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We experimentally demonstrate that it is impossible to simulate quantum bipartite correlations
with a deterministic universal Turing machine. Our approach is based on the Normalized Informa-
tion Distance (NID) that allows the comparison of two pieces of data without detailed knowledge
about their origin. Using NID, we derive an inequality for output of two local deterministic universal
Turing machines with correlated inputs. This inequality is violated by correlations generated by a
maximally entangled polarization state of two photons. The violation is shown using a freely avail-
able lossless compression program. The presented technique may allow to complement the common
statistical interpretation of quantum physics by an algorithmic one.

INTRODUCTION

The idea that physical processes can be considered as
computations done on some universal machines traces
back to Turing and von Neumann [1], and the growth of
the computational power allowed for further development
of these concepts. This resulted in a completely new ap-
proach to science in which the complexity of observed
phenomena is closely related to the complexity of com-
putational resources needed to simulate them [2]. In ad-
dition, there are physical phenomena that simply cannot
be traced with analytical tools, which further motivated
a computational approach to physics [3]. Moreover, the
idea of quantum computation [4] lead to a discovery of a
few problems that seem not efficiently traceable on classi-
cal computers but efficiently on a quantum version [5, 6].

Classical physics can be simulated on universal Tur-
ing machines, or other computationally equivalent mod-
els [7]. On the other hand, efficient simulation of quan-
tum systems requires a replacement of deterministic uni-
versal Turing machines with quantum computers whose
states are non-classically correlated. Such machines can
even simulate any local quantum system efficiently [8, 9].
Can we experimentally distinguish between these two de-
scriptions of the universe using a logically self-contained
computational approach?

In this paper, we show that there are processes which
cannot be simulated on local classical machines at all, in-
dependently of the available classical resources. We first
introduce the notion of Kolmogorov complexity, a mea-
sure of the classical complexity of a phenomena, and later
apply it to derive a bound on classical descriptions [10].
Next, we use the fact that Kolmogorov complexity can
be approximated by compression algorithms [11].

We compress experimental data obtained from polari-
sation measurements on entangled photon pairs and show
the violation of a classical bound.

Let’s consider the description of a machine, whether
classical or quantum, that outputs a string x made of
0’s and 1’s. In the case of a Turing machine U , we can
always write a program Λ that generates x. The simplest
such program is obviously ‘PRINT x’. However, this is
not optimal: in many cases the program can be much
shorter than the string itself.

This brings us to the concept of Kolmogorov complex-
ity K(x), the minimal length l(Λ) of all programs Λ that
reproduce a specific output x. If K(x) is of the order
of the length of the output l(x) then our algorithmic de-
scription of x is inefficient, and x is called algorithmi-
cally random [12]. In most cases K(x) cannot be com-
puted [13]. To circumvent this issue, we can estimate
K(x) with some efficient lossless compression algorithm
C(x) [11].

We now extend this picture by considering two Tur-
ing machines UA (Alice) and UB (Bob), which are spa-
tially separated. If these machines cannot communicate,
they generate two output strings that are independent,
although the programs fed into the machines can be cor-
related. Moreover, the input programs are classical bit
strings so the correlations between them must be classi-
cal.

We determine the complexity of the generated strings
using the Normalized Information Distance (NID) [10].
This distance allows for a comparison of two data sets
without detailed knowledge about their origin. In prac-
tice, we evaluate an approximation to the NID, the Nor-
malized Compression Distance (NCD) [11], using a loss-
less compression software, in our case the LZMA Utilities,
based on the Lempel-Ziv-Markov chain algorithm [14].
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FIG. 1. Measurement: N particles enter a measuring device,
characterized by two possible polarizer settings a0 and a1,
which generates a bit string of N measurement outcomes.
Simulation: a universal Turing machine is fed with a program
elements Λi and information about the chosen setting a0 or
a1. It delivers an output string of length N .

SIMULATION BY DETERMINISTIC
UNIVERSAL TURING MACHINES

We consider a model experiment, similar to the one
used for testing the Bell inequalities [15]: a source emits
pairs of photons that travel to two separate polarization
analyzers MA (Alice) and MB (Bob). Each analyzer has
two outputs associated with bit values 0 and 1, and can
be set along directions a0 or a1 for MA, and b0 or b1 for
MB . The record of the outputs from each analyzer forms
a bit string (see Fig. 1).

The output x of each individual analyzer can be de-
scribed as the output of a Turing machine U , fed with
the settings aj or bk, and a program Λ. The program will
contain the information for generating the correct output
for every detection event and for every setting.

If we consider a string of finite length l(x) = N , Λ will
have to describe the 4N possible events. The length of
the shortest Λ is equal to the Kolmogorov complexity of
the generated string.

Next, we consider the simulation of the experiment
with two local non-communicating machines UA and UB
(see Fig. 2). We feed a program Λ to both of them and
obtain two output strings, x and y, both of length N . In
this case, the program has to describe the behavior of all
2N events for all possible settings aj and bk, hence 16N

possible events.

Normalized Information Distance

The Kolmogorov complexity of two bit strings K(x, y)
is the length of the shortest program generating them si-
multaneously. K(x, y) can be shorter than K(x) + K(y)
if x and y are correlated - the more correlated they are,
the simpler it is to compute one string knowing the other.
This idea was further carried out by Cilibrasi and Vi-
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FIG. 2. Local classical machines simulating the generation of
strings x and y by correlation measurements on an entangled
state.

tanyi [11] who constructed a distance measure between
x and y called Normalized Information Distance (NID),

NID(x, y) =
K(x, y) − min{K(x),K(y)}

max{K(x),K(y)}
. (1)

The NID obeys all required properties of a metric, in
particular, the triangle inequality

NID(x, y) + NID(y, z) ≥ NID(x, z) . (2)

The above inequality holds up to a correction of order
log(l(x)), which can be neglected for sufficiently long
strings [11].

Information Inequality

We consider the bit strings xaj and ybk generated by
Alice and Bob with fixed setting aj and bk. Equation (2)
then transforms into

NID(xa0 , yb0) + NID(yb0 , yb1) ≥ NID(xa0 , yb1) . (3)

However, NID(yb0 , yb1) cannot be determined experimen-
tally because the strings yb0 and yb1 come from measure-
ments of incompatible observables. We therefore use the
triangle inequality

NID(xa1 , yb0) + NID(xa1 , yb1) ≥ NID(yb0 , yb1) , (4)

and combine it with inequality (3) to obtain a quadrangle
inequality:

NID(xa0 , yb0) + NID(xa1 , yb0)+NID(xa1 , yb1) ≥
NID(xa0 , yb1). (5)

Similar to various tests of Bell inequalities, we intro-
duce a scalar quantity S′ that quantifies the degree of
violation of Eq. (5):

S′ = NID(xa0 , yb1)−NID(xa0 , yb0)

− NID(xa1 , yb0) − NID(xa1 , yb1) ≤ 0 (6)
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In order to experimentally test this inequality, we have
to address the following problem. We can set up a source
to generate entangled photon pairs in a state of our choos-
ing, but we cannot control the nature of the measure-
ment. For every experimental run i with the same prepa-
ration the resulting string xi,aj can be different. Conse-
quently, the corresponding program Λi is different for
every experimental run.

It is reasonable to assume that for every two exper-
imental runs i and i′ the complexity of the generated
strings remains the same: K(xi,aj ) = K(xi′,aj ) and
K(xi,aj , yi,bk) = K(xi′,aj , yi′,bk). Without these as-
sumptions the same physical preparation of the exper-
iment has different consequences and thus the notion of
preparation loses its meaning. More generally, the pre-
dictive power of science can be expressed by saying that
the same preparation results in the same complexity of
observed phenomena.

ESTIMATION OF KOLMOGOROV
COMPLEXITY

In general the Kolmogorov complexity cannot be eval-
uated, but it can be estimated. One can adapt two con-
ceptually different approaches.

Statistical Approach

This approach takes into account the ensemble of all
possible N -bit strings and asks about their average Kol-
mogorov complexity. It can be shown that this average
equals the Shannon entropy H(X) of the ensemble [13],
and thus

〈NID(x, y)〉 =
H(x, y)−min{H(x), H(y)}

max{H(x), H(y)}
. (7)

Inequality (5) becomes a type of entropic Bell inequal-
ity introduced by Braunstein and Caves [16] if local en-
tropies are maximal, i.e., H(x) = H(y) = N . They
showed that for a maximally entangled polarization state
of two photons, and polarizer angles obeying the con-
straints ~a0 · ~b1 = cos 3θ , ~a0 · ~b0 = ~a1 · ~b0 = ~a1 · ~b1 = cos θ,
inequality (5) is violated for an appropriate range of θ.
Calculating the entropy H(x, y) using the probability dis-
tributions predicted by quantum mechanics, it is possi-
ble to obtain the expected value of S′ as a function of
θ (Fig. 4a). The maximal violation of this inequality is
S′ = 0.24, with a separation of θ = 8.6◦.

Algorithmic approach

It is possible to avoid a statistical description of our
experiment following the ideas pioneered in [11]. There,

it was shown that the Kolmogorov complexity can be
well approximated by the application of compression al-
gorithms. This approximation introduces the new dis-
tance called Normalized Compression Distance (NCD)

NCD(x, y) =
C(x, y)−min{C(x), C(y)}

max{C(x), C(y)}
, (8)

where C(x) is the length of the compressed string x,
and C(x, y) is the length of the compressed concatenated
strings x, y. Replacing NID with NCD in Eq. (6) leads
to a new inequality:

S′ → S = NCD(xa0 , yb1)−NCD(xa0 , yb0)

− NCD(xa1 , yb0)−NCD(xa1 , yb0) ≤ 0 . (9)

This expression can be tested experimentally because the
NCD distance measure is operationally defined.

CHOICE OF COMPRESSOR

Before moving to the experiment, we need to ensure
the suitability of the compression software we use to eval-
uate the NCD. For this, we numerically simulate the out-
come of an experiment, based on a distribution of results
predicted by quantum physics. Among the packages we
tested, we found that the LZMA Utility [14] approaches
the Shannon limit [17] most closely.

The simulation also allows us to verify the angle
that maximizes the violation of Eq. (9) predicted from
Eq. (??). The results of the simulation are presented in
Fig. 4. More details on the generation of the simulated
data and the choice of the compressor are provided in the
Appendix.

EXPERIMENT

In our experiment (see Fig. 3), the output of a grating-
stabilized laser diode (LD, central wavelength 405 nm)
passes through a single mode optical fiber (SMF) for
spatial mode filtering, and is focused to a beam waist of
80µm into a 2 mm thick BBO crystal. In this crystal (cut
for type-II phase-matching), photon pairs are generated
via spontaneous parametric down-conversion (SPDC) in
a slightly non-collinear configuration. A half-wave plate
(λ/2) and a pair of compensation crystals (CC) take care
of the temporal and transversal walk-off [18]. Two spa-
tial modes (labeled A and B) of down-converted light,
defined by the SMFs for 810 nm, are matched to the
pump mode to optimize the collection [19]. In type-II
SPDC, each down-converted pair consists of an ordinary
and extraordinarily polarized photon, corresponding to
horizontal (H) and vertical (V) in our setup. A pair of
polarization controllers (PC) ensures that the SMFs do
not affect the polarization of the collected photons. To
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FIG. 3. Schematic of the experimental set-up. Polarization
correlations of entangled-photon pairs are measured by the
polarization analyzers MA and MB , each consisting of a half
wave plate (λ/2) followed by a polarization beam splitter
(PBS). All photons are detected by Avalanche photodetec-
tors DH and DV , and registered in a coincidence unit (CU).

arrive at an approximate singlet Bell state, the phase φ
between the two decay possibilities in the polarization
state |ψ〉 = 1√

2

(
|H〉A|V 〉B + eiφ|V 〉A|H〉B

)
, is adjusted

to φ = π by tilting the CC.

In the polarization analyzers (Fig. 3), the photons from
SPDC are projected onto arbitrary linear polarization
by λ/2 plates, set to half of the analyzing angles θA(B),
and polarization beam splitter (PBS) in each analyzer.
Photons are detected by avalanche photo diodes (APDs),
and corresponding detection events from the same pair
identified by a coincidence unit (CU) if they arrive within
≈ ±3 ns of each other.

The quality of polarization entanglement is tested by
probing the polarization correlations in a basis comple-
mentary to the intrinsic HV basis of the crystal. With
interference filters (IF) of 5 nm bandwidth (FWHM) cen-
tered at 810 nm, in the 45◦ linear polarization basis we
observe a visibility V45 = 99.9±0.1%. The visibility in
the natural H/V basis of the type-II down-conversion
process also reaches VHV = 99.9±0.1%. A separate test
of a CHSH-type Bell inequality [20] leads to a value of
S = 2.826 ± 0.0015. This indicates a relatively high
quality of polarization entanglement; the uncertainties in
the visibilities are obtained from propagated Poissonian
counting statistics.

Measurement and Data Post-processing

We record two-fold coincidences of detection events be-
tween detectors at A and B. For each PBS, the transmit-
ted output is associated with 0 and the reflected one with
1. The resulting binary strings x from A, and y from B
are written into two individual binary files. From these,
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FIG. 4. Plots of S versus angle of separation θ. (a) Re-
sult obtained from Eq. (7) (b) result obtained from using the
LZMA compressor on a simulated data ensemble, (c) mea-
surement of S in the experiment shown in Fig. 3, and (d)
longer measurement at the optimal angle θ = 8.6◦.

we calculate the NCD using Eq. (8). This procedure is
repeated for each of the four settings (a0, b0), (a1, b0),
(a1, b1), and (a0, b1) in order to obtain the value for S.

To remove the bias due to differences in the detection
efficiency of the APDs in the experiment, we also mea-
sure for each setting the associated orthogonal ones (see
Appendix for details).

RESULTS

The inequality is experimentally tested by evaluating
S in Eq. (9) for a range of θ; the obtained values [points
(c), (d) in Fig. 4] are consistently lower than the trace
(a) calculated via entropy using Eq. (7), and than a sim-
ulation with the same compressor (b). This is because
the LZMA Utility is not working exactly at the Shan-
non limit, and also due to imperfect state generation and
detection.

For θ = 8.6◦ we collected results from a large number
of photon pairs. Although we set out in this work to
avoid a statistical argument in the interpretation of mea-
surement results, we do resort to statistical techniques
to assess the confidence in an experimental finding of
a violation of inequality Eq. (9). To estimate an un-
certainty of the experimentally obtained values for S,
this large data set was subdivided into files with length
greater than 105 bits. The results from all the subdi-
vided files are then averaged to obtain the final result of
S(θ = 8.6◦)= 0.0494± 0.0076, with the latter indicating
a relatively small standard deviation over these different
subsets.
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CONCLUSION

There is a trend to look at physical systems and pro-
cesses as programs run on a computer made of the con-
stituents of our universe. We could show that this is
not possible if one uses a computation paradigm of a
local deterministic Turing machine. Although this has
been already extensively researched in quantum infor-
mation theory, we present a complementary algorithmic
approach for an explicit, experimentally testable exam-
ple. This algorithmic approach is complementary to the
orthodox Bell inequality approach to quantum nonlocal-
ity [15] that is statistical in its nature.

Any process that can be simulated on a local universal
Turing machine can be encoded as a program that is fed
into it. For every such a program there exists its shortest
description called Kolmogorov complexity, which in most
of the cases can only be approximated using compression
software. Moreover, such a description must obey dis-
tance properties as shown in [10, 11]. By testing Eq. (9),
we showed that this is unattainable in the specific case
of polarization-entangled photon pairs. Therefore, there
exist physical processes that cannot be simulated on local
universal Turing machines.

There are two fundamentally different notions of com-
plexity in computer science. On one hand, computational
complexity, mainly researched on in quantum informa-
tion science, studies how much resources are needed to
solve a computational problem. These studies focus on
complexity classes such as P, NP [21], and its main con-
cern is, given an input program, how efficiently it can be
computed. On the other hand, algorithmic complexity
deals with a problem of what the most efficient encoding
of an input program is. This complementary problem
to computation complexity has not yet received enough
attention in quantum information science, and it would
require a further work on quantum version of Kolmogorov
complexity [22].

We would like to stress that our analysis of the ex-
perimental data is purely and consistently algorithmic.
We do not resort to statistical methods that are alien
to the concept of computation. If this approach can be
extended to all quantum experiments, it would allow us
to bypass the commonly used statistical interpretation of
quantum theory.
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APPENDIX: SYMMETRIZATION OF
DETECTOR EFFICIENCIES

The experimental setup (Fig. 3) uses four APDs: DHA,
DV A (Alice), and DHB , DV B (Bob) to register photon
pair events in the two spatial modes. By denoting events
at DH and DV as 1 and 0, the four possible output pat-
terns are 00, 01, 10, and 11, where the least and most
significant bit corresponds to the Alice and Bob mode,
respectively. Due to differences in the the losses in the
transmitted and reflected port of the PBS, efficiencies
in coupling light into the APDs, and the quantum effi-
ciencies of APDs, the detection efficiencies for the four
output combinations are different. The resulting effec-
tive pair efficiencies are then given by the product of the
contributing detection efficiencies ηV B , ηHB , ηV A, and
ηHA.

This asymmetry will skew the statistics of the mea-
surement results. We symmetrize the effective pair ef-
ficiencies for each (θA, θB) measuring also the following
settings: (θA+45◦, θB), (θA, θB+45◦), and (θA+45◦, θB+
45◦). This procedure swaps the output ports of the PBS
at which each polarization state is detected. The result-
ing outcomes are then interleaved, providing an uniform
detection probability for the four possible outcomes. The
effective pair detection efficiency for all four combinations
is then (ηV B ηV A + ηV B ηHA + ηHB ηV A + ηHB ηHA)/4.

APPENDIX: CHOICE OF COMPRESSOR

In order to evaluate the NCDs of the binary strings,
we need to choose a compression algorithm that per-
forms close to the Shannon limit. This is necessary to
ensure that it does not introduce any unintended ar-
tifacts that lead to an overestimation of the violation.
Preferably we want to work in the regime where the ob-
tained NCDs always underestimate the violation. For
this purpose, we characterized four compression algo-
rithms implemented by freely available compression pro-
grams: lzma [14], bzip2 [23], gzip [24], and lzw [25]. To
eliminate the overhead associated with the compression
of ASCII text files, we save data in a binary format.

For this characterization and a simulation of the ex-
periment, we need to generate a “random” string of
bits (1, 0) or pairs of bits (00, 01, 10, and 11) of var-
ious length with various probability distributions. We
generate these strings using the MATLAB [26] function
randsample() that uses the pseudo random number gen-
erator mt19937ar with a long period of 219937 − 1. It is
based on the Mersenne Twister [27], with ziggurat [28] as
the algorithm that generates the required probability dis-
tribution. The complexity of this (deterministic) source
of pseudorandom numbers should be high enough to not
be captured as algorithmic.

The first part of this characterization involves estab-
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FIG. 5. Comparison of the compression overhead Q ob-
tained using four different compression algorithms on pseudo-
random strings of varying lengths. The expected value for an
ideal compressor is 0. From this characterization we can ex-
clude lzw as a useful compressor for our application.

lishing the minimum string length required for the com-
pression algorithms to perform consistently. We start by
generating binary strings, x, with equal probability of 1’s
and 0’s, i.e. random strings, of varying length. For each
x, we evaluate the compression overhead Q as

Q =
C(x)−H(x)

l(x)
. (10)

For a good compressor, we expect Q to be close to 0.
From Fig. 5, it can be seen that for all the compressors,
Q starts to converge after about 105 bits, setting the
minimum string length required for the compressors to
work consistently. The lzw compressor fails this test,
converging to a Q of 0.37 for long string, while bzip2,
gzip, and lzma give a Q below 10−1.

In the second part of this characterization, test the
compressors with strings with a known amount of corre-
lation. We generate a random string x of length 107 using
the same technique already described. We then generate
a second string y of equal length and with probability
p of being correlated to x. For p = 0 the two strings
are equal, i.e. perfectly correlated. For p = 0.5 they are
uncorrelated.

The two strings x and y are then combined to form
the string xy: to avoid artifacts due to the limited data
block size of the compression algorithms, the elements
of x and y are interleaved. We then compress xy and
evaluate the compression overhead Q as a function of
p. The results for different compressors are shown in
Fig. 6. Although there are ranges of p where bzip and
gzip perform better than lzma, the latter shows a more
uniform performance over the entire interval of p. It is
reasonable to assume that the use of lzma should reduce
the possibility of artifacts in the estimation of the NCD
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FIG. 6. Compression overhead Q for the string xy as a
function of the probability of pairwise correlation p between
the bits of the generating strings x and y for three different
compressors: bzip, gzip, and lzma.

also for the data obtained from the experiment.
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