bell-type

tests.

The numerical simulation also verifies the angle that maximizes the violation of

inequality (9). The results of this simulation are presented in figure 2.

5. Experiment

In our experiment (see figure 5), the output of a grating-stabilized laser diode (LD,

central wavelength 405 nm) passes through a single mode optical fiber (SMF) for spatial

mode filtering, and is focused to a beam waist of 80µm into a 2mm thick BBO crystal
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Figure 5. Schematic of the experimental set-up. Polarization correlations of

entangled-photon pairs are measured by the polarization analyzers MA and MB , each

consisting of a half wave plate (λ/2) followed by a polarization beam splitter (PBS).

All photons are detected by Avalanche photodetectors DH and DV , and registered in

a coincidence unit (CU).

cut for type-II phase- matching. There, photon pairs are generated via spontaneous

parametric down- conversion (SPDC) in a slightly non-collinear configuration. A half-

wave plate (λ/2) and a pair of compensation crystals (CC) take care of the temporal

and transversal walk-off [21]. Two spatial modes (A, B) of down- converted light,

defined by the SMFs for 810 nm, are matched to the pump mode to optimize the

collection [22]. In type-II SPDC, each down- converted pair consists of an ordinary

and extraordinarily polarized photon, corresponding to horizontal (H) and vertical (V )

in our setup. A pair of polarization controllers (PC) ensures that the SMFs do not

affect the polarization of the collected photons. To arrive at an approximate singlet

Bell state, the phase φ between the two decay possibilities in the polarization state

|ψ〉 = 1/
√
2
(

|H〉A|V 〉B + eiφ|V 〉A|H〉B
)

is adjusted to φ = π by tilting the CC.

In the polarization analyzers (inset of figure 5), photons from SPDC are projected

onto arbitrary linear polarization by λ/2 plates, set to half of the analyzing angles

θA(B), and polarization beam splitter (extinction ratio 1/2000 and 1/200 respectively

for transmitted and reflected arm) in each analyzer. Photons are detected by avalanche

photo diodes (APD), and corresponding detection events from the same pair identified

by a coincidence unit if they arrive within ≈ ±3 ns of each other.

The quality of polarization entanglement is tested by probing the polarization

correlations in a basis complementary to the intrinsic HV basis of the crystal. With

interference filters (IF) of 5 nm bandwidth (FWHM) centered at 810 nm, in the 45◦ linear

polarization basis we observe a visibility V45 = 99.9±0.1%. The visibility in the natural
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H/V basis of the type-II down- conversion process also reaches VHV = 99.9±0.1%. A

separate test of a CHSH-type Bell inequality [23] leads to a value of S = 2.826±0.0015.

This indicates a high quality of polarization entanglement; the uncertainties in the

visibilities are obtained from propagated Poissonian counting statistics.

5.1. Measurement and Data Post-processing

In the realization of this proof of principle experiment, we did not intend to provide

a loophole-free demonstration. Due to the limited efficiency of the APD detectors, we

assume that the fraction of the photon we detected is a fair representation of the entire

ensemble (fair sampling assumption). Similarly, even if Alice and Bob are not space-like

separated, we assume that no communication happens between the two measurements.

Moreover, the basis choice is not random, as expected in an ideal Bell-like experiment.

We instead set the basis and record the number of events in a fixed time. We are

assuming that the state generated by the source, and all the other parameters of the

experiment, do not change between experimental runs.

The basic measurement lasts 60 s, during which we record an average of 16 × 103

two-fold coincidences between detectors at A and B. A detection event at the

transmitted output of each PBS is associated with 0, reflected one with 1. Three- and

four-fold coincidences, as well as two-fold coincidences between detectors belonging to

the same party, correspond to multiple pairs of photos generated within the coincidence

time window. The rate of these events is negligible, therefore we discarded them.

In order to avoid biases due to the asymmetries in detector efficiencies, to measure

one basis (aj, bk) we also measure three complementary basis: (aj+45◦, bk), (aj, bk+45◦),

and (aj +45◦, bk +45◦). A rotation by 45◦ effectively swaps the roles of the transmitted

and reflected detectors. Each party, when measuring on the rotated basis, needs to apply

a NOT operation to the measurement outcome. The results of these four measurements

are combined into two binary files, x(aj, bk) and y(aj, bk), by interleaving their respective

bits. In order to obtain long enough strings for a stable compression, see figure 3, this

measurement is repeated 11 times and the results concatenated, obtaining strings of

average length 105 bits.

For each angle of separation θ, we measure four bases (a0, b0), (a1, b0), (a1, b1), and

(a0, b1), then calculate the NCD between x(aj, bk) and y(aj, bk) using Eq. (8), in order

to obtain the value of S.

6. Results

The inequality is experimentally tested by evaluating S in Eq. (9) for a range of θ; the

results [points (c), (d) in figure 2] are consistently lower than the trace (a) calculated

via entropy using Eq. (7), and than a simulation with the same compressor (b). This is

because the LZMA Utility is not working exactly at the Shannon limit, and also due to

imperfect state generation and detection.
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(a1, b1), and (a0, b1), and fixed angle θ = 8.6◦. The evident stability of the values

supports the uniform complexity assumption.

Although we set out in this work to avoid a statistical argument in the interpretation

of measurement results, we do resort to statistical techniques to assess the confidence

in an experimental finding of a violation of inequality (9). To estimate an uncertainty

of the experimentally obtained values for S, we set θ = 8.6◦, for which we expect the

maximum violation, and collected results from a larger number of photon pairs. We

then repeated the measurement of S, as described in the previous section, 8 times, and

considered the average value and standard deviation of this set obtaining the final result

of S(θ = 8.6◦) = 0.0494± 0.0076.

The data collected in this last measurement allow us to check the uniformity of the

measured complexity across the 8 measurements for each basis setting. The NCD values

corresponding to each trial are shown in figure 6. It is evident how the complexity of the

generated strings do not vary significantly between trials, with a maximum variation of

the order of 2%, supporting the uniform complexity assumption.

7. Discussion

There is a trend to look at physical systems and processes as programs run on a

computer made of the constituents of our universe. Although this point of view has been

already extensively used in quantum information theory, we present a complementary

algorithmic approach for an explicit, experimentally testable example. This algorithmic

approach is complementary to the orthodox Bell inequality approach to quantum
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nonlocality [1] that is statistical in its nature.

The Kolmogorov complexity of the output of UTMmust obey distance properties as

shown in [8, 4], and can be approximated by compression. The distance properties lead

to inequality (9), which we find violated in the specific case of polarization-entangled

photon pairs. Therefore, no hidden variables can be encoded as programs for spatially

separated UTMs, with the additional assumption of uniform complexity for our specific

experimental implementation of the test.

We would like to stress that our analysis of the experimental data is purely and

consistently algorithmic. This approach does not use the notion of an ensemble and the

assumption that each bit in a data string comes from an i.i.d. source. The compression

treats the string of data as a single entity, and does not ignore correlations between

subsequent string elements.

We have become aware of a recent article by Wolf [24] where this algorithmic

approach is used to provide a different viewpoint on nonlocality that does not require

counterfactual reasoning.
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