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In this supplemental document, we provide a more thorough calculation of the atom-cavity
coupling constant gac for radial transverse modes (LG modes with l = 0). We show that, at a
particular cavity length L or critical distance d, all the radial transverse modes have the same
mode volume Vm and hence the same coupling constant gac. This would allow an atom to have
similar interaction strengths with all of the radial transverse modes of the cavity.

1. INTERACTION HAMILTONIAN OF AN ATOM-CAVITY SYSTEM

An electric field operator with a complex mode amplitude profile Uj(r) for configuration parame-
ter j can be expressed as [1]

Êj(r) = ieλ Nj

[
Uj(r)âj −U∗j (r)â†

j

]
, (S1)

where eλ is the electric field polarization unit vector, Nj is a normalization coefficient, and
âj and â†

j are the destruction and creation mode operators. The free field Hamiltonian of the
electromagnetic mode inside a cavity with volume V has a similar structure with a harmonic
oscillator,

Ĥ0 =
ε0
2

∫
dV
[
Êj(r)

2 + c2B̂j(r)
2
]
= h̄ωj

(
â†

j âj +
1
2

)
, (S2)

with B̂j(r) as the corresponding magnetic field operator. By imposing the normalization condition∫
dV|Uj(r)|2 = 1 , (S3)

we obtain the normalization coefficient Nj = (h̄ωj/2ε0)
1/2 .

The interaction Hamitonian between an electromagnetic field and an atomic dipole, in the
electric-dipole approximation, is given by

ĤI(r) = −Êj(r) · d̂ , (S4)

where d̂ = da
(
π̂† + π̂

)
ed is the atomic electric-dipole operator with da as the dipole moment,

π̂† = |e〉〈g| and π̂ = |g〉〈e| as the transition operators between ground and excited atomic states,
and ed as the dipole unit vector. Assuming that the atomic dipole and electric field polarization
vectors point to the same direction, eλ = ed, we obtain

ĤI(r) = −ida

√
h̄ωj

2ε0

[
Uj(r)âj −U∗j (r)â†

j

] [
π̂† + π̂

]
, (S5)

with an explicit dependence of the atom position r on the mode amplitude Uj(r).

2. ATOM-CAVITY COUPLING CONSTANT FOR RADIAL TRANSVERSE MODES

The complex amplitude of radial transverse modes can be obtained by setting l = 0 to the LG
mode amplitude (Eq. 1 of the main text),

Up,0(ρ, φ, z) = Ap,0
w0

w(z)
L0

p

(
2ρ2

w2(z)

)
exp

(
− ρ2

w2(z)

)
exp

(
iψp,0(ρ, φ, z)

)
. (S6)

The radial transverse modes of a near-concentric cavity have spatial dependencies on both the
axial and radial direction [2]. Here, we assume that the atom is located at the center of the cavity



mode (r = 0), such that ρ = 0 and z = 0. The amplitude of the radial transverse mode at this
center point is

Up,0(r = 0) = Ap,0 , (S7)

where we have evaluated w(0) = w0, L0
p(0) = 1, and exp

(
iψp,0(0, φ, 0)

)
= 1.

The prefactor Ap,0 can be determined from the normalization condition (Eq. S3), and has a
physical significance as follows. If we assume a theoretical cavity with a uniform distribution of
mode amplitude Up,0 = Ap,0 , the normalization condition yields

Ap,0 =
1√
Vm,p

, (S8)

where Vm,p is the mode volume of such theoretical cavity.
Using Eq. S5, we evaluate the interaction Hamiltonian of an atom placed at the centre of a

radial transverse cavity mode,

ĤI(r = 0) = −ih̄gac

[
âj − â†

j

] [
π̂† + π̂

]
, (S9)

with the atom-cavity coupling constant

gac =

√
ωjd2

a

2h̄ε0Vm,p
. (S10)

It is interesting to note that the coupling constant gac ∝ 1/
√

Vm,p only depends on the radial
mode number p through the mode volume Vm,p . This is not necessarily true for other classes of
transverse modes. For example, non-radial transverse modes (l 6= 0) has zero mode amplitude at
the centre, i.e. Up,l 6=0(r = 0) = 0 , which complicates the interpretation of such mode volumes.

3. MODE VOLUME CALCULATION OF RADIAL TRANSVERSE MODES

In this part, we show that the mode volume of radial transverse modes Vm,p only depends on the
beam waist w0 and cavity length L, and does not depend on the radial mode number p. Using
the normalization condition (Eq. S3),∫

dV|Up,0(ρ, φ, z)|2 =
∫

dz
∫

ρdρ
∫

dφ
1

Vm,p

[
w0

w(z)
L0

p

(
2ρ2

w2(z)

)]2

exp
(
− 2ρ2

w2(z)

)
(S11)

1 =
1

Vm,p

πw2
0L

2

∫ ∞

0
du e−uL0

p(u)
2 , (S12)

where we have used the substitution u = 2ρ2/w2(z). The integration can be calculated using the
orthonormal property of Laguerre polynomials [3],∫ ∞

0
dx e−xL0

m(x)L0
n(x) = δm,n . (S13)

The mode volume of radial transverse modes is thus calculated to be

Vm,p =
1
2

πw2
0L , (S14)

independent of the radial mode number p. At a particular cavity length L, the beam waist
parameter w0 is evaluated from the cavity boundary conditions, and is also independent on the
radial mode number p. Hence, the atom-cavity coupling constant gac is maintained over all the
radial transverse modes,

gac =

√√√√ ωjd2
a

πh̄ε0w2
0L

. (S15)

As a completing remark, we note that the mode of a physical cavity forms a standing wave
on the longitudinal direction. Hence, the complex term exp(iψp,0) in Eq. S6 should be replaced
with cos(ψp,0 + δ) with δ determined by the boundary condition and longitudinal mode number.
Assuming the atom is located at the anti-node of such standing wave, the evaluation of the
atom-cavity coupling is similar as above, but with the mode volume reduced to half,

Vsw
m,p =

1
4

πw2
0L . (S16)
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