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Nearly concentric optical cavities can be used to prepare optical fields with a very small mode
volume. We implement an anaclastic design of a such a cavity that significantly simplifies mode
matching to the fundamental cavity mode. The cavity is shown to have diffraction-limited per-
formance for a mode volume of ≈ 104λ3. This is in sharp contrast with the behavior of cavities
with plano-concave mirrors, where aberrations significantly decrease the coupling of the input mode
to the fundamental mode of the cavity and increase the coupling to the higher order modes. We
estimate the related cavity QED parameters and show that the proposed cavity design allows for
strong coupling without a need for high finesse or small physical cavity volume.
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I. INTRODUCTION

Achieving strong interaction of single quantum emit-
ters with electromagnetic field in a single-photon regime
is one of the ever-sought goals in modern atomic physics.
Besides fundamental interest it is motivated by needs
of quantum information science, where information ex-
change between “flying qubits” encoded in photonic de-
grees of freedom and “stationary qubits” realized in the
atomic or other microscopic material systems lies in the
heart of various communication protocols and computa-
tional architectures [1].

One of the well established approaches to achieve the
desired coupling is to enhance photon-atom interaction
in high-finesse cavities [2]. Since the early demonstra-
tions [3] the field of cavity QED with single atoms was a
constant struggle for higher coupling [4, 5] mostly relying
on ultra-high-reflectivity coatings of constantly increas-
ing sophistication [6]. At the same time the mode vol-
ume of a cavity aiming at strong coupling must be kept
as small as possible, which usually results in some sort of
a microresonator, be it a micro Fabry-Pérot cavity [7] or
some kind of a monolithic whispering gallery resonator
[8]. Recently, also photonic waveguide structures have
been successfully used to achieve this goal [9–11].

An alternative route to small mode volume is to use the
strongly focused “hourglass modes” of near-concentric
cavities [12–14]. Here we follow this route and demon-
strate an effective coupling of light to a Fabry-Pérot res-
onator near the stability limit. Mode matching of the
external Gaussian beam to such a cavity is problematic
and we provide arguments, both experimental and nu-
merical, that optical aberrations in the mirrors are one
of the main reasons of these problems. A cavity mirror
design, initially proposed in [15] is experimentally tested
and shown to be superior over traditional mirror geome-
tries. The paper is organized as follows: we begin with
demonstrating the problems of conventional mirrors in
concentric cavities in Section II, analyze their origins nu-

merically in Section III, describe the cavity lens design
and its experimental test in Section IV, and estimate the
expected coupling to single atoms in Section V.

II. CONCENTRIC CAVITY WITH

PLANO-CONCAVE MIRRORS

The small mode volume optical cavity with the length
approaching the concentric point makes it extremely vul-
nerable to various instabilities. Our first goal was to
study the behavior of an “ordinary” cavity under these
extreme conditions. The cavity was formed by two mir-
rors on a plano-concave substrate of BK-7 glass. The
planar side had anti-reflection coating at 780 nm, while
the spherical surface with 50 mm radius of curvature was
coated for 0.978 reflectivity at the same wavelength.
The experimental set up, used to determine the cavity

parameters, is shown in Fig. 1. We used an extended cav-
ity diode laser with wavelength of 780 nm as a light source
with tunable frequency. The laser beam was spatially
mode-cleaned by a single-mode fiber, and mode matched
to a cavity with a three lens system. The transmitted
light was detected by a photodiode and recorded. Part
of the probe light was sent to a rubidium reference cell
(not shown) where a Doppler-free spectroscopy signature
in Rubidium provided an absolute frequency reference.
In this transmission experiment it is more convenient

to scan the laser frequency by means of a diffraction grat-
ing, rather than scanning the cavity length. This is be-
cause for a cavity very close to the concentric configura-
tion, the variation of the mirror separation on the order
of half a wavelength in order to observe one free spectral
range (FSR) significantly changes the transverse mode.
This in turn would require an adjustment of the mode-
matching optics during the length variation. The mode
matching components L1, L2 and L3 are chosen and po-
sitioned accordingly for each time we change the cavity
length.
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FIG. 1: Experimental setup with a test cavity formed by two
plano-concave mirrors M1,M2 with 0.978 reflectivity, 50mm
radius of curvature and 6.35mm aperture. L1, L2, L3 - spatial
mode-matching optics, SMF- single mode fiber for 780 nm
beam and PD - photodiode.
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FIG. 2: The focusing parameter of the TEM00 eigenmode
of the cavity as a function of the cavity length. The verti-
cal lines at R and 2R correspond to confocal and concentric
configurations, respectively.

Throughout this paper, we will discuss several quanti-
ties of interest versus the dimensionless focusing param-
eter u. Focusing parameter is defined as the ratio of the
input beam waist at the cavity mirrors w to half of the
cavity length L. We use this instead of cavity length
to allow for direct comparison of the results for differ-
ent cavities. Figure 2 shows the focusing parameter as
a function of the cavity length L with R as the radius
of curvature of the mirrors. Vertical lines at L = R and
2R correspond to confocal and concentric cavity config-
urations, respectively. The focusing parameter diverges,
as the required input mode waist at mirror is infinite at
the exact concentric configuration. Almost all significant
changes in behavior are observed within few micrometers
from the concentric length L = 2R. As shown in Fig. 3,
the experimentally observed linewidth (circles) increases
dramatically as the cavity length approaches the concen-
tric limit, implying increasing losses for the fundamen-
tal cavity mode. Partially that can be explained by the
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FIG. 3: Linewidth of a cavity formed by plano-concave mir-
rors, measured for different focusing parameters u (circles).
The solid line corresponds to a simple model taking into ac-
count only diffraction losses due to finite size of the mir-
rors, while the squares represent calculations considering both
aberrations and diffraction losses (the joining line is added to
guide the eye only).

increased mode waist at the mirrors leading to diffrac-
tion/clipping losses due to the finite aperture of the mir-
rors. The power reflected from a mirror with aperture
radius a and reflectivity Rm can be expressed as:

P = P0Rm

(

1− exp

[

−
2a2

ω2

])

, (1)

where P0 is the input power and ω is the waist of the
beam. The exponential term in the right-hand-side of the
equation is due to the finite aperture of the mirror (which
we will refer to as diffraction loss). The diffraction loss
for a fundamental Gaussian mode can be approximately
taken into account by introducing a correction of the frac-
tion of power left in the cavity after one round trip,

ρ = R2
m

(

1− exp

[

−
2a2

ω2

])2

. (2)

The resulting cavity finesse

F (ρ)=
π

2 arcsin
(

1−√
ρ

2 4
√
ρ

) (3)

leads to a linewidth κ = c/ (2LF), assuming only diffrac-
tion losses. Fig. 3 shows this estimation as a solid line.
However, the expression significantly underestimates the
measured values. Even though equation (2) is only an
approximation (an exact calculation of diffraction losses
requires numerical solution of the diffraction equation
[16]), the approximation should be valid for our purposes
since the fundamental mode waist ω at the cavity mir-
rors in the region of interest is significantly smaller than
the mirror aperture. We therefore explore aberrations as
another explanation for the observed behavior.
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III. ABERRATION ANALYSIS

At the concentric limit the waist of a cavity mode is
almost at the diffraction limit and the input beam has
to be strongly focused to match it. Some amount of op-
tical aberrations will be inevitably introduced by spheri-
cal mode-matching optics, and most importantly by the
planar surface of the input mirror itself. Aberrations
degrade the Gaussian input mode and cause significant
coupling to higher order spatial modes of the cavity.
For a cavity with cylindrical symmetry, a suitable set

of spatial modes is described (in dimensionless units) by
Laguerre-Gaussian functions:

Ψl,p (r, φ, z) =
Cl,p

w(z)

(

r
√
2

w(z)

)|l|
exp

[

− r2

w(z)2

]

×L
|l|
p

(

2r2

w(z)2

)

× exp
[

ik r2

2R(z)

]

exp [ilφ] (4)

× exp [−i (2p+ |l|+ 1) ξ (z)] ,

where L
|l|
p are generalized Laguerre polynomials, r is the

transverse distance from the optical axis, w (z) the mode
waist at position z, p the radial mode number, l the az-
imuthal index with |l| ≤ p, R(z) the radius of curvature of
the wavefront at z, ξ (z) = arctan(z/zR) the longitudinal
Guoy phase, and zR the Rayleigh range. A normalization
constant Cl,p ensures

∫

|Ψl,p (r, φ, zm)|
2
rdrdφ = 1 at the

mirror position zm.
The frequency shift of the higher order modes (p, l > 0)

with respect to the fundamental one (p, l = 0) is given
by

∆νl,p =
c

2πL
(|l|+ 2p) arccos

(

1−
L

R

)

, (5)

where c is the speed of light, L the cavity length, and
R the radius of curvature of the mirrors. In the limit
L ≈ 2R the mode separation becomes equal to the free
spectral range of the cavity. Higher order spatial modes
then overlap, and it becomes impossible to resolve them
in the frequency domain. This overlapping of modes re-
sults in the broadening of the transmission peak if the
cavity length is very close to the concentric configura-
tion.
To make these considerations quantitative, we deter-

mined the coupling of the aberrated input beam that we
used in the measurement to higher order spatial modes
of the cavity numerically. The wavefront deformation of
the input beam at the surface of the input mirror was
estimated by ray tracing. By following the optical path
including all the mode matching optics, we determine the
phase of the input beam at the spherical surface of the
mirror with respect to the transverse distance from the
optical axis. The phase of the beam at the optical axis is
taken as the phase reference. Figure 4 shows the wave-
front deviation from the ideal spherical wavefront of the
Gaussian cavity mode for a 2.35 mm input beam waist at

 0

 3

 6

 9

 12

 15

 0  1  2  3  4  5  6

w
av

ef
ro

nt
 d

ev
ia

tio
n 

(λ
)

transverse distance, r (mm)

FIG. 4: Aberrations in input mode at mirror. (Left) Devi-
ation of the wavefront of the input mode from the spheri-
cal shape of the mirror surface (R = 50 mm) as a function
of transverse distance from the optical axis (in fractions of
wavelength).
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FIG. 5: The normal mode splitting of the calculated trans-
mission at focusing parameter of 0.047, where the coupling
coefficient g0 is 7.75 MHz (solid line). The vertical lines show
the frequencies of the splitted modes and the cavity resonance.
The normal mode splitting of the fundamental mode of the
cavity is also shown as a reference (dashed line).

mirror position (5.7 µm waist in the center of the cavity),
corresponding to u = 0.047.
Assuming that mode-matching is affected by this wave-

front distortion only, we can calculate the coupling coeffi-
cients. We express the spatial mode of the input beam as
a fundamental Gaussian mode of the cavity, multiplied
by a slowly varying complex phase term:

ξ (r, φ, z) = C
ω(z) exp

[

− r2

w(z)2

]

× exp
[

ik r2

2R(z)

]

exp [−iξ (z)]× exp [iϕ (r)] , (6)

where ϕ (r) is the calculated phase retardance of the in-
put beam with respect to the cavity mode. The coupling
of the input beam to a spatial mode Ψl,p can be charac-
terized by a normalized intensity γl,p of the correspond-
ing mode excited by the input beam in a spatial mode
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ξ(r, φ, z), which is given by the squared modulus of an
overlap integral:

γl,p =

∣

∣

∣

∣

∣

∣

a
∫

0

2π
∫

0

Ψl,p(r, φ, zm)∗ξ(r, φ, zm)rdrdφ

∣

∣

∣

∣

∣

∣

2

, (7)

taken at z = zm corresponding to the input mirror posi-
tion. The finesse (and linewidth) for fundamental mode
can be evaluated using expressions (2) and (3), but for
higher order modes different diffraction losses per round
trip have to be taken into account, for each mode (l, p):

ρl,p = ρ0





a
∫

0

2π
∫

0

|Ψl,p(r, φ, zm)|
2
rdrdφ





2

(8)

In the case of ϕ(r) ≡ 0 only the fundamental Gaus-
sian mode has non-zero overlap with the input mode,
while for an aberrated beam (6), higher order modes are
significantly populated. For every experimental point in
Fig. 3, the mode populations were calculated numerically,
including modes up to p = 50. The transmission spec-
trum was calculated as a superposition of transmission
lines for each mode with maxima shifted by ∆νl,p and
line width κl,p = c/ (2LFl,p). An example of the calcu-
lated spectrum for the maximal experimentally achieved
focusing parameter of u = 0.047 is shown in Fig. 6a.
Fig. 6b, 6c and 6d show the cavity output at different
frequencies around the transmission peak. The small dif-
ference between the measured (red line) and the calcu-
lated (black solid line) transmission is due to the absorb-
tion/scattering losses of the cavity mirrors. In Fig. 6b
the higher order modes can clearly be seen as the fre-
quency is away from that of the fundamental mode. In
Fig. 6c, the snapshot is at the frequency that corresponds
to the peak apex, where many modes are present at the
same frequency. In Fig. 6d, the fundamental mode is pre-
dominantly excited as the frequency is around the reso-
nance frequency of the fundamental mode of the cavity.
However, the higher order modes are also visible (circles
around he central fundamental mode). We took the full
width at half-maximum of this spectrum as an estimate
of the experimentally observed linewidth, calculated val-
ues are shown in Fig. 3 along with experimental data.
The errors on the measured linewidth here is the stan-
dard deviation of the full width at half-maximum over
100 sweeps and are highly dependent on the mechanical
stability of the cavity setup. The error on the focusing
parameter is evaluated through the mode waist at the
center of the cavity, which is found by measuring the er-
ror of the minimum waist at the optical axis at one single
pass of the beam (absent second mirror). The error of
the focusing parameter is less than 2% of the focusing
parameter values for Fig. 3.
One can observe reasonable correspondence between

the experimental data and the numerical simulation re-
sults, supporting our hypothesis about the major role
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FIG. 6: The effect of the aberrations in the cavity transmis-
sion spectrum. a) The measured spectrum (red line) and the
calculated spectrum (black solid line) of cavity transmission
with a focusing parameter of 0.047 are compared. The cal-
culated fundamental mode of the cavity is also shown as a
reference (dashed line). The vertical lines 1,2 and 3 (in a) are
the frequency references of the snapshots of the cavity trans-
mission b,c and d, respectively. The detection area of the
camera is 3× 4 mm2 and the images are in real dimensions of
the chip size of the camera.

of aberrations in mode-matching for the cavity in near-
concentric configuration.

In this analysis, there are two basic assumptions made.
First, we assume that the input mode through the first
substrate surface to the mirror surface can be approx-
imated via a ray tracing method. This seems justified
because the radius of curvature of the wavefronts there
is much larger than the optical wavelength. Second,
Laguerre-Gaussian modes are taken as the cavity eigen-
modes. However, the cavity mirrors have a finite size,
and a numerical calculation of real cavity eigenmodes is
required. An example of this treatment can be found
in [17]. However, even in our experimentally accessible
configuration closest to concentric case, the mode waist
at the mirror is smaller than the radius of the mirror
aperture (ω(zm) = 0.42a). It can be seen on Fig. 3 that
the diffraction loss is not significant even at the closest
to concentric configuration data point with a focusing
parameter of 0.047.

Thus, the use of Laguerre-Gaussian modes as the cav-
ity eigenmodes is a reasonable approximation. In other
words, the linewidth broadening within the near concen-
tric regime is due to the population of the higher order
modes, which is an obstacle to observe the mode split-
ting because of the cavity-atom interaction. Fig. 5 shows
the estimated normal mode splitting for a cavity with
plano-concave mirrors and with a focusing parameter of
0.047. It can clearly be seen that the excited higher or-
der modes make it difficult to observe the normal mode
splitting. Our aberration analysis of the near concentric
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FIG. 7: Cross section of the anaclastic cavity lens design.
The aspherical surface is an ellipsoid of revolution defined by
(1− z/a)2 − (r/b)2 = 1, with half-axes a = 6.3844mm and
b = 5.2620mm. This surface acts as a lens with a focal point
at z = 10mm.

cavity regime therefore suggests that in order to observe
the cavity quantum electrodynamic effects, one needs to
avoid the aberrations of the input mode.

IV. ANACLASTIC CAVITY DESIGN

There are well-known ways to eliminate aberrations in
the optical mode. Spatial light modulators, phase holo-
grams and distortable mirrors can be used to eliminate
the aberrations caused by the mode-matching optics and
also pre-correct the aberration caused by the planar sur-
face of the cavity mirror [18–21]. However, these tech-
niques are sophisticated and require change of correction
optics for different focusing parameter values. A simple
and efficient way to eliminate the aberrations of the in-
put mode is to use anaclastic design of mode-matching
optics. An anaclastic lens has an aspheric surface con-
verting the plane wavefront of a collimated Gaussian in-
put beam to a converging spherical wavefront. A design
of cavity mirrors incorporating such an aspheric surface
as the input surface of the cavity mirror was proposed
in [15], but has in fact been known for a very long time
[22, 23]. The aspheric surface is an ellipsoid of revolu-
tion with half axes a = fn/(n + 1) in longitudinal and

b = f
√

(n− 1)/(n+ 1) in transverse direction, where f
is the desired focal length, and n is the refractive in-
dex of the material used. If the second spherical surface
is centered at the focus of the lens, it does not intro-
duce any distortions to the wavefront of the input beam
resulting in an aberration-free design. The drawing of
the cavity mirror used in this work is shown in Fig. 7.
The mirrors were made of N-SF11 glass with refractive
index of n = 1.76583 at 780 nm with the focal length
f = 10mm, corresponding to 5.5mm radius of curva-
ture of the spherical cavity mirrors. The elliptical surface
was anti-reflection coated for 780 nm wavelength, and the
spherical surface had a high-reflectivity coating the trans-
mission of which was specified to be larger than 0.99 by
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FIG. 8: Transmission through an anaclastic cavity for the cav-
ity length 780 nm away from the concentric configuration, and
an input beam waist ω=3.6mm corresponding to a focusing
parameter u = 0.36.

the manufacturer. However in what follows we use the
value of 0.9936 estimated from the measured linewidth
for small input beam waists, where the diffraction and
(possible) aberrative losses are insignificant.
The design combining cavity mirror and mode-

matching lens not only eliminates the aberrations of the
coupling optics, but also significantly simplifies align-
ment, which is a major advantage for the technically
challenging concentric configuration. With expressions
in [15] for the field quantization, we can associate an ef-
fective mode volume for this (standing wave) cavity of

Veff =
3λ2L

4πRsc(u)
. (9)

For our design value u = 0.36, we get a value of Veff ≈
104λ3. With this particular value of focusing parame-
ter, the cavity–single atom cooperativity has a maximum
value of 150. We can experimentally realize cavity mode
volume as small as ≈ 4100λ3 with u = 0.73, but at very
small values of cavity mode volume (large focusing pa-
rameter) the diffraction loss becomes significant. This
results in the broadening of the linewidth of the trans-
mission peak. Consequently, the cavity decay rate be-
comes larger, and the cavity-single atom cooperativity
decreases (comparing to the case where u = 0.365). The
mode-matching is achieved by simply choosing an appro-
priate waist of the collimated input beam.
The performance of the anaclastic cavity design was

tested in a setup similar to those of Fig. 1, with a three
lens system replaced by a telescope. The achieved qual-
ity of mode-matching is illustrated by Fig. 8, where a sin-
gle oscilloscope trace corresponding to a frequency scan
of more than 15 GHz is shown (the cavity free spectral
range is 13.6 GHz). The cavity transmission spectrum
corresponds to a focusing parameter of 0.36 that gives
maximum cavity cooperativity value of 150 (see Fig. 11).
Some residual excitation of higher order modes is visible,
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FIG. 9: Measured transmission linewidth of the anaclastic
cavity for different focusing parameter u (circles). The solid
line represents a simulation taking into account diffraction
loss only.

which we attribute to possibly non-ideal quality of the as-
pheric surface, as well as to mismatch in input beam waist
and non-perfect beam alignment in experiment. Mode-
hop-free tuning of an external cavity diode laser over this
range was accomplished by synchronizing the rotation of
the grating with adjustment of the diode current, result-
ing in continuous tuning over more than 30GHz.
Fig. 9 shows the linewidth dependence on the focus-

ing parameter for the anaclastic cavity. In contrast to
a cavity formed by plano-concave mirrors, the linewidth
broadening of the anaclastic cavity can be predominantly
attributed to diffraction losses. The theoretical curve
in Fig. 9 is calculated according to equation (3) with-
out any additional assumptions. Slight deviation of the
experimental data points from the theoretical curve is
because of the roughness and deviation from the ideeal
sphere of the spherical surface of the mirror, as well as
the non-perfect collimation of the input beam. We mea-
sured 51.7% coupling of the fundamental mode of the
cavity into a single mode fiber with a focusing parame-
ter of u = 0.36. The coupling of the cavity output into
a singe mode fiber changes slightly (less than 3%) with
different focusing parameter values. This observation is
an argument in support of significant reduction of aber-
rations in the anaclastic design even for relatively strong
focusing.

V. ESTIMATION OF SINGLE ATOM

COUPLING STRENGTH

The ultimate goal of designing a small mode vol-
ume cavities is achieving a strong interaction between
an electromagnetic field of the cavity mode and reso-
nant atoms. A standard figure of merit characterizing
the interaction strength is the single atom cooperativ-
ity C = g20/(κγ), where g0 is the coupling strength, κ is
the cavity linewidth and γ the atomic spontaneous de-

FIG. 10: The transmission of the cavity at a focusing param-
eter of u = 0.36. The observed Gaussian profile corresponds
to the resonance frequency of the fundamental mode at the
transmission spectrum shown in Fig. 9. A converging lens is
placed in front of the camera since the waist of the cavity
output (3.6 mm) is larger than the chip size of the camera
(3× 4 mm2).

 0

 40

 80

 120

 160

 0  0.2  0.4  0.6  0.8

co
op

er
at

iv
ity

 g
0(

u)
/κ

(u
)γ

focusing parameter

FIG. 11: Estimated single atom cooperativity as a function
of the focusing parameter for the anaclastic cavity coupled to
a D2 transition in 87Rb.

cay rate. As shown in [24], the coupling strength may be
expressed as

g0 =

√

πγcRsc(u)

L
, (10)

with L being the cavity length, c the speed of light in
vacuum, and Rsc(u) the dimensionless quantity charac-
terizing the scattering probability of a photon from the
atom depending on the focusing parameter u,

Rsc(u) =
3

4u3
e2/u

2

[

Γ(−
1

4
,
1

u2
) + uΓ(

1

4
,
1

u2
)

]2

. (11)

The estimated cooperativity for the D2 transition in
87Rb with γ = 2π × 6.067 MHz and the linewidth data
for the anaclastic cavity is shown in Fig. 11. The trade-
off between the increase in the scattering rate due to
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strong focusing and the reduction of the cavity finesse
due to higher diffraction losses for larger beams result in
an optimum value of the input beam waist (and hence
the cavity length in our design). The estimated coopera-
tivity reaches the maximal value of C ≈ 150 at a focusing
parameter u = 0.36, which clearly indicates that strong
coupling regime should be achievable with the presented
cavity design. Fig. 8 shows the measured transmission
spectrum at this focusing parameter value of the empty
cavitiy, with some minor excitation of higher order modes
(see inset). For u = 0.36, we expect a coupling coeffi-
cient g0=350MHZ, so the normal mode splitting in the
presence of an atom should move the cavity transmis-
sion peak in a region where higher order modes only con-
tribute very little to the transmission (we estimate less
than 5%), making normal mode splitting still observable.

VI. CONCLUSION

In summary, we have studied the linewidth broadening
effects in optical cavities near the concentric limit. Op-
tical aberrations of the input beam were identified as a
main reason for the observed broadening and numerical
modeling was performed to estimate the linewidth for the
experimental data of a cavity with plano-concave mirrors.
The numerical results are in reasonable correspondence
with the experimental data supporting our claim of the
aberrative nature of the observed behavior. Our results
suggest that simply using the aberration-corrected exter-
nal coupling optics will not solve the problem efficiently,
since the main source of the phase distortion for the in-
put mode is a planar mirror surface itself and different fo-
cusing parameter values require different mode-matching
optics. Aberration correction tools can be used for pre-

compensation for the distortion of the beam at the pla-
nar surface of the cavity mirror. However, our suggested
aspheric design of a coupling surface to the cavity mir-
ror, incorporating the aberration-free coupling lens and
a highly-reflective mirror in one piece. This design is a
simple and efficient solution for the aberrations in the in-
put mode. The experimental test of a cavity with such an
anaclastic design of the mirrors has shown that it signif-
icantly outperforms ordinary plano-concave mirrors near
the concentric limit. We were able to demonstrate sig-
nificantly reduced coupling of the input beam to higher-
order spatial modes while still keeping the coupling to
the fundamental mode relatively high. An estimation
of the single atom cooperativity for the measured cav-
ity linewidth suggests the possibility of achieving strong
coupling of the cavity mode to a single atom.

We believe the proposed cavity design to be an in-
teresting alternative to small-volume cavities with ultra-
high-reflectivity coatings dominating the field of cavity
QED at present. For example, large distance between
the mirrors and at the same time small volume of the
“hour-glass” mode in the center of the cavity may be cru-
cial for experiments with trapped ions, allowing to place
the trap electrodes inside the cavity. Another major ad-
vantage of the proposed design is that there is no need
for sophisticated dielectric coatings (the results reported
here were obtained with a 99.36% reflectivity coating),
which significantly reduces the cost of the mirrors.
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