#!/usr/bin/gnuplot # plots the tx curves, with and without atom, for 7ns set border linewidth 1.5 set encoding utf8 ## input file ## infile_1='ODE_13.dat' infile_2='ODE_9.dat' infile_3='ODE_6.dat' infile_4='ODE_5.dat' infile_5='ODE_4.dat' ########################## ## theory : # parameters: gamma0 = 1/26.2e-9 gammap_1 = 1/ 13.3e-9 gammap_2 = 1/ 10.0e-9 gammap_3 = 1/ 6.97e-9 gammap_4 = 1/ 5.50e-9 gammap_5 = 1/ 4.31e-9 lambda = 0.033 #---- # solutions of diff eq for excited state population P_e(t) p_decay_1(x) = x<0 ? 0 : 4*lambda*gamma0*gammap_1 / (gammap_1-gamma0)**2 * ( exp(-gamma0/2*x) - exp(-gammap_1/2*x) )**2 p_decay_2(x) = x<0 ? 0 : 4*lambda*gamma0*gammap_2 / (gammap_2-gamma0)**2 * ( exp(-gamma0/2*x) - exp(-gammap_2/2*x) )**2 p_decay_3(x) = x<0 ? 0 : 4*lambda*gamma0*gammap_3 / (gammap_3-gamma0)**2 * ( exp(-gamma0/2*x) - exp(-gammap_3/2*x) )**2 p_decay_4(x) = x<0 ? 0 : 4*lambda*gamma0*gammap_4 / (gammap_4-gamma0)**2 * ( exp(-gamma0/2*x) - exp(-gammap_4/2*x) )**2 p_decay_5(x) = x<0 ? 0 : 4*lambda*gamma0*gammap_5 / (gammap_5-gamma0)**2 * ( exp(-gamma0/2*x) - exp(-gammap_5/2*x) )**2 #------------------ set terminal postscript eps color enhanced solid font "Helvetica,22" size 12.6cm,16cm set output "pe.eps" set border linewidth 1.5 set border 3 set multiplot set nobar set origin 0.0,0.5 set size 1,0.45 set label 1 "a)" at graph -0.10,1.15 left set nobar unset key set key at graph 1.05,1 spacing 1.1 samplen 0 set key set xtics nomirror set ytics nomirror set ytics 1 set ytics add ("0" 0,"1" 1, "2" 2) set xr [-6:150] set yr [-0.1:2] set xtics 20 set xlabel "Time from heralding event, {/Times-Italic t_i} (ns)" set ylabel "excited state population (x10^{-2})" unset bars plot infile_1 u ($1):($2*100):($3*100) with yerrorbars pt 7 ps 0.9 lc rgb "green" t "1.97(1) {/Symbol G}_0", infile_2 u ($1):($2*100):($3*100) with yerrorbars pt 7 ps 0.9 lc rgb "orange" t "2.62(1) {/Symbol G}_0", infile_3 u ($1):($2*100):($3*100) with yerrorbars pt 7 ps 0.9 lc rgb "blue" t "3.76(2) {/Symbol G}_0", infile_4 u ($1):($2*100):($3*100) with yerrorbars pt 7 ps 0.9 lc rgb "red" t "4.76(3) {/Symbol G}_0", infile_5 u ($1):($2*100):($3*100) with yerrorbars pt 7 ps 0.9 lc rgb "black" t "6.08(5) {/Symbol G}_0", p_decay_1(x*1e-9+3e-9)*100 lw 3 lc rgb "green" t '', p_decay_2(x*1e-9+3e-9)*100 lw 3 lc rgb "orange" t '', p_decay_3(x*1e-9+3e-9)*100 lw 3 lc rgb "blue" t '', p_decay_4(x*1e-9+3e-9)*100 lw 3 lc rgb "red" t '', p_decay_5(x*1e-9+3e-9)*100 lw 3 lc rgb "black" t '' ######################### set origin 0.0,0.0 set size 1,0.45 set label 1 "b)" at graph -0.1,1.15 left # theory: lambda = 0.033 tau_0 = 26.23 pemax(x) = 4*lambda*(tau_0/x)**((tau_0+x)/(x-tau_0)) # infile_extinction_data_decaying='../tx_safwm_full_analysis/tx_safwm_summary.dat' set ytics 1 nomirror format "%g" set ytics 1 set ytics add ("0" 0,"1" 1, "2" 2) set yr [-0.1:2] set xtics autofreq nomirror set xr [0:6.5] #set xr [4:14] set xlabel "Relative bandwidth {/Symbol G}_p / {/Symbol G}_0" set ylabel "{/Times-Italic P_{e,max}} (x10^{-2})" set border 3 set key right top unset grid unset bars # set key invert unset key plot pemax(tau_0/x)*100 lw 3 lc rgb "blue" t "Eq.6 with {/Symbol L}=3.3%", \ infile_extinction_data_decaying u (26.23/$1):(100*$5):(($2*26.23/($1*$1))):(100*$6) w xyerrorbars pt 7 ps 2 lc rgb "red" lw 3 t "experiment" unset multiplot unset output pause -1