[[Model]] Model(lorentzian) [[Fit Statistics]] # function evals = 27 # data points = 25 # variables = 3 chi-square = 113804074.396 reduced chi-square = 5172912.473 [[Variables]] amp: 30.3244654 +/- 0.164419 (0.54%) (init= 30) width: 100.313452 +/- 0.928931 (0.93%) (init= 80) mean: 23.0135192 +/- 0.389777 (1.69%) (init= 40) [[Correlations]] (unreported correlations are < 0.100) C(amp, width) = -0.572 [[Model]] Model(normal_mode) [[Fit Statistics]] # function evals = 75 # data points = 24 # variables = 5 chi-square = 2368.545 reduced chi-square = 124.660 [[Variables]] amp: 29.3592704 +/- 0.295799 (1.01%) (init= 32.7) width: 6.0659 (fixed) mean: 26.4724949 +/- 0.353157 (1.33%) (init= 34) const1: 0.14808341 +/- 0.015686 (10.59%) (init= 0.15) const2: 0.01983363 +/- 0.000302 (1.52%) (init= 0.025) shift: -3.00746670 +/- 0.650278 (21.62%) (init=-5) [[Correlations]] (unreported correlations are < 0.100) C(amp, const2) = 0.702 C(amp, const1) = 0.577 C(mean, shift) = -0.542 C(const1, const2) = 0.435 >> From here, we can estimate the cavity parameters to be: C = 0.074 +/- 0.008 k = 2 * pi * (50.4 +/- 0.8) MHz g = 2 * pi * (4.8 +/- 0.3) MHz assuming gamma is fixed at gamma = 2 * pi * (6.059 / 2) MHz