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Abstract. We experimentally demonstrate an impossibility to reproduce quantum

bipartite correlations with a deterministic universal Turing machine. We use the

Normalized Information Distance (NID) that allows the comparison of two pieces of

data without detailed knowledge about their origin. Using NID, we derive an inequality

for output of two local deterministic universal Turing machines with correlated

inputs. This inequality is violated by correlations generated by a maximally entangled

polarization two-photon state. The violation is shown using a freely available lossless

compressor. The presented technique may allow to complement the common statistical

interpretation of quantum physics by an algorithmic one that does not require the

assumption of an independent identically distributed (i.i.d.) realization of photon pairs.

PACS numbers: 03.67.-a, 03.65.Ta, 42.50.Dv, 89.20.Ff
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1. Introduction

The idea that physical processes can be considered as computations done on some

universal machines traces back to Turing and von Neumann [1]. This resulted in a

completely new approach to science in which the complexity of observed phenomena is

closely related to the complexity of computational resources needed to simulate them [2].

There are physical phenomena that cannot be traced with analytical tools, which further

motivated a computational approach to physics [3]. Moreover, the idea of quantum

computation [4] led to a discovery of a few problems efficiently traceable on quantum

computers but not on classical ones [5, 6].

The question arises if the complexity of the output of a system can be used as a

signature of its non-classicality. In this paper we show that there are processes which

cannot be reproduced on local universal Turing machines (UTM) at all, independently

of the available classical resources, following a similar approach by Fuchs [7]. We first

revisit the concept of Kolmogorov complexity, a measure of the classical complexity

of a phenomenon, and later apply it to derive a bound on classical descriptions [8].

Next, we use the fact that Kolmogorov complexity can be approximated by compression

algorithms [9]. We then compress experimental data obtained from polarization

measurements on entangled photon pairs and show a violation of the classical bound.

1.1. Kolmogorov complexity

Consider the description of a machine, whether classical or quantum, that outputs a

string x of 0’s and 1’s. In the case of a UTM, we can always write a program Λ that

generates x. The simplest such program is obviously ‘PRINT x’. However, this is not

optimal: in many cases the program can be much shorter than the string itself.

This brings us to the concept of Kolmogorov complexity K(x), the minimal length

l(Λ) of all programs Λ that reproduce a specific output x. If K(x) is comparable to

the length of the output l(x) then our algorithmic description of x is inefficient, and

x is called algorithmically random [10]. In most cases K(x) is uncomputable [11]. To

circumvent this issue, we can estimate K(x) with some efficient lossless compression

C(x) [9].

1.2. Bipartite systems

We now extend this picture to two spatially separated UTM’s UA (Alice) and UB
(Bob). If these machines cannot communicate, they generate two output strings that are

independent, although the programs fed into the machines can be correlated. Moreover,

the input programs are classical bit strings so the correlations between them must be

classical.

We determine the complexity of the strings using the Normalized Information

Distance (NID) [8]. This distance compares two data sets without detailed knowledge

about their origin. In practice, we evaluate an approximation to the NID, the Normalized
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Figure 1. Measurement: N particles enter a measuring device characterized by two

polarizer settings a0 and a1 generating N -outcome bit strings. A Universal Turing

machine (UTM) fed with a program Λi and information about the settings a0 or a1
can reproduce the string of length N . The bottom part shows a model to reproduce

correlated strings x and y generated from measurements on a bipartite system with

local UTMs and a common program Λ.

Compression Distance (NCD) [9], using a lossless compression software, in our case the

LZMA Utilities, based on the Lempel-Ziv-Markov chain algorithm [12].

We consider a model experiment, similar to the Bell test [13]: a source emits pairs

of photons traveling to two separate polarization analyzers MA (Alice) and MB (Bob).

Each analyzer has two outputs labeled 0 and 1, and can be set along directions a0 or a1
for MA, and b0 or b1 for MB. The analyzers’ outputs are bit strings (see figure 1).

The output x of each analyzer can be described as the output of a UTM, fed with

the settings aj or bk, and a program Λ, which contains the information about generating

the correct output for every detection event and for every setting. For a string of finite

length l(x) = N , Λ has to describe the 4N possible events. The length of the shortest Λ

is the Kolmogorov complexity of the generated string. Next, we describe the output of

the experiment as the output of two local non-communicating UTMs UA and UB. We
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feed Λ to both of them and obtain two output strings, x and y, both of length N . The

program has to describe the behavior of all 2N events for all possible settings aj and

bk, hence 16N possibilities.

The Kolmogorov complexity K(x, y) of two bit strings is the length of the shortest

program generating them simultaneously. K(x, y) can be shorter than K(x) + K(y) if

x and y are correlated - the more correlated they are, the simpler it is to compute one

string knowing the other.

A distance measure between x and y called Normalized Information Distance (NID)

was introduced in [8]:

NID(x, y) =
K(x, y) − min{K(x),K(y)}

max{K(x),K(y)}
. (1)

The NID is a metric and thus obeys the triangle inequality

NID(x, y) + NID(y, z) ≥ NID(x, z) . (2)

It holds up to a correction of order log(l(x)), which can be neglected for sufficiently long

strings [8].

1.3. Information Inequality

We consider bit strings xaj and ybk generated by Alice and Bob with fixed settings aj
and bk. Inequality (2) transforms to

NID(xa0 , yb0) + NID(yb0 , yb1) ≥ NID(xa0 , yb1) . (3)

However, NID(yb0 , yb1) cannot be determined experimentally because the strings yb0 and

yb1 come from measurements of incompatible observables. We therefore use the triangle

inequality NID(xa1 , yb0) + NID(xa1 , yb1) ≥ NID(yb0 , yb1) , and combine it with (3) to

get:

NID(xa0 , yb0) + NID(xa1 , yb0) + NID(xa1 , yb1) ≥
NID(xa0 , yb1) . (4)

We introduce a parameter S ′ quantifying the degree of violation of (4):

S ′ = NID(xa0 , yb1)− NID(xa0 , yb0)

− NID(xa1 , yb0) − NID(xa1 , yb1) ≤ 0 (5)

To test this inequality, we have to address the following problem. We can set

up a source to generate entangled photon pairs in an arbitrary state but for every

experimental run i with the same preparation the resulting string xi,aj can be different.

Consequently, the corresponding program Λi is different for every experimental run.

It is reasonable to assume that for every two experimental runs i and i′ the

complexity of the generated strings remains the same: K(xi,aj) = K(xi′,aj) and

K(xi,aj , yi,bk) = K(xi′,aj , yi′,bk). Without these assumptions the same physical

preparation of the experiment has different consequences and thus the notion of

preparation loses its meaning. More generally, the predictive power of science can be

stated as: the same preparation results in the same complexity of observed phenomena.
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Figure 2. Plots of S versus angle of separation θ. (a) Result obtained from (6), (b)

result obtained from using the LZMA compressor on numerically generated data, (c)

measurement of S in the experiment shown in figure 5, and (d) longer measurement

at the optimal angle θ = 8.6◦.

2. Estimation of Kolmogorov complexity

In general the Kolmogorov complexity cannot be evaluated but it can be estimated.

One can adapt two conceptually different approaches.

2.1. Statistical Approach

The statistical approach uses an ensemble of all possible N -bit strings and looks for

their average Kolmogorov complexity. The ensemble average is the Shannon entropy

H(X) [11] and thus

〈NID(x, y)〉 =
H(x, y)−min{H(x),H(y)}

max{H(x),H(y)}
. (6)

Inequality (4) becomes an entropic Bell inequality by Braunstein and Caves [14] if local

entropies are maximal, i.e., H(x) = H(y) = N . They showed that for a maximally

entangled polarization state of two photons and polarizer angles such that ~a0·~b1 = cos 3θ ,

~a0 · ~b0 = ~a1 · ~b0 = ~a1 · ~b1 = cos θ, inequality (4) is violated for an appropriate range of θ.

An expected quantum value of S ′ as a function of θ is shown in figure 2a. The maximal

violation is S ′ = 0.24 for θ = 8.6◦. This statistical approach requires the assumption

that output of the systems are independent identically distributed (i.i.d.).
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2.2. Algorithmic approach

On the other hand, it is possible to avoid a statistical description of our experiment

following Ref. [9] where it was shown that the Kolmogorov complexity can be

well approximated by compression algorithms. In [9] the Normalized Compression

Distance (NCD) is introduced

NCD(x, y) =
C(x, y)−min{C(x),C(y)}

max{C(x),C(y)}
, (7)

where C(x) is the length of the compressed string x, and C(x, y) is the length of the

compressed concatenated strings x, y. Replacing NID with NCD in (5) leads to a new

inequality:

S ′ → S = NCD(xa0 , yb1)− NCD(xa0 , yb0)

− NCD(xa1 , yb0)− NCD(xa1 , yb0) ≤ 0 . (8)

This expression can be tested experimentally because the NCD is operationally defined.

3. Choice of compressor

Most compression algorithms use some prediction about the data composition. If

it matches this prediction, the compression can be done efficiently. To conduct an

experiment we need to ensure the suitability of the compression software we use to

evaluate the NCD. For this, we numerically simulate the outcome of an experiment

based on a distribution of results predicted by quantum physics.

In order to evaluate the NCDs of the binary strings, we need to choose a

compression algorithm that performs close to the Shannon limit [15]. This is

necessary to ensure that it does not introduce any unintended artifacts that lead to

an overestimation of the violation. Preferably we want to work in the regime where the

obtained NCDs always underestimate the violation. For this purpose, we characterized

four compression algorithms implemented by freely available compression programs:

LZMA [12], BZIP2 [16], GZIP [17] and LZW [18]. To eliminate the overhead associated

with the compression of ASCII text files, we save data in a binary format.

For this characterization and a simulation of the experiment, we need to generate a

“random” string of bits (1, 0) or pairs of bits (00, 01, 10, and 11) of various length with

various probability distributions. We generate these strings using the MATLAB [19]

function randsample() that uses the pseudo random number generator mt19937ar with

a long period of 219937 − 1. It is based on the Mersenne Twister [20], with ziggurat [21]

as the algorithm that generates the required probability distribution. The complexity

of this (deterministic) source of pseudorandom numbers should be high enough to not

be captured as algorithmic.

The first part of this characterization involves establishing the minimum string

length required for the compression algorithms to perform consistently. We start by
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Figure 3. Comparison of the compression overhead Q obtained using four different

compression algorithms on pseudo-random strings of varying lengths. The expected

value for an ideal compressor is 0. From this characterization we can exclude LZW as

a useful compressor for our application.

generating binary strings, x, with equal probability of 1’s and 0’s, i.e. random strings,

of varying length. For each x, we evaluate the compression overhead Q as

Q =
C(x)−H(x)

l(x)
. (9)

For a good compressor, we expect Q to be close to 0. From Fig. 3, it can be seen that

for all the compressors, Q starts to converge after about 105 bits, setting the minimum

string length required for the compressors to work consistently. The LZW compressor

fails this test, converging to a Q of 0.37 for long string, while BZIP2, GZIP and LZMA

give a Q below 10−1.

In the second part of this characterization, test the compressors with strings with

a known amount of correlation. We generate a random string x of length 107 using the

same technique already described. We then generate a second string y of equal length

and with probability p of being correlated to x. For p = 0 the two strings are equal, i.e.

perfectly correlated. For p = 0.5 they are uncorrelated.

The two strings x and y are then combined to form the string xy: to avoid artifacts

due to the limited data block size of the compression algorithms, the elements of x and

y are interleaved. We then compress xy and evaluate the compression overhead Q as a

function of p. The results for different compressors are shown in Fig. 4. Although there

are ranges of p where BZIP2 and GZIP perform better than LZMA, the latter shows a

more uniform performance over the entire interval of p. It is reasonable to assume that
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Figure 4. Compression overhead Q for the string xy as a function of the probability

of pairwise correlation p between the bits of the generating strings x and y for three

different compressors: BZIP2, GZIP, and LZMA.

the use of LZMA should reduce the possibility of artifacts in the estimation of the NCD

also for the data obtained from the experiment.

In general our method can be used for data from any source by finding a suitable

compression algorithm [9]. Thus, we are not limited to i.i.d. sources, as it is commonly

assumed in standard statistical ensemble-based experiments, like, for instance, Bell-type

tests.

The numerical simulation also verifies the angle that maximizes the violation of (8).

The results of this simulation are presented in figure 2.

4. Experiment

In our experiment (see figure 5), the output of a grating-stabilized laser diode (LD,

central wavelength 405 nm) passes through a single mode optical fiber (SMF) for spatial

mode filtering, and is focused to a beam waist of 80µm into a 2 mm thick BBO crystal

cut for type-II phase-matching. There, photon pairs are generated via spontaneous

parametric down-conversion (SPDC) in a slightly non-collinear configuration. A half-

wave plate (λ/2) and a pair of compensation crystals (CC) take care of the temporal

and transversal walk-off [22]. Two spatial modes (A, B) of down-converted light,

defined by the SMFs for 810 nm, are matched to the pump mode to optimize the

collection [23]. In type-II SPDC, each down-converted pair consists of an ordinary

and extraordinarily polarized photon, corresponding to horizontal (H) and vertical (V)
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Figure 5. Schematic of the experimental set-up. Polarization correlations of

entangled-photon pairs are measured by the polarization analyzers MA and MB , each

consisting of a half wave plate (λ/2) followed by a polarization beam splitter (PBS).

All photons are detected by Avalanche photodetectors DH and DV , and registered in

a coincidence unit (CU).

in our setup. A pair of polarization controllers (PC) ensures that the SMFs do not

affect the polarization of the collected photons. To arrive at an approximate singlet

Bell state, the phase φ between the two decay possibilities in the polarization state

|ψ〉 = 1/
√

2
(
|H〉A|V 〉B + eiφ|V 〉A|H〉B

)
is adjusted to φ = π by tilting the CC.

In the polarization analyzers (figure 5), photons from SPDC are projected onto

arbitrary linear polarization by λ/2 plates, set to half of the analyzing angles θA(B), and

polarization beam splitter in each analyzer. Photons are detected by avalanche photo

diodes (APD), and corresponding detection events from the same pair identified by a

coincidence unit if they arrive within ≈ ±3 ns of each other.

The quality of polarization entanglement is tested by probing the polarization

correlations in a basis complementary to the intrinsic HV basis of the crystal. With

interference filters (IF) of 5 nm bandwidth (FWHM) centered at 810 nm, in the 45◦ linear

polarization basis we observe a visibility V45 = 99.9±0.1%. The visibility in the natural

H/V basis of the type-II down-conversion process also reaches VHV = 99.9±0.1%. A

separate test of a CHSH-type Bell inequality [24] leads to a value of S = 2.826±0.0015.

This indicates a high quality of polarization entanglement; the uncertainties in the

visibilities are obtained from propagated Poissonian counting statistics.

4.1. Measurement and Data Post-processing

We record coincidences of detection events between detectors at A and B. For each PBS,

the transmitted output is associated with 0 and the reflected one with 1. The resulting
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binary strings x from A, and y from B are written into two individual binary files. From

these, we calculate the NCD using (7). This procedure is repeated for each of the four

settings (a0, b0), (a1, b0), (a1, b1), and (a0, b1) in order to obtain the value for S.

4.2. Symmetrization of detector efficiencies

To remove the bias due to differences in the detection efficiency of the APDs in the

experiment, we also measure for each setting the associated orthogonal ones. The

experimental setup (see figure 5) uses four APDs: DHA, DV A (Alice), and DHB, DV B

(Bob) to register photon pair events in the two spatial modes. By denoting events at

DH and DV as 1 and 0, the four possible output patterns are 00, 01, 10, and 11, where

the least and most significant bit corresponds to the Alice and Bob mode, respectively.

Due to differences in the the losses in the transmitted and reflected port of the PBS,

efficiencies in coupling light into the APDs, and the quantum efficiencies of APDs,

the detection efficiencies for the four output combinations are different. The resulting

effective pair efficiencies are then given by the product of the contributing detection

efficiencies ηV B, ηHB, ηV A, and ηHA.

This asymmetry will skew the statistics of the measurement results. We symmetrize

the effective pair efficiencies for each (θA, θB) measuring also the following settings for

the half wave plates: (θA + 45◦, θB), (θA, θB + 45◦), and (θA + 45◦, θB + 45◦). This

procedure swaps the output ports of the PBS at which each polarization state is

detected. The resulting outcomes are then interleaved, providing an uniform detection

probability for the four possible outcomes. The effective pair detection efficiency for all

four combinations is then (ηV B ηV A + ηV B ηHA + ηHB ηV A + ηHB ηHA)/4.

5. Results

The inequality is experimentally tested by evaluating S in (8) for a range of θ; the

results [points (c), (d) in figure 2] are consistently lower than the trace (a) calculated

via entropy using (6), and than a simulation with the same compressor (b). This is

because the LZMA Utility is not working exactly at the Shannon limit, and also due to

imperfect state generation and detection.

For θ = 8.6◦ we collected results from a large number of photon pairs. Although we

set out in this work to avoid a statistical argument in the interpretation of measurement

results, we do resort to statistical techniques to assess the confidence in an experimental

finding of a violation of inequality (8). To estimate an uncertainty of the experimentally

obtained values for S, this large data set was subdivided into files with length greater

than 105 bits. The results from all these files are then averaged to obtain the final result

of S(θ = 8.6◦)= 0.0494± 0.0076, with the latter indicating a relatively small standard

deviation over these different subsets.
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6. Discussion

There is a trend to look at physical systems and processes as programs run on a computer

made of the constituents of our universe. We show that this is not possible if one uses

a computation paradigm of a local UTM. Although this has been already extensively

researched in quantum information theory, we present a complementary algorithmic

approach for an explicit, experimentally testable example. This algorithmic approach

is complementary to the orthodox Bell inequality approach to quantum nonlocality [13]

that is statistical in its nature.

The Kolmogorov complexity of the output of local UTM must obey distance

properties as shown in [8, 9], and can be approximated by compression. The distance

properties lead to inequality (8), which we find violated in the specific case of

polarization-entangled photon pairs. Therefore, at least this physical processes can

not be encoded as programs on local UTMs.

We would like to stress that our analysis of the experimental data is purely and

consistently algorithmic. We do not resort to statistical methods that are alien to the

concept of computation. In addition, the algorithmic approach does not use the notion

of an ensemble and the i.i.d. assumption. The compression treats the string of data as a

single entity, and does not ignore correlations between subsequent string elements. Our

approach allows us therefore to omit the notion of probability, at least for the case at

hand. If it can be extended to other quantum experiments, it would offer an alternative

with less assumptions to the commonly used statistical interpretation of quantum theory.

We have become aware of a recent work by Wolf [25] inspired by the ideas presented

in this work, where this algorithmic approach is used to provide a different viewpoint

on nonlocality that does not require counterfactual reasoning.
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[9] Cilibrasi R and Vitányi P M B 2005 Information Theory, IEEE Transactions on 51 1523–1545

[10] Li M and Vitanyi P M B 2009 An Introduction to Kolmogorov Complexity and Its Applications

Texts in Computer Science (Springer New York) ISBN 9780387498201

[11] Cover T M and Thomas J A 2006 Elements of Information Theory 2nd ed (Wiley-Interscience)

ISBN 9780471748816

[12] Pavlov I http://www.7-zip.org/sdk.html URL http://www.7-zip.org/sdk.html

[13] Bell J S 1964 Physics 1 195–200

[14] Braunstein S L and Caves C M 1988 Phys. Rev. Lett. 61 662–665 URL http://link.aps.org/

doi/10.1103/PhysRevLett.61.662

[15] Shannon C E 1948 Bell System Technical Journal 27 379–423 URL http://ieeexplore.ieee.

org/lpdocs/epic03/wrapper.htm?arnumber=6773024

[16] Seward J http://www.bzip.org/ URL http://www.bzip.org

[17] Gailly J l and Adler M http://www.gzip.org/ URL http://www.gzip.org/

[18] Welch T 1984 Computer 17 8–19 ISSN 0018-9162

[19] MATLAB R2010a, The MathWorks, Inc., Natick, Massachusetts, United States.

[20] Matsumoto M and Nishimura T 1998 ACM Transactions on Modeling and Computer Simulation

(TOMACS) 8 3–30

[21] Marsaglia G and Tsang W W 2000 Journal of Statistical Software 5 1–7 ISSN 1548-7660 URL

http://www.jstatsoft.org/v05/i08

[22] Kwiat P G, Mattle K, Weinfurter H, Zeilinger A, Sergienko A V and Shih Y 1995 Phys. Rev. Lett.

75 4337–4341 URL http://link.aps.org/doi/10.1103/PhysRevLett.75.4337

[23] Kurtsiefer C, Oberparleiter M and Weinfurter H 2001 Phys. Rev. A 64 023802

[24] Clauser J F, Horne M, Shimony A and Holt R 1969 Phys. Rev. Lett. 23 880–884

[25] Wolf S 2015 arXiv (Preprint 1505.07037) URL http://arxiv.org/abs/1505.07037

http://arxiv.org/abs/quant-ph/9605043
http://arxiv.org/abs/quant-ph/9605043
http://www.7-zip.org/sdk.html
http://link.aps.org/doi/10.1103/PhysRevLett.61.662
http://link.aps.org/doi/10.1103/PhysRevLett.61.662
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6773024
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6773024
http://www.bzip.org
http://www.gzip.org/
http://www.jstatsoft.org/v05/i08
http://link.aps.org/doi/10.1103/PhysRevLett.75.4337
1505.07037
http://arxiv.org/abs/1505.07037

	Introduction
	Kolmogorov complexity
	Bipartite systems
	Information Inequality

	Estimation of Kolmogorov complexity
	Statistical Approach
	Algorithmic approach

	Choice of compressor
	Experiment
	Measurement and Data Post-processing
	Symmetrization of detector efficiencies

	Results
	Discussion

