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Abstract. We

ith ad ot ir-oright ~adapt an algorithmic
approach_to_the problem of local-realism in a_bipartite scenario. We assume that
local outcomes are simulated by spatially separated universal Turing machines. The
outcomes are calculated from inputs encoding information about a local measurement
setting and a description of the bipartite system sent to both parties. In general, such
a description can encode some additional information not available in quantum theory,
i.e., local hidden variables. Using the Kolmogorov complexity of local outcomes we

derive an inequality

be obeyed by any local realistic theory. Since the Kolmogoroy complexity is in general
uncomputable, we show_that this inequality can be expressed in terms of lossless
compression of the data generated in such experiments and that quantum mechanics
violates it. Finally, we confirm experimentally our findings using polarisation-entengled
photonic pairs and readily available compression software. We argue that our approach
relaxes the i.i.d. jrealization-of photon—pairsassumption, namely that individual bits
in_the outcome bit-strings do not have to be independent and identically distributed.
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1. Introduction

In a standard Bell scenario Alice and Bob share a bipartite system and each
of them performs a randomly chosen local measurement on their subsystems. Next
Alice and Bob evaluate correlations between their outcomes. A violation of a suitable

correlation-based Bell inequality refutes local realism.

In order to calculate correlations one has to estimate probabilities p(z. y|a,b) that
Alice_outcome is x and Bob’s is y. given the measurement settings are a_and b,
respectively. This is done under the assumption that Alice and Bob perform their

airs of non-classicall

measurements on independent and identically distributed (i.i.d.

correlated systems and therefore one has »(x.vyla,b) = N(x.yla,b)/N(a,b). N(x,yla,b

is the number of times outcomes x and y detected when the measurements settings are

a and b, whereas [N (a.b) is the total number of measurements with settings a and b.
An interesting information theoretic approach to Bell inequalities was proposed

in 80’s by Braunstein and Caves . Instead of using correlation functions

they constructed a_test of local realism using conditional Shannon entropies
H(alb) = H(ab) — H(b), where H(x . ; Although these
inequalities are not tight their immediate advantage is that one does not need to worry
about the labelling and they work for any number of outcomes. Instead, one is interested

in a more fundamental problem, namely how much information about Alice’s outcomes
is contained in Bob’s ones._

The guestion-arises-iH-the-complexity-of the-eutput-efsimplest information-theoretic
Bell inequality is of the following form

H{aslh) < Hiesfb) + HlsJon) + H(oaln). )

It holds for local realism but it is violated by quantum theory.

Although the method of Braunstein and Caves offers a conceptually new approach,
it still requires estimation of probabilities p(x,y|a.b). Therefore, actual experimental
implementations of such information-theoretic tests are akin to the standard ones
because they require an identical statistical analysis of data strings obtained by Alice
and Bob. However, Shannon entropy of a system—ean-be-used-as—asignature—olits
ROB 6]8{‘{*568]5{3’. B fh]'f' paper we Fh@VV that thefe AVE PIOCESSes whieh eannot be
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mmmwm%
us how much such a data string can be losslessly compressed [20]._Still, Shannon’s source
coding theorem is based on infinite data strings. In realistic situations data strings are
finite and one faces a problem of finding a suitable algorithm for an efficient compression
of a given finite data string.

e “s—ane—s- a— I M-—we—ean—always—write—a Ogra A a
generates——Thesimplest-sueh-program—is-ebvieuslyPRIENT—="For most data strings
it_is hard, or impossible, to prove that a compression algorithm we found is the best.
However, this isnet-eptimal—inmany-eases-the-program—eanbe-much-shorter than-the

Fhisbrings-uste-the-does not stop us from introducing a concept of the best possible
compression algorithm for a given data string x. This is exactly the idea behind the
Kolmogorov_complexity. More formally, the concept of Kolmogorov complexity 4z}
requires a reference to a universal model of computation, for example a universal Turing
machine (UTM). In this case the Kolmogorov complexity K (x) of a data string x is the
minimeHength-1{A)-of all- programslength [(A) of the shortest program Athatreproduce
w&ﬁw@%%lmmm v—Hfete)

M%eemp%ess&e& in general uncom utable however reahstlc compression algorithms
C(z) 4H8kbound it from above ie, K(x) <C(z). In addition, compression
algorithms can be applied to data strings that are generated by non i.i.d. sources.

1.1. Bipartite—systerns

We-now-extend-this pietureto-We show that one can observe violations of local realism by
studying compression rates C/(z) of realistic compression algorithms applied to outcomes
of Bell tests. We derive a compression-based Bell inequality. Next. we experimentally
test our inequality using a source of entangled photonic pairs. We observe a violation

for properly chosen local measurement settings and a properly chosen compression
algorithm. We note that our approach is related to an earlier one by Fuchs and

that an alternative approach to non i.i.d. sources was discussed by Gill [§].
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Figure 1. The figure and the caption has to be changed — see references to this figure
in the text.
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2. Algorithmic approach to Bell scenario

Let_us start_with the following assumption: If there exists a local-realistic_description
of Bell measurements_then it_can be encoded as _a_program for UTMs that output bit
strings corresponding to measurement outcomes of a realistic expervment. In fact, this
hidden variables. Such program would contain full information about a physical system
that is necessary to compute the outcomes of measurements performed on it, provided

a description of a measurement setting is also available to the UTM (see Fig. [l to

@w%wmsuﬂertwo spatlally separated Uﬂ}l\v%%%r%ﬁrhee—)%ﬁé%—%eb
. \ strings-that-UTMs:
MM%WWHWMWMM
bipartite system shared between Alice and Bob and with an additional program encoding
a local measurement setting a; and by (j,k =0,1). Without loss of generality we can
assume that_both programs are concatenated, one after another, on a single bit string
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which is an input into the machine.
The input programs to both machines are iﬁé@p@ﬂé@ﬂt—ﬂi—t—h@ﬂgb—t—h&—p—?@%ﬁﬁﬁ—f@é

veling-to-two-sepa i vresult only from the shared
WMWA {Alicejand-Mhas no access
to a description of a measurement setting by that was fed to UTMp (Bebj—tach-anatyzer
%—Wwﬁmﬁf%bde%wdwmwmgmmmm@wd +and

eemmeﬁdpfegﬁm% Wthh simulate measurement outcomes, are Solel computed
from inputs A;a; and A:bg, respectively. Since both UTMs do not communicate
correlations between . and yi. can only originate from A. This implies that any posssible

mmm%

The eutpt a UTM, fod w
%h&se%ﬁmg&slmulatlon is done in the followm way (see Fig. [I] bottom). One copy of a
program A is sent to Alice and another one to Bob. The first copy is concatenated with
a description of a measurement setting a; or-and fed into UTMy, whereas the second

Wmm—&néﬁmg%&mﬂ—whw&eeﬂ%&m&%h&fﬁeﬁ%&eﬁ%@ﬁ

this point both UTMs start to compute and after some time the output strings x, and
are produced. Next. we repeat the whole procedure but with different measurement
settings. The goal is to produce all four pairs of blt strings: %@M
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2.1. Analysis of the outcome strings

The core of the Bell test is to find a method to acquire some information about possible
hidden variables from the measurement outcomes. In our case we have the output
strings {z;. yi} generated either by a computer simulation, or by physical systems. We
want to_infer from them something about the program capable of generating these
strings on two spatially separated UTMs. The general idea is to compare the two_bit

strings using some mathematical tools. In the standard approach these tools are

statistical, namely one estimates a probability that :U(-") the n-th bit of z,) has the same

value as z{"”. These probabilities can be later used to calculate correlation functions
a;by) or entropies H(a;|by), which can be plugged into relevant Bell inequalities. Here
we propose an algorithmic method of comparing these bit strings.

Let us come back to the concept of the Kolmogorov complexity introduced in the
WQ@@QMkngth of the shortest program generating them
m%mmmmmmm@wwm
z and y. Note, that if x and y are correlated —the-mere-—cerrelated-they-arethesimpler
WMMW&M@% o our case we are
interested in J(z;, yp). K (2;) and y-eatted K (yx). In other words, we seek the shortest
hidden variable descriptions of the Bell scenario. Note that if we assume that some

hidden variable description exists, then there must exist the shortest such description.
To this end we use the Normalized Information Distance (NID) svas—introdueced

infOf—introduced in [9]

_ K(x,y) — min{K(x), K(y)}
NID(x,y) = (K. K] :
The-NID-This distance is a metric and-thus-obeys-the-triangle-inequality—

NID(x,y) + NID(y,z) > NID(x,z).

Fhelds-up to a correction ef-erderdogtiat—which-ean-benegleetedforsufhietentlylong

(2)

l' ;

IOgQ Where N is the len th of strings z and H@WW—@—%P&&SEWM
compares ¢ and y without detailed knowledge about their origin. If the two data strings
are identical then K(z,y) = K(x,x) = K(z). The last equality follows from the fact
that in order to generate two _copies of x we can run the same program twice. In this
case NID(z,y) = 0. However, if x and y are uncorrelated then K (z,y) = K(x) + K
and NID(x,y) =1. In general 0 < NID(z,y) < 1.
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2.2. Algorithmic Bell inequalit
We can use the metric properties of NID to construct a Bell inequality. Note, that the

metric approach to Bell inequalities was used before in 14! . The NID obeys
NID (X, ¥1,) + NID(¥1,0,¥1,2) = NID(x,,,v1,2) (3)

Hoewever; NDGyrr75-In_our case we can write the followin

NID(xo, o) + NID(yo,y1) = NID(x0,31) - (4)
However, NID cannot be determined experimentally because the strings 4

and—4p—ecome—{rom—measurements—of ineompatible—observables—y and y; cannot be
obtained at the same time since they come from incompatible measurements. Thus we
follow a standard reasoning used in derivation of all known Bell inequalities (with a
possible exception in [30]). This is called counterfactual definiteness and it says that
it_is admissible to_consider outcomes of unperformed experiments. We apply it to our
case and assume that uncomputed strings have a definite Kolmogorov complexity._

We therefore use the triangle inequality
NID(x3,vq) + NID(x > NID , and comblne 1t with . to get

NID (Xag0, Yb90) + NID(Xa 15 ¥10) + NID(Xa,1, ¥,1) 2 NID(Xag0, ¥1,1) - (5)

As mentioned above, NID is only approximately a metric, therefore the above inequalit

holds up to a term 1°g2N

We-For convenience we introduce a parameter S’ quantifying the degree of violation

of :

S = NID(Xaio(JaYbiﬁ - NID(Xajo,Ybﬁo) - NID(Xaillvybioo) - NID(Xail;l?ybill) 16()

The violation of local realism occurs if S’ is positive.
To test this-inequality-the positivity of S’ we have to address the-folowineproblem

—We-a problem that also appears in standard Bell scenarios (for a suggested resolution

see . For example, we can set up a source to generate entangled photon pairs in an
arbitrary statebut-. However, for every experimental run ¢, with the same preparationthe
resulting string ;5 the generated local string x;, can be different. Consequently, the
corresponding program A; is—can be different for every experimental run. Therefore,
we need to argue why NID(x,  yo,) and NID(x;,, y1,) can be considered simpl
NID(x;,u0) and NID(x;, y)..

mmmmmm
that for every two experimental runs ¢ and ¢’ the complexity of the generated strings
remains the same: K(ziq,) = K(viq;) and K(2iq,, Yip,) = K(Tira;,Yirp,) Up to a
term 2%, We call this assumption uniform _complezity.

Thus our inequality only applies to programs that have this property. It follows

that_if the inequality (6] is violated, either local realism or uniform complexity are

Y
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invalid. Uniform complexity can in principle be tested experimetnally. Witheutthese

ol observed phenomena-

3. Estimati £ Kol Lo

Fn—Another problem that needs to be resolved is that in general the Kolmogorov
complexity cannot be evaluated but it can be estimated. One can adapt two conceptually

different approaches. The first one, the statistical approach, results in an inequality that
is similar to ([1]). We will briefly discuss it, however since we aim at algorithmic approach

we later focus on the other one.

2.1. Statistical Approach

2.0.1. Statistical approach The statistical approach uses an ensemble X of all possible

2N bit strings of length N -bit-strings-and looks for their average Kolmogorov complexity.

The ensemble average is the Shannon entropy H(X) [16] and thus

H(Xv y) — min{H<X)> H(Y)} (7)
max{H(x), H(y)}

Inequality becomes an entropic Bell inequality by Braunstein and Caves [19] if local

(NID(x,y)) =

entropies are maximal, i.e., H(z) = H(y) = N. They showed that for a maximally
entangled polarlzatlon state of two photons and polarizer angles such that ag- by = cos 30,

e bo =a - bo =a - bl = cos #, inequality (|5|) is violated for an appropriate range of 6.
An expected quantum value of S” as a function of 6 is shown in figure [2h. The maximal

Vlolatlon is 8 =0.24 for 6 = 8. 6° Plots-of-S—versusangle-of separation (e Result

2.0.1. Algorithmic_approach On the other hand, it is possible to avoid a statistical
description of our experiment following Ref. [I0] where it was shown that the
Kolmogorov complexity can be well approximated by compression algorithms. In [10]
the Normalized Compression Distance (NCD) is introduced

Clx,y) — min{C(x), C(y)}
max{C(x),C(y)}

NCD(x,y) = (8)
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-<— no violation | violation —
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N
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Angle of separation 6 (°)

Figure 2. Plots of S versus ang a) Result obtained from ([7)

result obtained from using the LZMA compressor on numerically generated data, (c

measurement of S in the experiment shown in figure [5] and (d) longer measurement

at the optimal angle 8 = 8.6°.

where C'(z) is the length of the compressed string z, and C(z,y) is the length of the
compressed concatenated strings x,y. Replacing NID with NCD in @ leads to a new
inequality:

S, — 5= NCD(Xa()7Yb1) - NCD(Xa()?ybO)
- NCD(Xauybo) - NCD(Xauybo) <0. (9)

This expression can be tested experimentally because the NCD is operationally defined.

Moreover, it was shown in [I0] that NCD is a metric up to a term 252% therefore

holds up to the same term.

3. Choice of compressor

Most compression algorithms use some prediction about the data composition. If
it matches this prediction, the compression can be done efficiently. To conduct an
experiment we need to ensure the suitability of the compression software we use to
evaluate the NCD. For this, we numerically simulate the outcome of an experiment
based on a distribution of results predicted by quantum physics.

In order to evaluate the NCDs of the binary strings, we need to choose a
compression algorithm that performs close to the Shannon limit [20]. This is
necessary to ensure that it does not introduce any unintended artifacts that lead to
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Figure 3. Comparison of the compression overhead @ obtained using four different
compression algorithms on pseudo-random strings of varying lengths. The expected
value for an ideal compressor is 0. From this characterization we can exclude LZW as
a useful compressor for our application.

an overestimation of the violation. Preferably we want to work in the regime where the
obtained NCDs always underestimate the violation. For this purpose, we characterized
four compression algorithms implemented by freely available compression programs:
LZMA [17], BZIP2 [21], GZIP [22] and LZW [23]. To eliminate the overhead associated
with the compression of ASCII text files, we save data in a binary format.

For this characterization and a simulation of the experiment, we need to generate a
“random” string of bits (1, 0) or pairs of bits (00, 01, 10, and 11) of various length with
various probability distributions. We generate these strings using the MATLAB [24]
function randsample() that uses the pseudo random number generator mt19937ar with
a long period of 2'9937 — 1. Tt is based on the Mersenne Twister [25], with ziggurat [20]
as the algorithm that generates the required probability distribution. The complexity
of this (deterministic) source of pseudorandom numbers should be high enough to not
be captured as algorithmic.

The first part of this characterization involves establishing the minimum string
length required for the compression algorithms to perform consistently. We start by
generating binary strings, x, with equal probability of 1’s and 0’s, i.e. random strings,
of varying length. For each x, we evaluate the compression overhead ) as

(10)

For a good compressor, we expect @ to be close to 0. From Fig. [3] it can be seen that
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Figure 4. Compression overhead @ for the string zy as a function of the probability
of pairwise correlation p between the bits of the generating strings  and y for three
different compressors: BZIP2, GZIP, and LZMA.

for all the compressors, @ starts to converge after about 10° bits, setting the minimum
string length required for the compressors to work consistently. The LZW compressor
fails this test, converging to a @) of 0.37 for long string, while BZIP2, GZIP and LZMA
give a @ below 1071,

In the second part of this characterization, test the compressors with strings with
a known amount of correlation. We generate a random string x of length 107 using the
same technique already described. We then generate a second string y of equal length
and with probability p of being correlated to x. For p = 0 the two strings are equal, i.e.
perfectly correlated. For p = 0.5 they are uncorrelated.

The two strings x and y are then combined to form the string xy: to avoid artifacts
due to the limited data block size of the compression algorithms, the elements of x and
y are interleaved. We then compress zy and evaluate the compression overhead @) as a
function of p. The results for different compressors are shown in Fig. [dl Although there
are ranges of p where BZIP2 and GZIP perform better than LZMA, the latter shows a
more uniform performance over the entire interval of p. It is reasonable to assume that
the use of LZMA should reduce the possibility of artifacts in the estimation of the NCD
also for the data obtained from the experiment.

In general our method can be used for data from any source by finding a suitable
compression algorithm [I0]. Thus, we are not limited to i.i.d. sources, as it is commonly
assumed in standard statistical ensemble-based experiments, like, for instance, Bell-type
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PBS

Figure 5. Schematic of the experimental set-up. Polarization correlations of
entangled-photon pairs are measured by the polarization analyzers M4 and Mg, each
consisting of a half wave plate (A/2) followed by a polarization beam splitter (PBS).
All photons are detected by Avalanche photodetectors Dy and Dy, and registered in
a coincidence unit (CU).

tests.

The numerical simulation also verifies the angle that maximizes the violation of
(2.0.1). The results of this simulation are presented in figure [2]

4. Experiment

In our experiment (see figure [5]), the output of a grating-stabilized laser diode (LD,
central wavelength 405 nm) passes through a single mode optical fiber (SMF) for spatial
mode filtering, and is focused to a beam waist of 80 ym into a 2mm thick BBO crystal
cut for type-II phase-matching. There, photon pairs are generated via spontaneous
parametric down-conversion (SPDC) in a slightly non-collinear configuration. A half-
wave plate (A/2) and a pair of compensation crystals (CC) take care of the temporal
and transversal walk-off [27]. Two spatial modes (A, B) of down-converted light,
defined by the SMFs for 810nm, are matched to the pump mode to optimize the
collection [28]. In type-II SPDC, each down-converted pair consists of an ordinary
and extraordinarily polarized photon, corresponding to horizontal (H) and vertical (V)
in our setup. A pair of polarization controllers (PC) ensures that the SMFs do not
affect the polarization of the collected photons. To arrive at an approximate singlet
Bell state, the phase ¢ between the two decay possibilities in the polarization state
1) = 1/vV2 (|H)alV)p + €|V)a|H)p) is adjusted to ¢ = 7 by tilting the CC.

In the polarization analyzers (figure [5)), photons from SPDC are projected onto
arbitrary linear polarization by A/2 plates, set to half of the analyzing angles 045, and
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polarization beam splitter in each analyzer. Photons are detected by avalanche photo
diodes (APD), and corresponding detection events from the same pair identified by a
coincidence unit if they arrive within ~ +3ns of each other.

The quality of polarization entanglement is tested by probing the polarization
correlations in a basis complementary to the intrinsic HV basis of the crystal. With
interference filters (IF) of 5 nm bandwidth (FWHM) centered at 810 nm, in the 45° linear
polarization basis we observe a visibility V5 = 99.940.1%. The visibility in the natural
H/V basis of the type-II down-conversion process also reaches Viy = 99.9+0.1%. A
separate test of a CHSH-type Bell inequality [29] leads to a value of S = 2.826 £ 0.0015.
This indicates a high quality of polarization entanglement; the uncertainties in the
visibilities are obtained from propagated Poissonian counting statistics.

4.1. Measurement and Data Post-processing

We record coincidences of detection events between detectors at A and B. For each PBS,
the transmitted output is associated with 0 and the reflected one with 1. The resulting
binary strings x from A, and y from B are written into two individual binary files. From
these, we calculate the NCD using (8). This procedure is repeated for each of the four
settings (ao, bo), (a1,bo), (a1,b1), and (ag, by) in order to obtain the value for S.

4.2. Symmetrization of detector efficiencies

To remove the bias due to differences in the detection efficiency of the APDs in the
experiment, we also measure for each setting the associated orthogonal ones. The
experimental setup (see figure 5)) uses four APDs: Dya, Dya (Alice), and Dyp, Dyp
(Bob) to register photon pair events in the two spatial modes. By denoting events at
Dy and Dy as 1 and 0, the four possible output patterns are 00, 01, 10, and 11, where
the least and most significant bit corresponds to the Alice and Bob mode, respectively.
Due to differences in the the losses in the transmitted and reflected port of the PBS,
efficiencies in coupling light into the APDs, and the quantum efficiencies of APDs,
the detection efficiencies for the four output combinations are different. The resulting
effective pair efficiencies are then given by the product of the contributing detection
efficiencies ny g, Ny, Nva, and Nga.

This asymmetry will skew the statistics of the measurement results. We symmetrize
the effective pair efficiencies for each (64, 6p) measuring also the following settings for
the half wave plates: (04 + 45°,6p), (04,05 + 45°), and (04 + 45°,05 + 45°). This
procedure swaps the output ports of the PBS at which each polarization state is
detected. The resulting outcomes are then interleaved, providing an uniform detection
probability for the four possible outcomes. The effective pair detection efficiency for all

four combinations is then (nypnva + v NHa + MuBMva + NaBNHA) /4
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5. Results

The inequality is experimentally tested by evaluating S in for a range of #; the
results [points (c), (d) in figure [2] are consistently lower than the trace (a) calculated
via entropy using , and than a simulation with the same compressor (b). This is
because the LZMA Utility is not working exactly at the Shannon limit, and also due to
imperfect state generation and detection.

For 6§ = 8.6° we collected results from a large number of photon pairs. Although
we set out in this work to avoid a statistical argument in the interpretation of
measurement results, we do resort to statistical techniques to assess the confidence in
an experimental finding of a violation of inequality . To estimate an uncertainty
of the experimentally obtained values for S, this large data set was subdivided into files
with length greater than 10 bits. The results from all these files are then averaged
to obtain the final result of S(f = 8.6°)=0.0494 +0.0076, with the latter indicating a
relatively small standard deviation over these different subsets.

6. Discussion

There is a trend to look at physical systems and processes as programs run on a computer
made of the constituents of our universe.

eempﬁmﬁefkp&mehgﬁfefﬂ—leea}%l—%heﬂqhﬁ—h&%Althou h this point of view has

been already extensively researehed-used in quantum information theory, we present a

complementary algorithmic approach for an explicit, experimentally testable example.
This algorithmic approach is complementary to the orthodox Bell inequality approach
to quantum nonlocality [I8] that is statistical in its nature.

The Kolmogorov complexity of the output of leeal-UTM must obey distance
properties as shown in [9] [10], and can be approximated by compression. The distance
properties lead to inequality ([2.0.1] - which we find v1olated in the spemﬁc case of

polarization-entangled photon pairs. Therefore, -
no hidden variables can be encoded as programs WMWUTMS

We would like to stress that our analysis of the experimental data is purely and
consistently algorithmic. We do not resort to statistical methods that are alien to
the concept of computation. In addition, the algorithmic approach does not use the

notion of an ensemble and the assumption that each bit in a data string comes from an
ii.d. asswmptiensource. The compression treats the string of data as a single entity,

and does not ignore correlations between subsequent string elements. Our—approach

We have become aware of a recent weﬂemww by Wolf [30] fﬁ%ﬁﬁed
+~where this algorithmic approach is used to provide

a dlfferent viewpoint on nonlocahty that does not require counterfactual reasoning.
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