\relax \providecommand\hyper@newdestlabel[2]{} \providecommand\HyperFirstAtBeginDocument{\AtBeginDocument} \HyperFirstAtBeginDocument{\ifx\hyper@anchor\@undefined \global\let\oldcontentsline\contentsline \gdef\contentsline#1#2#3#4{\oldcontentsline{#1}{#2}{#3}} \global\let\oldnewlabel\newlabel \gdef\newlabel#1#2{\newlabelxx{#1}#2} \gdef\newlabelxx#1#2#3#4#5#6{\oldnewlabel{#1}{{#2}{#3}}} \AtEndDocument{\ifx\hyper@anchor\@undefined \let\contentsline\oldcontentsline \let\newlabel\oldnewlabel \fi} \fi} \global\let\hyper@last\relax \gdef\HyperFirstAtBeginDocument#1{#1} \providecommand\HyField@AuxAddToFields[1]{} \providecommand\HyField@AuxAddToCoFields[2]{} \citation{Mills:1991,PTP,piester2008time,jiang2017bipm} \citation{narula:17} \citation{mizrahi2012game,ullmann2009delay,tsang2006security} \citation{rabadi2017taming} \citation{lee2019symmetrical,hou2018fiber,lamas2018secure} \citation{lee2019symmetrical} \citation{hou2018fiber} \citation{yang2006simple} \citation{wootters1982single} \citation{Troupe:2018} \citation{berry:87} \citation{kwiat:91,strekalov:97,brendel:95,jha:08} \citation{Troupe:2018} \citation{Troupe:2018} \newlabel{FirstPage}{{}{1}{}{section*.1}{}} \@writefile{toc}{\contentsline {title}{Asymmetric delay attack on an entanglement-based bidirectional clock synchronization protocol}{1}{section*.2}} \@writefile{toc}{\contentsline {abstract}{Abstract}{1}{section*.1}} \@writefile{lof}{\contentsline {figure}{\numberline {1}{\ignorespaces Clock synchronization scheme. Alice and Bob each have a source of polarization-entangled photon pairs $|{\Psi ^-}\delimiter "526930B $, and avalanche photodetectors at D$_{\text {A,B}}$. One photon of the pair is detected locally, while the other photon is sent through a fiber to be detected on the remote side. Arrival times for all detected photons are recorded at each side with respect to local clocks, each locked to a rubidium frequency reference. Grey region: asymmetric delay attack. An adversary (Eve) uses a pair of circulators to introduce a direction-dependent propagation delay: photons originating at Bob\IeC {\textquoteright }s site will always take the bottom path, while photons originating at Alice\IeC {\textquoteright }s side will take the top path. }}{1}{figure.1}} \newlabel{fig:setup}{{1}{1}{Clock synchronization scheme. Alice and Bob each have a source of polarization-entangled photon pairs $\ket {\Psi ^-}$, and avalanche photodetectors at D$_{\text {A,B}}$. One photon of the pair is detected locally, while the other photon is sent through a fiber to be detected on the remote side. Arrival times for all detected photons are recorded at each side with respect to local clocks, each locked to a rubidium frequency reference. Grey region: asymmetric delay attack. An adversary (Eve) uses a pair of circulators to introduce a direction-dependent propagation delay: photons originating at Bob’s site will always take the bottom path, while photons originating at Alice’s side will take the top path}{figure.1}{}} \citation{glauber1963quantum} \citation{Troupe:2018} \citation{Troupe:2018} \citation{berry:87} \citation{lee2019symmetrical} \citation{Kwiat:1995ub} \citation{ho2009clock} \newlabel{eq:round_trip}{{2}{2}{}{equation.0.2}{}} \newlabel{eqn:inaccurate_offset}{{3}{2}{}{equation.0.3}{}} \newlabel{eq:offset}{{4}{2}{}{equation.0.4}{}} \newlabel{eqn:direct_result}{{5}{2}{}{equation.0.5}{}} \citation{Kwiat:1995ub} \citation{Kwiat:1995ub} \citation{altepeter2005photonic} \citation{altepeter2005photonic} \@writefile{lof}{\contentsline {figure}{\numberline {2}{\ignorespaces Time correlations of Alice and Bob's detection events normalized to background coincidences. The separation between peaks corresponds to the round-trip time\nobreakspace {}$\Delta T$, and the midpoint is the offset between the clocks\nobreakspace {}$\delta $. Symmetric delays with $L=L'$ show that the offset remains constant for both the (a) initial and (b) extended round-trip times. An asymmetric delay with (c) $L=L'+10$ results in an offset shift. $L_o/2$: minimum length of the fiber belonging to each circulator port. ${\delta _{\text {o}}}$: the offset estimated in (a). }}{3}{figure.2}} \newlabel{fig:g2}{{2}{3}{Time correlations of Alice and Bob's detection events normalized to background coincidences. The separation between peaks corresponds to the round-trip time~$\Delta T$, and the midpoint is the offset between the clocks~$\delta $. Symmetric delays with $L=L'$ show that the offset remains constant for both the (a) initial and (b) extended round-trip times. An asymmetric delay with (c) $L=L'+10$ results in an offset shift. $L_o/2$: minimum length of the fiber belonging to each circulator port. ${\delta _{\text {o}}}$: the offset estimated in (a)}{figure.2}{}} \@writefile{lof}{\contentsline {figure}{\numberline {3}{\ignorespaces (a) Measured offset $\delta $ between two clocks, both locked on the same frequency reference. Each value of $\delta $ was evaluated from measuring photon pair timing correlations from a block of photodetection times recorded by Alice and Bob. Each block is 40\tmspace +\thinmuskip {.1667em}s long. (b) The round-trip time $\Delta T$. Block 6 to 7: increasing the symmetric delay ($L=L'$) does not change $\delta $. Block 15 to 16: introducing an asymmetric delay ($L\not =L'$) creates an offset error. The delay was created by redistributing the additional delays in Blocks 7 to 15, so that $\Delta T$ remains the same. $\delta _{\text {o}}$: offset measured in the first block. }}{3}{figure.3}} \newlabel{fig:asymmetric_attack_results}{{3}{3}{(a) Measured offset $\delta $ between two clocks, both locked on the same frequency reference. Each value of $\delta $ was evaluated from measuring photon pair timing correlations from a block of photodetection times recorded by Alice and Bob. Each block is 40\,s long. (b) The round-trip time $\Delta T$. Block 6 to 7: increasing the symmetric delay ($L=L'$) does not change $\delta $. Block 15 to 16: introducing an asymmetric delay ($L\neq L'$) creates an offset error. The delay was created by redistributing the additional delays in Blocks 7 to 15, so that $\Delta T$ remains the same. $\delta _{\text {o}}$: offset measured in the first block}{figure.3}{}} \@writefile{lof}{\contentsline {figure}{\numberline {4}{\ignorespaces Setup for quantum state tomography on a polarization-entangled photon pair state, with one photon passing through a pair of circulators. Dashed box: optical setup of our polarization-entangled photon source\nobreakspace {}\cite {Kwiat:1995ub}. LD: laser diode, BBO: $\beta $-Barium\nobreakspace {}Borate, CC: compensation crystals, FPC: fiber polarization controller, SMF: single mode fiber, $\lambda $/4: quarter-wave plate, $\lambda $/2: half-wave plate, PBS: polarizing beam splitter, APD: avalanche photodiode. }}{3}{figure.4}} \newlabel{fig:tomography_setup}{{4}{3}{Setup for quantum state tomography on a polarization-entangled photon pair state, with one photon passing through a pair of circulators. Dashed box: optical setup of our polarization-entangled photon source~\cite {Kwiat:1995ub}. LD: laser diode, BBO: $\beta $-Barium~Borate, CC: compensation crystals, FPC: fiber polarization controller, SMF: single mode fiber, $\lambda $/4: quarter-wave plate, $\lambda $/2: half-wave plate, PBS: polarizing beam splitter, APD: avalanche photodiode}{figure.4}{}} \citation{narula:17} \citation{jalas2014optical,dmitriev2013possible,dmitriev2013compact,bi2011chip,yu2009complete} \citation{lamas2018secure} \citation{Troupe:2018} \citation{Troupe:2018} \bibcite{Mills:1991}{{1}{1991}{{Mills}}{{}}} \bibcite{PTP}{{2}{2009}{{PTP}}{{}}} \bibcite{piester2008time}{{3}{2008}{{Piester\ \emph {et~al.}}}{{Piester, Bauch, Breakiron, Matsakis, Blanzano,\ and\ Koudelka}}} \bibcite{jiang2017bipm}{{4}{2017}{{Jiang\ \emph {et~al.}}}{{Jiang, Huan, Zhang,\ and\ Dirk}}} \bibcite{narula:17}{{5}{2018}{{Narula\ and\ Humphreys}}{{}}} \bibcite{mizrahi2012game}{{6}{2012}{{Mizrahi}}{{}}} \bibcite{ullmann2009delay}{{7}{2009}{{Ullmann\ and\ V{\"o}geler}}{{}}} \@writefile{lof}{\contentsline {figure}{\numberline {5}{\ignorespaces Real and imaginary part of the reconstructed density matrix for the target Bell state $|{\Psi ^-}\delimiter "526930B $ originating from Alice's source. Bob receives one photon of the pair through the synchronization channel. The density matrices obtained (a) without and (b) with polarization-insensitive circulators in the line (Figure\nobreakspace {}\ref {fig:tomography_setup}) do not deviate significantly from $|{\Psi ^-}\delimiter "526930B $. }}{4}{figure.5}} \newlabel{fig:rho}{{5}{4}{Real and imaginary part of the reconstructed density matrix for the target Bell state $\ket {\Psi ^-}$ originating from Alice's source. Bob receives one photon of the pair through the synchronization channel. The density matrices obtained (a) without and (b) with polarization-insensitive circulators in the line (Figure~\ref {fig:tomography_setup}) do not deviate significantly from $\ket {\Psi ^-}$}{figure.5}{}} \@writefile{lof}{\contentsline {figure}{\numberline {6}{\ignorespaces Fidelity distribution comparing the Bell state originating from Alice's source before and after introducing the circulators. The distribution is generated by numerically propagating errors due to counting statistics. A high mean fidelity suggests that the state remains unchanged and cannot be used to detect the attack. Error bars: Poissonian standard deviation. }}{4}{figure.6}} \newlabel{fig:fidelity_distribution}{{6}{4}{Fidelity distribution comparing the Bell state originating from Alice's source before and after introducing the circulators. The distribution is generated by numerically propagating errors due to counting statistics. A high mean fidelity suggests that the state remains unchanged and cannot be used to detect the attack. Error bars: Poissonian standard deviation}{figure.6}{}} \bibcite{tsang2006security}{{8}{2006}{{Tsang\ and\ Beznosov}}{{}}} \bibcite{rabadi2017taming}{{9}{2017}{{Rabadi\ \emph {et~al.}}}{{Rabadi, Tan, Yau,\ and\ Viswanathan}}} \bibcite{lee2019symmetrical}{{10}{2019}{{Lee\ \emph {et~al.}}}{{Lee, Shen, Cer{\`e}, Troupe, Lamas-Linares,\ and\ Kurtsiefer}}} \bibcite{hou2018fiber}{{11}{2019}{{Hou\ \emph {et~al.}}}{{Hou, Quan, Dong, Xiang, Li, Liu, Yang, Li, You, Wang,\ and\ Zhang}}} \bibcite{lamas2018secure}{{12}{2018}{{Lamas-Linares\ and\ Troupe}}{{}}} \bibcite{yang2006simple}{{13}{2006}{{Yang}}{{}}} \bibcite{wootters1982single}{{14}{1982}{{Wootters\ and\ Zurek}}{{}}} \bibcite{Troupe:2018}{{15}{2018}{{Troupe\ and\ Lamas-Linares}}{{}}} \bibcite{berry:87}{{16}{1987}{{Berry}}{{}}} \bibcite{kwiat:91}{{17}{1991}{{Kwiat\ and\ Chiao}}{{}}} \bibcite{strekalov:97}{{18}{1997}{{Strekalov\ and\ Shih}}{{}}} \bibcite{brendel:95}{{19}{1995}{{Brendel\ \emph {et~al.}}}{{Brendel, Dultz,\ and\ Martinessen}}} \bibcite{jha:08}{{20}{2009}{{Jha\ \emph {et~al.}}}{{Jha, Malik,\ and\ Boyd}}} \bibcite{glauber1963quantum}{{21}{1963}{{Glauber}}{{}}} \bibcite{Kwiat:1995ub}{{22}{1995}{{Kwiat\ \emph {et~al.}}}{{Kwiat, Mattle, Weinfurter, Zeilinger, Sergienko,\ and\ Shih}}} \bibcite{ho2009clock}{{23}{2009}{{Ho\ \emph {et~al.}}}{{Ho, Lamas-Linares,\ and\ Kurtsiefer}}} \bibcite{altepeter2005photonic}{{24}{2005}{{Altepeter\ \emph {et~al.}}}{{Altepeter, Jeffrey,\ and\ Kwiat}}} \bibcite{jalas2014optical}{{25}{2014}{{Jalas\ \emph {et~al.}}}{{Jalas, Petrov,\ and\ Eich}}} \bibcite{dmitriev2013possible}{{26}{2013{}}{{Dmitriev\ \emph {et~al.}}}{{Dmitriev, Portela,\ and\ Zimmer}}} \bibcite{dmitriev2013compact}{{27}{2013{}}{{Dmitriev\ \emph {et~al.}}}{{Dmitriev, Kawakatsu,\ and\ Portela}}} \bibcite{bi2011chip}{{28}{2011}{{Bi\ \emph {et~al.}}}{{Bi, Hu, Jiang, Kim, Dionne, Kimerling,\ and\ Ross}}} \bibcite{yu2009complete}{{29}{2009}{{Yu\ and\ Fan}}{{}}} \bibcite{anandan1992geometric}{{30}{1992}{{Anandan}}{{}}} \bibcite{zak1991geometric}{{31}{1991}{{Zak}}{{}}} \bibstyle{apsrev4-1} \newlabel{LastBibItem}{{31}{5}{}{figure.6}{}} \newlabel{LastPage}{{}{5}{}{}{}}