Asymmetric delay attack on an entanglement-based bidirectional clock
synchronization protocol — Supplementary Material

Jianwei Lee,! Lijiong Shen,!'2 Alessandro Cere,! James Troupe,3 Antia Lamas-Linares,

Christian Kurtsiefer!:2

41 and

D Centre for Quantum Technologies, National University of Singapore, 8 Science Drive 2, Singapore 117543,

Singapore
2)

Singapore

Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117551,

3)Applied Research Laboratories, The University of Texas at Austin, Austin, Tezas,

USA

4)Spthml, 78 Science Park Drive, Singapore 118254, Singapore

(Dated: 11 September 2019)

In this supplementary material, we show that when cir-
culators rotate the polarization state of one of the pho-
tons in an entangled pair by 180°, the geometric phase
imposed on the rotated photon does not produce a mea-
surable change in polarization entanglement.

We first introduce the formalism to deal with the fact
that points on the Poincaré sphere carry no phase infor-
mation; the beginning and end points of a cyclic evolution
correspond on the same point on the sphere.

_To reflect this property, we define a “basis vector field”
|t(¢)), such that

() = Wp(t) and  |d(r)) = [(0),

where f(t) is the phase of [¢(t)) expressed in terms of its
basis state |¢)(t)) on the Poincaré spheres.,
The change in f comprises of two terms

Af=pB+7, (S1)

where the geometric phase

B= [ WO)i—|d()) (52)

0

is due to the evolution of the basis state along a curved
geometry, and the dynamic phase

T

1=- [wlig o) (53)

0

is due to the photon’s dynamics through the rotation

medium®?.

A. Geometric Phase

Berry showed that the geometric phase is proportional
only to the solid angle €2 subtended by the cyclic trajec-
tory on the Poincaré spherelt,

B= f%Q. (S4)

Thus, a qubit in the initial state
[(t=0)) = e " cos(/2)|R) +sin(/2)|L) (S5)

that underwent a 180° rotation in the plane of polar-
ization (¢ — ¢+ 2m) will accumulate a geometric phase
B=—7(1-cosb).

B. Dynamic Phase

To evaluate the dynamic phase v accumulated by the
photon at end of a Faraday Rotator of length d, we pa-
rameterize its expression in Eq. in terms of the pene-
tration depth z

d d
== [wEligEnd: = [eEINbE)s
0 0

(S6)
where
S ) e = ("))
(s7)

are expressed in the {|R),|L)} basis, and k = 2T is the
wave number of the photon mode in free space.

The Faraday Rotator is a birefringent medium whose
refractive indices ng ; depend on the magnitude of an
applied magnetic field B in the direction of light propa-

gation,
VB
NR,L =10 (1 + an) , (SS)

where V is the Verdet constant and ng is the index of
refraction in the absence of a magnetic field.
Substituting [S7] into [S6, we obtain

~v = knod+V Bdcos0, (S9)

where the product V Bd can be shown®! to be the anti-
clockwise rotation angle for a linearly polarized input.



Consider an initial input state |¢)(¢ =0,6 =0)) = |H).
For the evolution cycle (¢ =0 — 2m) considered ear-
lier, |H) — |—45) — |V) — |4+45) — |H) corresponds to
a clockwise 180° in the plane-of-polarization. Thus,
the the rotation must be realized by a medium whose
product VBd = —w. Consequently, the dynamic phase
v = knod — mcos@ for the state considered in Eq. [S]

C. Overall Phase & the Circulator Attack

We have already shown that an initial state

[t)) = cos(0/2)|R) +sin(6/2)|L), (S10)
will accumulate a geometric phase 8 = —7(1—cosf) and a
dynamic phase v = kngd — wcos 6, resulting in an overall
phase ¢ = knod — . Repeating this procedure for the
orthogonal state

1) = —sin(0/2)| k) +cos(9/2)|L), (811)
we obtain a geometric phase of 3/ = —3 = +m(1 — cos#)
and a dynamic phase ' = kngd + wcosf, resulting in an
overall phase ¢’ = kngd+m = ¢+ 2.

Let the entangled pair initially be in the Bell state
=) = % (|HV)—|VH)). With the first qubit Alice’s
photon and the second one Bob’s photon. We can re-
write the Bell state in the basis defined by Equations
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The state of the Bell pair after Bob’s photon goes through

) = —=(1BV) - [VH))

(e alb)s = l0hale)s).  (512)

Eve’s circulator based attack, U Attack, 1S given by
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(le)al)s = 0)ale1)n)

(S14)

We can see from this expression, that the initial Bell
state remains unchanged from the introduction of the
circulators, and is equivalent to the result obtained by
direct calculation in Eq. 5 in the main text.

Recent work wrongly assumed that the contribution
from the dynamic phase was “zero, or is known and com-
pensated for” and predicted instead that the circulators
imparted a non-local geometric phase to produce a dra-
matic changel®

V2

=25 (natirs —e P atiL)s). (519)

However, Eq.[S9|shows that the dynamic phase is likewise
non-local (due to its dependence on ) and combines with
the geometric phase to produce no measurable net change
in the state.

We note that when geometric phases were observed
in other entangled systems, an interferometric arrange-
ment was necessary to eliminate the influence of this “dy-
namic” phase™"2Y Whether or not a similar technique
can be used to secure the present synchronization proto-
col remains an open question.
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