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I. MODELLING THE VIOLATION OF CHSH BY
A POISSONIAN SOURCE OF QUBIT PAIRS

The output of a CW-pumped SPDC process can be ac-
curately described as the emission of independent pairs
distributed according to Poissonian statistics of average
µ, if the time under consideration (in our case, the length
of a round) is much longer than the single-photon co-
herence time. The goal of this Section is to provide an
estimate of the observed CHSH parameter S for such a
source.

The pairs being independent, it helps to think in two
steps. First, each pair is converted into classical infor-
mation (α, β) ∈ {+,−} with probability

PQ(α, β|x, y) = Tr(ρΠx
α ⊗Πy

β) , (1)

where the Π’s are measurement operators. If some of the
events have α = − (β = −), Alice’s (Bob’s) detector may
be triggered, leading to the observed outcome a = −1
(b = −1).

For the purpose of studying CHSH, it is sufficient to
consider P (−1,+1|x, y) and P (+1,−1|x, y), since

Exy = 1− P (−1,+1|x, y)− P (+1,−1|x, y) . (2)

With our convention of outcomes, P (−1,+1|x, y) is the
probability associated with the case when Alice’s detector
clicks and Bob’s does not. Thus, Bob’s detector should
not be triggered by any pair: each pair will contribute to
P (−1,+1|x, y) with

D(α) ≡ PQ(α,+|x, y) + (1− ηB)PQ(α,−|x, y) . (3)

Now, let us look at the contribution by v pairs to
P (−1,+1|x, y). At least one of the α’s must be − for
the detector to be triggered; and multiple detections will
also be treated as a = −1. Thus, a configuration in which
exactly k α’s are − leads to a = −1 with probability
1− (1− ηA)k (i.e. at least one α = − must trigger a de-
tection). Obviously there can be

(
v
k

)
such configurations,

so the contribution of the v pair events to P (−1,+1|x, y)
is

Dv =
v∑
k=1

(
v

k

)
[1− (1− ηA)k]D(−)kD(+)v−k . (4)

Finally,

P (−1,+1|x, y) =
∞∑
v=0

Pµ(v)Dv . (5)

The calculation of P (+1,−1|x, y) is identical, with
D(β) ≡ PQ(+, β|x, y) + (1 − ηA)PQ(−, β|x, y) and ηB
instead of ηA in (4).

Because the quantum probabilities appear in such a
convoluted way, the optimal parameters for both the
state and the measurements are not the same as for the
single-pair case. Upon inspection, however, the values
are close, as expected from the fact that the violation is
mostly contributed by the single-pair events.

The curves presented in Fig. 2 have been obtained
with a slightly modified model that includes the effect
of the background events. The quantum probabilities
PQ(α, β|x, y) have been computed with ρ = |ψ〉〈ψ| given
in Equation (4) of the main article and with projective
measurements, with the values of the parameters given
in the main text.

II. PROTOCOL AND SECURITY PROOF

For completeness, we will present the protocol stud-
ied in [26] and give explicit constants in its security
proof. We also refer to this paper for basic defini-
tions of (smooth) min-entropy and related quantities. It
will be more convenient for us to switch to to the no-
tation a, b ∈ {0, 1} for the outcome labels (instead of
a, b ∈ {+1,−1} of the main text) and use the language
of nonlocal games with winning condition

wCHSH(a, b, x, y) =
{

1 if a⊕ b = x · y ,
0 otherwise .

(6)

The game winning probability is then w = 1/2 + S/8 in
terms of the CHSH value. The optimal classical winning
strategy achieve a winning probability of 0.75, while the
optimal quantum strategy achieves a winning probability
of (2 +

√
2)/4 ≈ 0.85.

A randomness expansion protocol is a procedure that
consumes r-bits of randomness and generates m-bits of
almost uniform randomness. Formally, a (εc, εs)-secure
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r → m randomness expansion protocol if given r uni-
formly random bits,

• (Soundness) For any implementation of the de-
vice it either aborts or returns an m-bit string
Z ∈ {0, 1}m with

(1− Pr[abort]) ‖ρZRE − ρUm ⊗ ρUr ⊗ ρE‖1 ≤ εs ,

where R is the input randomness register, E is the
adversary system, and ρUm , ρUr are the completely
mixed states on appropriate registers.

• (Completeness) There exists an honest implemen-
tation with Pr[abort] ≤ εc.

We remark that this security definition is a composable
definition assuming quantum adversary, but not compos-
able assuming a no-signalling adversary [26]. Compos-
ability allows the randomness generated to be safely used
inside a larger protocol, such as quantum key distribu-
tion, without compromising the latter’s security.

For a concrete randomness expansion protocol, we
present the protocol studied in [26]. The protocol takes
parameters γ expected fraction (marginal probability) of
test rounds, ωexp expected winning probability for an
honest (perhaps noisy) implementation, and δest width
of the statistical confidence interval for the estimation
test. In an execution, for every round i ∈ {1, . . . , n}:

• Bob chooses a random bit Ti ∈ {0, 1} such that
Pr(Ti = 1) = γ using the interval algorithm [28].

• If Ti = 0 (randomness generation), Alice and Bob
choose deterministically (Xi, Yi) = (0, 0), otherwise
Ti = 1 (test round) they choose uniformly random
inputs (Xi, Yi).

• Alice and Bob use the physical devices with the said
inputs (Xi, Yi) and record their outputs (Ai, Bi).

• If Ti = 1, they compute
Ci = wCHSH(Ai, Bi, Xi, Yi) . (7)

They abort the protocol if
∑
j Cj < (ωexpγ − δest)n

where j is the index of test rounds, otherwise they re-
turn Ext(AB,Z) where Ext is a randomness extractor,
AB = A1B1...AnBn and Z is a uniformly random seed.

More precisely, we use a Trevisan extractor in [27]
based on polynomial hashing with block weak design, be-
cause of its efficiency in terms of seed length. This is a
function Ext : {0, 1}2n × {0, 1}d → {0, 1}m such that if
Hmin(AB|E) ≥ 4 log 1

ε1
+ 6 +m then

1
2
∥∥ρExt(AB,Z)ZE − ρUm ⊗ ρUd ⊗ ρE

∥∥
1 ≤ mε1 (8)

The seed length of this extractor is d = a(2`)2 where

a =
⌈

log(m− 2e)− log(2`− 2e)
log(2e)− log(2e− 1)

⌉
(9)

` =
⌈

log 2n+ 2 log 2
ε1

⌉
(10)

Now it can be shown that the entropy accumulation
protocol gives the completeness and soundness of our
randomness expansion protocol. However, let us men-
tion how the input randomness affects the soundness and
completeness of the final protocol.

In the protocol we assume access to a certain uniform
randomness source, from which the random bits required
in the protocol are generated: the Ti, Xi and Yi. In
certain rounds, Xi and Yi are either deterministic or
fully random bits and can be directly obtained from the
source. On the other hand, Ti must be simulated from
the uniform source (except when γ = 1/2 which is not
usually the case in practice). This can be done efficiently
by the interval algorithm [28]: the expected number of
random bits needed to generate one Bernoulli(γ) is at
most h(γ) + 2 and the maximum number of random bits
needed is at most Lmax := max{log γ−1, log(1 − γ)−1}.
Then Lemma 16 of [26] gives us: let γ > 0, for any
n there is an efficient procedure that given (at most)
6h(γ)n uniformly random bits either it aborts with prob-
ability at most εSA = exp(−18h(γ)3n/Lmax) or outputs
n bits T1, . . . , Tn whose distribution is within statistical
distance at most εSA of n i.i.d. Bernoulli(γ) random vari-
ables. This raises both the completeness and soundness
parameter of the final protocol by εSA.

In an honest implementation of the protocol, Alice and
Bob execute the protocol with a device that performs
i.i.d. measurements on a tensor product state resulting
in an expected winning probability ωexp. Here Lemma
8 of [26] bounds the probability of aborting using Ho-
effding’s inequality. That is, the probability that our
randomness expansion protocol aborts for an honest im-
plementation is

Pr[abort] ≤ exp(−2nδ2
est) =: εest . (11)

Therefore, the total completeness is bounded by εSA +
εest. (Note that εest is actually the completeness param-
eter of the entropy accumulation protocol in [26].)

For the soundness, Corollary 11 of [26] ensures that
for any εEA, ε

′ ∈ (0, 1) either the protocol aborts with
probability greater than 1− εEA or

Hε′

min(AB|XYTE)ρ|pass > n · ηopt(ε′, εEA) . (12)

Together with our extractor, for all ε1 ∈ (0, 1), if the
length m of the final string satisfies

n · ηopt(ε′, εEA) = 4 log 1
ε1

+ 6 +m (13)

then we are guaranteed that

1
2 ‖ρSRE − ρUm ⊗ ρUR ⊗ ρE‖1 ≤ ε

′/2 +mε1 . (14)

Here ηopt(ε′, εEA) is given by the following equations: for
h the binary entropy and γ, p(1) ∈ (0, 1]
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ηopt(ε′, εEA) = max
3
4<

pt(1)
γ < 2+

√
2

4

η(ωexpγ − δest, pt, ε
′, εEA) , (15)

η(p, pt, ε′, εEA) = fmin(p, pt)−
1√
n

2
(

log 13 + d
dp(1)g(p)|pt

)√
1− 2 log(ε′εEA) , (16)

fmin(p, pt) =
{
g(p) if p(1) ≤ pt(1) ,

d
dp(1)g(p)|pt · p(1) +

(
g(pt)− d

dp(1)g(p)|pt · pt(1)
)

if p(1) > pt(1) (17)

g(p) =

1− h
(

1
2 + 1

2

√
16p(1)

γ

(
p(1)
γ − 1

)
+ 3
)

if p(1)
γ ∈

[
0, 2+

√
2

4

]
1 if p(1)

γ ∈
[

2+
√

2
4 , 1

] (18)

Combined with the input sampling soundness, the total
soundness is bounded by εSA + εEA + ε′/2 +mε1.

Parameter Definition
εc completeness, bounding honest abort probability
εs soundness, bounding randomness security
εSA input sampling error tolerance
ε′ smoothing parameter
ε1 1-bit extractor error tolerance
εEX randomness extractor error tolerance
εest Bell estimation error tolerance
εEA soundness of entropy accumulation protocol

TABLE I: Definition of security parameters.

Finally, let us count the number of random bits con-
sumed in the protocol. It consists of the randomness used
to decide if a round is a test or generation round, the ran-
domness used to pick the inputs in a test round, and the
randomness used for the Trevisan extractor. Taking into
account the finite statistical fluctuations, we need at most
6h(γ)n bits to choose between test and generation except
with probability εSA. This results in at most 2γn test-
ing rounds except with probability εSA, which equates
to 2 × 2γn random bits being consumed for generating
the inputs for test rounds. The randomness for Trevisan
extractor is d bits. (Practically, after the first run of the
protocol, we can omit this amount because the extractor
is a strong extractor: we can reuse the seed for next run
of the protocol). Summing these up, we have consumed
at most 6h(γ)n + 4γn + d uniformly random bits with
probability at least 1− 2εSA.

In summary, for a device with ωexp, any choice of
γ, ε1, ε

′, εEA ∈ (0, 1), and n large enough, our proto-
col is an (εSA + εest, εSA + εEA + ε′/2 + mε1)-secure
[6h(γ)n+ 4γn+ d]→ m randomness expansion protocol.
That is either our protocol abort with probability greater

than 1 − εEA, or it produces a string of length m such
that 1

2 ‖ρSRE − ρUm ⊗ ρUR ⊗ ρE‖ ≤ εSA + ε′/2 + mε1 .
The protocol consume at most 6h(γ)n + 4γn + d uni-
formly random bits with probability at least 1− 2εSA.

III. INPUT-OUTPUT RANDOMNESS
ANALYSIS

The previous Section gives a complete picture of the
(one-shot) behavior of our randomness expansion proto-
col. For the purpose of this paper, it suffices to obtain
rough estimates on the randomness output, but further
optimization can be done.

For simplicity, we introduce some bounds on the re-
sources. Since m ≤ 2n we can let mε1 ≤ 2nε1 =: εEX
which gives ε1 = εEX/(2n). Plugging this back in (13)
gives us the number of random bits one can extract,

m = n · ηopt(ε′, εEA)− 4 logn+ 4 log εEX − 10 , (19)

for a given level of soundness εSA + εEA + ε′/2 + εEX.
Moreover, the protocol consumes 6h(γ)n + 4γn + d bits
of randomness with probability at least 1− εSA, where

d = a(2`)2 with a ≤ log(2n− 2e)− log(2`− 2e)
log(2e)− log(2e− 1) + 1

and ` ≤ 3 logn+ 6− 2 log εEX . (20)

This leads to an expansion of m − 6h(γ)n − 4γn − d.
Hence, the output randomness rate per unit time is

rn = 1
τ

(
ηopt(ε′, εEA)− 4 logn

n
+ 4log εEX

n
− 10

n

)
,

(21)

and the net randomness rate per unit time is
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rnet
n = 1

τ

(
ηopt(ε′, εEA)− 4 logn

n
+ 4log εEX

n
− 10

n
− 6h(γ)− 4γ − d

n

)
. (22)

These formulas are of course given for a protocol with
completeness εSA + εest and soundness εSA + εEA + ε′/2 +
εEX, where

εSA = exp(−18h(γ)3n/Lmax) (23)
Lmax = max{log γ−1, log(1− γ)−1} (24)
εest = exp(−2nδ2

est) . (25)

The asymptotic rate for the block size n→∞ is given
by taking the limit of block size n

r∞ = 1
τ

[
1− h

(
1
2 + 1

2

√
S2

4 − 1
)]

. (26)

For the net asymptotic rate we could also take the same
limit, however we could obtain a better bound by the
expected behavior of the interval algorithm. Since the
expected number of random bits needed to generate
T1, ..., Tn is nh(γ) + 2 by [28], and γn of which is ex-
pected to be test rounds each consuming 2 random bits,
we have the asymptotic net rate

rnet
∞ = 1

τ

[
1− h

(
1
2 + 1

2

√
S2

4 − 1
)
− h(γ)− 2γ

]
.

(27)
From an end-user perspective, one may argue that the

only parameters of interest are the completeness and
soundness security parameters which will constrain the
rest of protocol parameters—γ, δest, n, ε’s—for a given
objective such as maximizing randomness rate or net ran-
domness rate. For the illustrative plots we set the con-
straints

εSA + εEA + ε′/2 + εEX = εs , (28)
εSA + εest = εc , (29)

and fix εc = 10−10, εs = 10−10. One then maximizes ran-
domness output or net randomness output given these
constraints. This gives us the best (as measured by our
objective function) protocol parameters within the relax-
ations made to obtain (19) and (20).

However, in the main text we take a simpler approach
without optimizing over the variables γ, δest, ε’s. For each
block size n, we compute εSA as given by (23) which then
fixes δest via εest = 10−10− εSA and (25). The remaining
ε’s which have weight 10−10 − εSA are chosen in a 1 :
2 : 1 ratio of εEA : ε′ : εEX, which is guaranteed to add
up to the specified level of completeness and soundness.
This approach is not far from optimal in the regime of
large block size n. This results in the experimental points
reported in Figure 3 in the main text.

IV. RANDOM BITS EXTRACTION
PROCEDURE

As mentioned in the main text, the data observed dur-
ing the experiment contains certified randomness. Here
we describe the procedure we use to extract this random-
ness in a finite run of the experiment. We consider two
blocks of data, corresponding to an acquisition time of
≈ 42.8 min (dataset1) and ≈ 17.33 hours (dataset2).

The randomness protocol we use (described in Section
II) relies on two elements:

• an honest implementation, and

• security parameters.
These elements must be chosen adequately before pro-
ceeding to the extraction. Indeed, if a too optimistic
honest implementation is chosen, for instance, the data
observed will fail to pass the test, and the whole protocol
will abort: no randomness can then be extracted.

Moreover, our setup allows us to choose freely the bin
width which can significantly affect the amount of certi-
fied randomness.

We dedicate a fraction γcalib of our data to the estima-
tion of these parameters so as to maximize the amount
of randomness certified. The randomness protocol is
then run with these parameters on the remaining fraction
(1−γcalib) of the data only. We determine the fraction of
data γcalib to use for the calibration of the randomness ex-
traction procedure from a simulation of the experiment.
We estimate the number of random bits that can be cer-
tified from an experiment of the envisioned length if a
fraction γcalib of the data is dedicated to calibration pur-
pose (all other parameters being set as expected). We
choose the value of γcalib that maximizes this quantity.
We find that γcalib = 22% is adequate for dataset1, and
γcalib = 8% for dataset2.

We then proceed to define the parameters of the ran-
domness protocol. The security parameters εs, εc are set
a priori, with all the other parameters derived as de-
scribed in Sections II and III, with γ = 1. We define
honest implementation an implementation which repro-
duces the CHSH violation observed during the calibra-
tion stage with probability

P (Sexp ≥ Scalib) ≥ εcalib . (30)
For concreteness, we set εcalib = 10−10. This step guar-
antees that we will not overestimate the amount of Bell
violation which we can expect from a honest experiment.
This is crucial for the whole certification procedure to
succeed with a large probability. We then have

wexp = wcalib − δcalib , (31)



5

with δcalib = B(ωexp, (1− γcalib)n, ωcalib), where

B(p, n, q) =
nq∑
i=0

(
n

i

)
pi(1− p)n−i (32)

is the cumulative distribution of n Bernoulli variable with
parameter p. For simplicity, we use the upper bound

δcalib ≤
√

log(1/εcalib)
2n (33)

valid for all winning probability ωcalib, which leads to a
conservative estimate of the honest implementation Bell
violation Sest.

Having fixed all security parameters and defined our
honest implementation, we are now left with the choice of
the bin width. For this, following the procedure discussed
in the main text, we compute the number of certified
random bits that we can hope to certify in the remaining
(1 − γcalib) fraction of the data as a function of the bin
width. We then choose the bin width which yields the
maximum rate of random bits. We find that optimal bin
widths 8.9 µs for dataset1 and 5.35 µs for dataset2.
This allows us to define how the remaining data is to be
treated: first, we extract the outcomes corresponding to
the chosen bin width, then we use the exact number of
bins so extracted to compute precisely the threshold Bell
violation wexp − δest and the number of certified bits m
corresponding to this dataset, finally we check whether
the data indeed yields a Bell violation larger than wexp−
δest. If this is not the case, we abort. Otherwise, we
apply a randomness extractor on the string of outcomes.
Both datasets pass this test.

Finally, we use the Trevisan extractor implemented by
Mauerer et al. [27], and further improved by Bierhorst
et al. [11] to extract the certified bits. Our modified
source code is available online at https://github.com/
jdbancal/libtrevisan. The advantage of Trevisan ex-
tractors over other kinds of randomness extractors is that
they require little initial seeds, and that they are com-
posable, strong extractors, and secure against quantum
side information. Following the suggestion of [27], we
use the block weak design construction with a RSH ex-
tractor to maximize the number of extracted bits. The
extractor also require a supply of seed randomness. For
this, we use the bits generated with the random number
generator described in [31].

In the end, we extract 617 920 and 35 799 872 uni-
formly random bits from dataset1 and dataset2 respec-
tively, using seeds of length 1 808 802 and 2 923 224. The
corresponding rates, calculated including the acquisition
time of the calibration data, source phase lock and ba-
sis switching, are ≈ 240 bits/s and ≈ 573 bits/s. If
we consider only the time necessary for the data acqui-
sition, we obtain net randomness rates of ≈ 396 bit/s
and ≈ 943 bit/s.

These rates do not include the processing time of
the Trevisan extractor. This classical computation
took 9 hours for dataset1 on a machine processing
24 threads in parallel. The bits extracted can be
found in the Supplementary Material as well (see file
extracted randomness-dataset1.bin). For dataset2
we estimated an unreasonable extraction time of ≈
18 years if run on the same hardware. In order to re-
duced this time to few days it would be necessary to
employ thousands of cores. We decided not to pursue
this effort as we do not think this would add any more
interest to the presented results.

We used the NIST Statistical Test Suite [30] to ensure
the quality of generated strings is at least on par with
acceptable pseudo-randomness. This suit of test can only
verify the uniformity of the generated random string, it
does not certify its privacy. The string generated from
dataset1 passed all the tests that are meaningful for
this relatively short data sample, assuming an acceptable
significance level α = 0.01. The result of the individual
tests are summarized in table II.

Test P–value Proportion
Frequency 0.590949 96/97
Block Frequency 0.275709 95/97
Cumulative Sums Forward 0.964295 96/97
Cumulative Sums Backward 0.637119 96/97
Runs 0.162606 97/97
Longest Run of Ones 0.590949 96/97
Discrete Fourier Transform 0.183769 96/97

TABLE II: Result of the NIST Statistical Test Suite for the
bits extracted from dataset1. We split the random bits into
97 sequences of 6300 bits each.

https://github.com/jdbancal/libtrevisan
https://github.com/jdbancal/libtrevisan
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