
Coupling Light to The Transverse Modes of a
Near-Concentric Optical Cavity
ADRIAN NUGRAHA UTAMA,1 CHANG HOONG CHOW,1 , CHI HUAN
NGUYEN,1 AND CHRISTIAN KURTSIEFER1,2,*

1Centre for Quantum Technologies, 3 Science Drive 2, Singapore 117543
2Department of Physics, National University of Singapore, 2 Science Drive 3, Singapore 117542
*phyck@nus.edu.sg

Abstract: Optical cavities in the near-concentric regime have near-degenerate transverse modes.
The tight focusing transverse modes in this regime enable strong coupling with atoms. These
features provide an interesting platform to explore multi-mode interaction between atoms and
light. Here, we use a phase spatial light modulator (SLM) to shape the incoming light and match
the Laguerre-Gaussian (LG) modes of a near-concentric optical cavity. We demonstrate coupling
efficiency close to the theoretical prediction for single LG modes and combinations of them,
limited mainly by imperfections in the cavity alignment.
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1. Introduction

Transverse modes constitute a separate degree of freedom, apart from frequency, wavevector and
polarization, in the propagation of electromagnetic waves. It has a wide range of applications, such
as increasing the information-carrying capacity in free-space [1] and fiber [2,3] communications,
creating smaller focal volumes to achieve superresolution imaging [4], utilizing orbital angular
momentum (OAM) to perform quantum key distribution [5], and producing highly-entangled
OAM states [6]. One particular area where transverse modes has garnered substantial interest is
in optical cavities. For example, transverse modes can be used to track atomic position via the
observed mode pattern [7–9]. They can also exhibit inter-mode coupling in the near-degenerate
configuration [10, 11], and help enhancing the cooling process in atomic ensembles [12–14].
Perhaps the most exotic application of multiple near-degenerate transverse modes (multimode)
cavities is in Bose-Einstein condensates (BEC), where they are used to engineer the atomic
interaction within the BEC to create regions of crystallized domains [15–18].
Optical cavities in the near-concentric regime produce highly focused mode with diffraction-

limited focal spot, which enable strong interaction between the optical mode and the atoms placed
within [19–21]. Similar to confocal cavities [16, 22], the transverse mode frequencies of the
concentric cavities overlap at the critical point. Even though the critical point is only marginally
stable, the cavity can support the fundamental mode less than a wavelength away from the critical
point [23]. In the near-concentric regime, the frequency spacing of the transverse modes can
be engineered to be ∼ 0.01 to ∼ 1 GHz, which are on the order of the hyperfine splitting or the
magnetic levels of the atoms. This provides an alternative system to explore atomic nonlinearities
with multiple modes simultaneously [24] and extend it to various atomic energy levels and spatial
distributions via the transverse modes.
In this work, we couple light selectively to the transverse modes of a near-concentric cavity,

characterize their mode structures, and optimize the efficiencies of the coupling procedure.
To prepare light from a collimated fiber output to match the spatial distribution of the cavity
transverse modes, we use a liquid crystal spatial light modulator (SLM), which modifies the
spatial phase information of the incoming beam [25]. In previous works, SLMs have been utilized
to excite transverse modes of an optical channel: in multimode fibers with a phase SLM [26] and
in confocal cavities using a digital micromirror device [22] – to the best of our knowledge, it
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has not been done in near-concentric cavities which may exhibit more technical complexities.
Furthermore, we extend this mode-matching procedure to generate a superposition of the modes
and obtain the efficiency. We show that the efficiency depends on the relative phases of the modes.
Finally, we examine how close to the critical point are the transverse modes still supported.

2. Theory

2.1. Transverse modes of a cavity

Optical modes of a cylindrically symmetric cavity with spherical mirrors can be described by the
standing wave of the Laguerre-Gaussian (LG) beam [27]:
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where m and l are the radial and azimuthal mode numbers of the LG beams, Al,m is the
normalization constant, w(z) = w0

√
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m(.) is the generalized Laguerre polynomial function, and ψm,l(ρ, φ, z) is the
real-valued phase of the LG beam, given by:
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where R(z) = z + z2
0/z is the radius of the wavefront and ζ(z) = tan−1(z/z0) is the Gouy phase.

Inside a cavity, the LG modes are bounded by the two mirrors of radii R1 and R2 spaced L
apart. The g-parameters, g1 = 1 − L/R1 and g2 = 1 − L/R2 specify the geometry and stability of
the cavity mode. In symmetric cavities (g1 = g2 = g), the concentric mode is obtained when
L = 2R and g = −1 (critical point) and is only marginally stable. Near-concentric cavity modes
depart from this critical point towards the stable region – we define this distance as the critical
distance d = 2R − L, with g = −1 + d/R.
The resonance frequencies of the cavity depend on the transverse mode numbers m and l:
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where q is the longitudinal mode number of the cavity, vF = c/2L is the cavity free spectral
range, and ∆ζ = ζ(zM2) − ζ(zM1) is the Gouy phase difference between the two cavity mirrors.
In near-concentric symmetrical cavities, the transverse mode spacing is given by
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)
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where ∆vtr → 0 as d → 0. The critical distance d can thus be estimated by measuring the
frequency separation between the transverse modes [23].

Near-concentric cavities produce atom-cavity coupling strength gac ∝ 1/
√

Vm comparable to
µm-length cavities or microcavities [21], as the effective mode volume Vm ≈ πW2

0 L decreases
in tighter focal radii W0. Interestingly, all the radial modes (transverse modes with l = 0) at a
particular critical distance has identical effective mode volumes, resulting in coupling strengths
which are equally strong across all radial modes. This comes from the normalization relation∫ ∞

0 e−u
[
L0
m(u)

]2 du = 1, yielding the same prefactor A0,m for all radial modes in Eq. 1.



2.2. Mode matching to a cavity

The power transmission through a cavity with identical mirrors is given by [28]:

T(ω) =
Pt (ω)

Pin
= η

κ2
m

(κm + κl)2 + (ω − ω0)2
, (5)

where Pt (ω) is the light power transmitted through the cavity, Pin is the input power, η is the
spatial mode matching efficiency, ω0 is the cavity resonance frequency, and κm and κl are the
cavity decay rates due to the mirror transmission and scattering losses, respectively. On the other
hand, the power reflection of the cavity is given by

R(ω) =
Pr (ω)
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= 1 − η

κ2
m + 2κmκl

(κm + κl)2 + (ω − ω0)2
, (6)

where Pr (ω) is the light power reflected by the cavity. The finesse of the cavity is given by
F = π/κvF , where κ = κm + κl is the total cavity decay rate, obtained from fitting Eq. (5) to the
transmission spectrum.

From the transmission and reflection spectrum, the spatial mode matching efficiency η can be
obtained. First, we define the “effective” transmission coefficient

α =
T(ω0)

1 − R(ω0)
, (7)

where T and R are measured on cavity resonance. By solving Eq. (5) and Eq. (6) on the cavity
resonance, we can obtain the mode matching efficiency η:

η =
(1 + α)2

(2α)2
T(ω0) . (8)

Similarly, the cavity decay rates are κm = 2κα/(1 + α) and κl = κ(1 − α)/(1 + α).

2.3. Beam shaping with SLM

A spatial filter which transforms one optical mode to another can be described by a generalized
filter function T(x) = M(x) exp(iΦ(x)) which modulates both the amplitude and the phase of the
incoming mode. However, liquid crystal SLM only modulates the phase of the incoming beam
and hence only provides the transformation T(x) = exp(iΦ(x)). To modulate the amplitude of the
incoming beam as well, SLM can be operated in a phase-grating configuration – this produces
both the carrier and first-order diffraction beams, which amplitude can be varied by the modulation
depth [29, 30]. This method typically requires a high-resolution SLM to sufficiently encode
the desired beam profile on the phase-grating, however recent works explored other encoding
techniques which allows for amplitude modulation using low-resolution SLMs [25, 31–33].
Alternatively, using two SLMs and a polarizer allows to modulate the amplitude and phase of the
incoming beam independently [34–36].

To generate LG modes necessary for cavity mode-matching from a collimated Gaussian beam,
we utilize a much simpler technique [37–39] which spatially modulates the incoming Gaussian
beam with the phase component of the desired LG modes. The SLM phase function is given by
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)
. The ratio w/w0 can be varied to

optimize the mode overlap of the resulting SLM output mode to the particular LG mode – for



relatively small m and l mode numbers, the mode overlap is relatively high with low cross-mode
overlap (see Table 1). The mode overlap is defined as the dot product between the two mode
profiles

∫
(dσ)U1(ρ, φ)U2(ρ, φ). The modulus square of mode overlap is the mode matching

efficiency η as defined in Section 2.2.
Due to its simplicity, this technique is often implemented using physical phase plates [40, 41].

By subjecting the resulting beam to the cavity, only the resonant LG mode is transmitted while
other LG modes with different resonance frequencies (see Eq. 2) are attenuated by the cavity.

Mode matching efficiencies

SLM output W/W0 LG00 LG10 LG20 LG30 LG40 LG50

LG10 0.57 0.1% 81.2% 0.0% 2.4% 1.3% 0.7%

LG20 0.45 1.3% 0.1% 76.9% 0.1% 1.6% 4.5%

LG30 0.39 0.4% 1.2% 0.5% 74.6% 0.3% 0.9%

LG40 0.35 0.2% 0.4% 1.2% 0.8% 73.2% 0.5%

Table 1. Calculated values of the mode matching efficiencies (the square of the mode
overlap) between the SLM output and the LG modes for l = 0 cases, up to LG50. The
mode matching to the remaining higher order LG modes are small, and the total mode
matching efficiencies sum up to unity.

3. Experiment

3.1. Experimental setup

The design and construction of the near-concentric cavity is described in previous works [20, 23].
The anaclastic lens-mirror design allows highly divergent modes of the near-concentric cavity to
be transformed into collimated modes. This simplifies the requirement of the optical components
to generate and measure collimated LG beams on the input and output of the cavity (see Figure 1).

Fig. 1. Optical setup. The SLM (Meadowlark HV 512 DVI) transforms the probe light
from the fiber output to match the LG modes of the near concentric cavity (CC). A
telescope (TL) is introduced to facilitate mode matching between the SLM beam output
and the cavity. The cavity transmission is monitored using either a photodetector (PD)
or camera (C), set by the flip mirror (FM).

3.1.1. Mode Generation

As the SLM only modulates light with a particular linear polarization, a sequence of a polarizing
beam-splitter (PBS) and a half-wave plate (HWP) prepares the correct polarization to match the
SLM polarization axis. Considering the SLM resolution of 512x512 pixels, we minimize the
pixelation artifact by using a significant portion of the SLM area (12.8 × 12.8 cm). To achieve



this, we prepare a slightly divergent beam with beam diameter (1/e2 width) ranging from 3 to 7
mm, measured at the SLM.
The phase modulation applied on the SLM consists of three components: the LG mode-

generating phase pattern as described in Eq. 9, the correction phase pattern provided by the
manufacturer, and a quadratic phase pattern which effectively acts as a Fresnel lens with variable
focal length. This SLM-generated Fresnel lens helps in filtering out the unmodulated light on
the SLM output (more commonly done with a blazed grating pattern [39]). In addition, the
combination of the Fresnel lens with a telescope of variable length and magnification creates a
collimated LG beam with tunable beam size. The appropriate values for the Fresnel lens and
telescope parameters are obtained with ray-tracing simulations.

3.1.2. Cavity Alignment

In the cavity design [23], one cavity mirror is placed on 3D piezo translation stage (Figure 1) to
allow for both the longitudinal (z direction) and transverse alignment (x and y directions). The
longitudinal alignment changes the cavity length to be resonant to a particular light frequency.
The transverse alignment is necessary to bring the two mirrors to be cylindrically symmetric.
Small rotational misalignment on the tip and tilt direction can also be corrected by the transverse
alignment, if the mirrors are perfectly spherical. However, this correction might lead to the two
anaclastic lens-mirror axes not exactly being aligned with the cavity axis, resulting in slightly
asymmetric collimated output modes.
The transmission and reflection spectrum of the cavity are obtained by measuring the light

intensity with a photodetector while varying the cavity length linearly over time. The detuning
from the cavity resonance is expressed correspondingly in units of light frequency – the conversion
factor can be determined by measuring the spacing of the frequency sideband generated with an
electro-optical modulator. As the cavity is located inside a glass cuvette of the vacuum chamber,
we characterize the cuvette transmission loss and apply the correction on the cavity spectra.

3.1.3. Measurement of the Mode Matching Efficiency

The mode matching efficiency η (Eq. 8) quantifies how well the input mode matches and couples
to the cavity mode. It only depends on the power transmission at resonance T(ω0) and the
“effective” transmission coefficient α (Eq. 7). Nominally, α = κm/(2κl + κm) only depends on the
ratio of the decay rates κm and κl , and thus is a physical property of the cavity mirrors.

We characterize the value of the α by coupling a Gaussian beam (from an aspheric-collimated
single mode fiber output mode) into the cavity without the SLM. The transmission and reflection
spectrum were recorded, and from the fitting, we obtained T(ω0) = 19.5(1)%, R(ω0) = 33.6(2)%,
and κ = 2π × 24.8(8)MHz. From the fitted parameters, we estimated α = 0.294(2), which
results in a mode matching efficiency of η = 94(1)% for Gaussian beam, and cavity decay rates
of κm = 2π × 11.3(4)MHz and κl = 2π × 13.5(4)MHz.
To estimate the mode matching efficiencies for SLM-generated LG modes, we obtain the

cavity transmission spectrum T(ω) and multiply it with (1 + α)2/(2α)2 (the prefactor in Eq. 8) to
obtain the mode transmission spectrum η(ω). We fit this spectrum with a Lorentzian profile, and
estimate the mode matching efficiency η = η(ω0) from the fit amplitude. The parameters from
the ray-tracing simulation helps to start the coupling procedure, and we fine-tune these values
further to maximize the mode matching efficiency.

3.2. Mode-matching to single LG modes

We generate a single LG mode using the SLM and couple it to the near concentric cavity. The
cavity is located at a critical distance of d = 4.8(2)µm with g = −0.99912(4), corresponding to
a measured transverse mode spacing of ∆vtr = vF (1 − ∆ζ/π) = 182(5)MHz between adjacent
LG modes. The cavity spectra and the camera-captured output modes are depicted on Figure 2
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Fig. 2. Left: cavity mode transmission spectra of LGmodes with no angular momentum
(l = 0). The detuning is defined with respect to the LG00 resonance, and the modes are
spaced 2∆vtr apart. Right: the corresponding cavity mode output observed with the
camera.
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Fig. 3. Left: cavity mode transmission spectra of LG modes with a few units of angular
momentum (l = 1 and l = 2). Right: the corresponding cavity mode output observed
with the camera.

Mode Sim. Exp.

LG00 100% 96(1)%

LG10 81.2% 68(1)%

LG20 76.9% 57(1)%

LG30 74.7% 38(1)%

Mode Sim. Exp.

LG01 93.1% 81(1)%

LG02 84.4% 67(1)%

LG11 81.8% 63(1)%

LG12 79.8% 53(1)%

Table 2. Comparison of mode matching efficiencies between the simulation and the
experiment for single LG modes.



for LG modes with no angular momentum (l = 0), and on Figure 3 for LG modes with angular
momentum (l , 0). The measured mode matching efficiencies are close to the simulated values
(see Table 2), although it degrades with higher mode numbers. We attribute this to limited SLM
pixel resolution, axial mismatch between the cavity and the anaclastic lens axis due to the tip-tilt
misalignment, and mirror surface deviation from a perfect spherical profile. These factors also
contribute to some irregularities on the output mode observed by the camera.

3.3. Mode-matching to a superposition of LG modes

We demonstrate the coupling of the SLM-generated beam to an arbitrary superposition of LG
modes. We use the method described in Section 3.1.1, by considering the resultant mode as a
superposition of individual LG modes:

Ures =
∑

Al,m exp
(
iφl,m

)
LGlm , (10)

where Al,m is the amplitude of each constituting LG mode and φl,m is the relative phase of the
LG mode.
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Fig. 4. Left: Coupling to equal parts of LG00 and LG10 modes while varying their
phase difference. Right: Coupling to a superposition of LG00, LG10 and LG20 modes.

Figure 4 (left) shows the mode matching efficiency in coupling the superposed modeU{00,10} =(
LG00 + eiφLG10

)
/
√

2 with varying relative phase angle φ. To obtain a balanced distribution of
LG00 and LG10, we introduce a mode amplitude A10 to the SLM spatial phase pattern:

Φ = arg
[
U{00,10}

]
= arg


LG00 + A10eiφLG10√

1 + A2
10

 , (11)

and vary the amplitude A10 and w/w0, maximising the mode matching efficiency subject to the
balanced distribution constraint. The mode matching efficiency is obtained by adding the mode
transmission amplitudes of both the LG00 and LG10 modes, while ensuring that they are balanced
up to ∼ 1% error. The measured values follow a similar trend with the simulated values, with
some offset (∼ 10%) attributable to the SLM pixel size and the mirror irregularities as described
previously. The highest mode matching efficiency occurs around φ = π/2, as the SLM encodes
the LG00 and LG10 modes into the in-phase and quadrature component of the mode and increases
its efficiency.

Figure 4 (right) shows the mode transmission spectra of a superposition of three modes. The
modes LG00, LG10, and LG20 are superposed with a phase difference of 2π/3 between each



mode, as to distribute the phases evenly on the complex plane. The SLM spatial pattern is given
by:

Φ = arg
[
U{00,10,20}

]
= arg


LG00 + A10ei2π/3LG10 + A20ei4π/3LG20√

1 + A2
10 + A2

20

 (12)

where A10, A20 and w/w0 are parameters to be varied to obtain the desired mode distribution
and the efficiency. Two examples are illustrated in the figure: (1) equally distributed modes,
i.e. U{00,10,20} =

(
LG00 + ei2π/3LG10 + ei4π/3LG20

)
/
√

3, and (2) LG10 content double the
content of the other modes, i.e. U{00,10,20} =

(
LG00 +

√
2ei2π/3LG10 + ei4π/3LG20

)
/2. The

theoretically calculated efficiencies under optimized parameters are 95.6% and 97.2% for case
(1) and (2), while the measured efficiencies are 71(1)% and 70(1)%, respectively.

3.4. Mode-matching at different critical distances

The critical distance d = 2R − L characterizes how far the cavity is away from the concentric
configuration (L = 2R). Small critical distances provide strong field focusing and a small mode
volume. In addition, the frequency spacing of the transverse modes decreases with smaller
critical distances, leading to the mode degeneracy at the critical point [23].

We study how the mode matching of a single LG mode performs at different critical distances.
We use the SLM to couple to LG00, LG10, and LG20 modes of the cavity, and obtain the cavity
transmission spectra. We observe that the linewidth of the cavity spectra increases for smaller
critical distances, while the mode transmission decreases. This is due to the diffraction losses as
the cavity approaches the critical point.
The critical distance can be estimated from the transverse mode spacing. By changing the

cavity length and keeping the laser frequency fixed, we obtain neighbouring cavity spectra
spaced ∆d = λ/2 apart. Figure 5 shows the amplitudes of the mode transmission and the cavity
linewidths for various critical distances. For the case of no diffraction loss, the mode transmission
amplitude is equivalent to the mode-matching efficiency η. However, as the diffraction loss
increases, the “effective” cavity transmission α also changes. Hence, the mode transmission
amplitude describes the mode-matching efficiency weighted by a factor associated with the
diffraction loss. In the high diffraction loss regime, it becomes hard to couple to a particular lossy
eigenmode, and characterize its linewidth to obtain α, as the modes start to overlap in frequency.
Figure 6 shows the spatial profile of the cavity transmission mode, captured with the camera.
The diffraction rings become visible at the critical distance where the linewidth increases.
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Fig. 6. The cavity modes observed with the camera, before and after the diffraction
losses dominate. The diffraction rings are due to the aperture of the anaclastic lens.

The near-concentric cavity can support LG modes reasonably close (∼ a few µm) to the
critical point. However, higher order LG modes start to exhibit diffraction losses at larger
critical distances, due to larger LG beam sizes. The performance of the cavity mirrors can be
characterized with an effective aperture – for every round trip, the cavity mode bounces off a
circular aperture with diameter a on the mirror, effectively blocking some outer parts of the beam.
As a first order approximation, we assume the LG modes to be unperturbed after subsequent
round trips. To estimate the onset of the diffraction loss, we choose an aperture size to block
∼ 1% of the mode (the diffraction loss is 2κap ∼ 2π × 20 MHz), which on the same order as the
mirror transmission and scattering losses. From Figure 5 (right), the effective aperture diameter
is estimated to be aexp = 1.40(6)mm with the onset of the diffraction loss at critical distances of
0.46(8) µm for LG00, 1.8(3) µm for LG10, and 3.8(6) µm for LG20.
The estimated effective aperture aexp = 1.40(6)mm is comparatively lower than the nominal

aperture of the anaclastic lens-mirror design anom = 4.07 mm. We suspect this to be due to a
combination of the following factors: (1) local aberrations of the mirror surface due to thermo-
mechanical stresses [42, 43] and optical surface irregularities, (2) angle-dependent variation on
the wavefront due to the multi-layered coating [44], as the deposition process creates thicker
layers near the center of the mirror and thinner layers near the perimeter, (3) the validity of the
paraxial approximation [45] for strongly diverging modes, particularly for higher orders. Even
though the LG modes are quite far from degeneracy (∼ 100 MHz) in this regime, it may be
possible to reach near-degeneracy either by slightly modifying the mirror shape or the coating
layers – this strategy would create a slightly different “effective” cavity length for different LG
modes, allowing the modes to come closer or even overlap in frequency.

4. Conclusion

In summary, we have developed a mode-matching procedure for the transverse modes of a
near-concentric cavity. Using an SLM, we engineer the spatial phase information of an input
Gaussian beam to selectively mode-match with a specific LG mode, and achieve relatively high
efficiencies for several low-order LG modes. Next, we demonstrate that an arbitrary superposition
of cavity modes can be generated with a relatively high fidelity, limited by the resolution of the
SLM device and the imperfections of cavity mirror surfaces. We show that the near-concentric
cavity can support several LG modes up to critical distances of a few µm before the diffraction
loss dominates. These results provide a valuable building block to explore strong interaction



betweens atoms and multi-mode photons in near-concentric cavities.
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